FUNCTIONAL DEPENDENCY THEORY II
Last Time: Canonical Cover

- Last time, introduced concept of canonical cover
- A canonical cover F_c for F is a set of functional dependencies such that:
 - F logically implies all dependencies in F_c
 - F_c logically implies all dependencies in F
 - Can’t infer any functional dependency in F_c from other dependencies in F_c
 - No functional dependency in F_c contains an extraneous attribute
 - Left side of all functional dependencies in F_c are unique
 - There are no two dependencies $\alpha_1 \rightarrow \beta_1$ and $\alpha_2 \rightarrow \beta_2$ in F_c such that $\alpha_1 = \alpha_2$
Extraneous Attributes

- Given a set F of functional dependencies
 - An attribute in a functional dependency is extraneous if it can be removed from F without affecting closure of F

- Formally: given F, and $\alpha \rightarrow \beta$
 - If $A \in \alpha$, and F logically implies $(F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - A) \rightarrow \beta\}$, then A is extraneous
 - If $A \in \beta$, and $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies F, then A is extraneous
 - i.e. generate a new set of functional dependencies F' by replacing $\alpha \rightarrow \beta$ with $\alpha \rightarrow (\beta - A)$
 - See if F' logically implies F
Testing Extraneous Attributes

- Given relation schema R, and a set F of functional dependencies that hold on R
- Attribute A in $\alpha \rightarrow \beta$
- If $A \in \alpha$ (i.e. A is on left side of the dependency), then let $\gamma = \alpha - \{A\}$
 - See if $\gamma \rightarrow \beta$ can be inferred from F
 - Compute γ^+ under F
 - If $\beta \subseteq \gamma^+$ then A is extraneous in α
Testing Extraneous Attributes (2)

- Given relation schema R, and a set F of functional dependencies that hold on R
- Attribute A in $\alpha \rightarrow \beta$
- If $A \in \beta$ (on right side of the dependency), then try the altered set F'
 - $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$
 - See if $\alpha \rightarrow A$ can be inferred from F'
 - Compute α^+ under F'
 - If α^+ includes A then A is extraneous in β
Computing Canonical Cover

- A simple way to compute the canonical cover of F

\[
F_c = F
\]

repeat

- apply union rule to replace dependencies in F_c of form $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1 \beta_2$
- find a functional dependency $\alpha \rightarrow \beta$ in F_c with an extraneous attribute

/* Use F_c for the extraneous attribute test, not F !!! */

if an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$

until F_c stops changing
Canonical Cover Example

- Functional dependencies F on schema (A, B, C)
 - $F = \{ A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C \}$
 - Find F_c
- Apply union rule to $A \rightarrow BC$ and $A \rightarrow B$
 - Left with: $\{ A \rightarrow BC, B \rightarrow C, AB \rightarrow C \}$
- A is extraneous in $AB \rightarrow C$
 - $B \rightarrow C$ is logically implied by F (obvious)
 - Left with: $\{ A \rightarrow BC, B \rightarrow C \}$
- C is extraneous in $A \rightarrow BC$
 - Logically implied by $A \rightarrow B, B \rightarrow C$
- $F_c = \{ A \rightarrow B, B \rightarrow C \}$
A set of functional dependencies can have multiple canonical covers

Example:

\[F = \{ A \rightarrow BC, B \rightarrow AC, C \rightarrow AB \} \]

Has several canonical covers:

- \(F_c = \{ A \rightarrow B, B \rightarrow C, C \rightarrow A \} \)
- \(F_c = \{ A \rightarrow B, B \rightarrow AC, C \rightarrow B \} \)
- \(F_c = \{ A \rightarrow C, C \rightarrow B, B \rightarrow A \} \)
- \(F_c = \{ A \rightarrow C, B \rightarrow C, C \rightarrow AB \} \)
- \(F_c = \{ A \rightarrow BC, B \rightarrow A, C \rightarrow A \} \)
Another Example

- Functional dependencies F on schema (A, B, C, D)
 - $F = \{ A \rightarrow B, BC \rightarrow D, AC \rightarrow D \}$
 - Find F_c

- In this case, it may look like $F_c = F$…

- However, can infer $AC \rightarrow D$ from $A \rightarrow B, BC \rightarrow D$ (pseudotransitivity), so $AC \rightarrow D$ is extraneous in F
 - Therefore, $F_c = \{ A \rightarrow B, BC \rightarrow D \}$

- Alternately, can argue that D is extraneous in $AC \rightarrow D$
 - With $F' = \{ A \rightarrow B, BC \rightarrow D \}$, we see that $\{AC\}^+ = ACD$, so D is extraneous in $AC \rightarrow D$
 - (If you eliminate the entire RHS of a functional dependency, it goes away)
Some schema decompositions lose information

Example:

\texttt{employee(emp_id, emp_name, phone, title, salary, start_date)}

- Decomposed into:

 \texttt{emp_ids(emp_id, emp_name)}
 \texttt{emp_details(emp_name, phone, title, salary, start_date)}

Problem:

- \texttt{emp_name} doesn’t uniquely identify employees
- This is a lossy decomposition
Lossless Decompositions

- Given:
 - Relation schema R, relation $r(R)$
 - Set of functional dependencies F
- Let R_1 and R_2 be a decomposition of R
 - $R_1 \cup R_2 = R$
- The decomposition is lossless if, for all legal instances of r:
 - $\Pi_{R_1}(r) \bowtie \Pi_{R_2}(r) = r$
- A simple definition…
Lossless Decompositions (2)

- Can define with functional dependencies:
 - R_1 and R_2 form a lossless decomposition of R if at least one of these dependencies is in F^+:
 \[R_1 \cap R_2 \rightarrow R_1 \]
 \[R_1 \cap R_2 \rightarrow R_2 \]
 - $R_1 \cap R_2$ forms a superkey of R_1 and/or R_2
 - Test for superkeys using attribute-set closure
Decomposition Examples (1)

- The employee example:

  ```
  employee(emp_id, emp_name, phone, title, salary, start_date)
  ```

- Decomposed into:

  ```
  emp_ids(emp_id, emp_name)
  emp_details(emp_name, phone, title, salary, start_date)
  ```

- `emp_name` is not a superkey of `emp_ids` or `emp_details`, so the decomposition is lossy
Decomposition Examples (2)

- The `bor_loan` example:

 \(\text{bor_loan}(\text{cust_id}, \text{loan_id}, \text{amount}) \)

- Decomposed into:

 \(\text{borrower}(\text{cust_id}, \text{loan_id}) \)

 \(\text{loan}(\text{loan_id}, \text{amount}) \quad (\text{loan_id} \rightarrow \text{loan_id}, \text{amount}) \)

- `loan_id` is a superkey of `loan`, so the decomposition is lossless
BCNF Decompositions

- If R is a schema not in BCNF:
 - There is at least one nontrivial functional dependency $\alpha \rightarrow \beta$ such that α is not a superkey for R
 - For simplicity, also require that $\alpha \cap \beta = \emptyset$
 - (if $\alpha \cap \beta \neq \emptyset$ then $(\alpha \cap \beta)$ is extraneous in β)
- Replace R with two schemas:
 - $R_1 = (\alpha \cup \beta)$
 - $R_2 = (R - \beta)$
 - (was $R - (\beta - \alpha)$, but $\beta - \alpha = \beta$, since $\alpha \cap \beta = \emptyset$)
- BCNF decomposition is lossless
 - $R_1 \cap R_2 = \alpha$
 - α is a superkey of R_1
 - α also appears in R_2
Dependency Preservation

Some schema decompositions are not dependency-preserving

- Functional dependencies that span multiple relation schemas are hard to enforce
- E.g. BCNF may require decomposition of a schema for one dependency, and make it hard to enforce another dependency

Can test for dependency preservation using functional dependency theory
Dependency Preservation (2)

- **Given:**
 - A set \(F \) of functional dependencies on a schema \(R \)
 - \(R_1, R_2, \ldots, R_n \) are a decomposition of \(R \)

- The **restriction** of \(F \) to \(R_i \) is the set \(F_i \) of functional dependencies in \(F^+ \) that only has attributes in \(R_i \)
 - Each \(F_i \) contains functional dependencies that can be checked efficiently, using only \(R_i \)

- **Find all** functional dependencies that can be checked efficiently
 - \(F' = F_1 \cup F_2 \cup \ldots \cup F_n \)
 - If \(F'^+ = F^+ \) then the decomposition is dependency-preserving
Third Normal Form Schemas

- Can generate a 3NF schema from a set of functional dependencies F
- Called the 3NF synthesis algorithm
 - Instead of decomposing an initial schema, generates schemas from a set of dependencies
- Given a set F of functional dependencies
 - Uses the canonical cover F_c
 - Ensures that resulting schemas are dependency-preserving
3NF Synthesis Algorithm

- Inputs: set of functional dependences F, on a schema R

 let F_c be a canonical cover for F
 $i := 0$
 for each functional dependency $\alpha \rightarrow \beta$ in F_c
 if none of the schemas R_j, $j = 1, 2, \ldots, i$ contains $(\alpha \cup \beta)$ then
 $i := i + 1$
 $R_i := (\alpha \cup \beta)$
 end if
 done
 if no schema R_j, $j = 1, 2, \ldots, i$ contains a candidate key for R then
 $i := i + 1$
 $R_i :=$ any candidate key for R
 end if
 return (R_1, R_2, \ldots, R_i)
BCNF vs. 3NF

- **Boyce-Codd Normal Form:**
 - Eliminates more redundant information than 3NF
 - Some functional dependencies become expensive to enforce
 - The conditions to enforce involve multiple relations
 - Overall, a very desirable normal form!

- **Third Normal Form:**
 - All [more] dependencies are [probably] easy to enforce...
 - Allows more redundant information, which must be kept synchronized by the database application!
 - Personal banker example:
    ```sql
    works_in(emp_id, branch_name)
    cust_banker_branch(cust_id, branch_name, emp_id, type)
    ```
 - Branch names must be kept synchronized between these relations!
BCNF and 3NF vs. SQL

- SQL constraints:
 - Only key constraints are fast and easy to enforce!
 - Only easy to enforce functional dependencies $\alpha \rightarrow \beta$ if α is a key on some table!
 - Other functional dependencies (even “easy” ones in 3NF) may require more expensive constraints, e.g. CHECK

- For SQL databases with materialized views:
 - Can decompose a schema into BCNF
 - For dependencies $\alpha \rightarrow \beta$ not preserved in decomposition, create materialized view joining all relations in dependency
 - Enforce unique(α) constraint on materialized view

- Impacts both space and performance, but it works...
Multivalued Attributes

- E-R schemas can have multivalued attributes
- 1NF requires only atomic attributes
 - Not a problem; translating to relational model leaves everything atomic
- Employee example:
 - \texttt{employee(\texttt{emp_id}, \texttt{emp_name})}
 - \texttt{emp_deps(\texttt{emp_id}, \texttt{dependent})}
 - \texttt{emp_nums(\texttt{emp_id}, \texttt{phone_num})}
- What are the requirements on these schemas for what tuples must appear?

<table>
<thead>
<tr>
<th>employee</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{emp_id}</td>
</tr>
<tr>
<td>\texttt{emp_name}</td>
</tr>
<tr>
<td>{ \texttt{phone_num} }</td>
</tr>
<tr>
<td>{ \texttt{dependent} }</td>
</tr>
</tbody>
</table>
Multivalued Attributes (2)

- Example data:

<table>
<thead>
<tr>
<th>emp_id</th>
<th>emp_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>125623</td>
<td>Rick</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>emp_id</th>
<th>dependent</th>
</tr>
</thead>
<tbody>
<tr>
<td>125623</td>
<td>Jeff</td>
</tr>
<tr>
<td>125623</td>
<td>Alice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>emp_id</th>
<th>phone_num</th>
</tr>
</thead>
<tbody>
<tr>
<td>125623</td>
<td>555-8888</td>
</tr>
<tr>
<td>125623</td>
<td>555-2222</td>
</tr>
</tbody>
</table>

- Every distinct value of multivalued attribute requires a separate tuple, including associated value of emp_id.

- A consequence of 1NF, in fact!
 - If attributes could be nonatomic, could just store list of values in the appropriate column!
 - 1NF requires extra tuples to represent multivalues.
Independent Multivalued Attributes

- Question is trickier when a schema stores several independent multivalued attributes
- Proposed combined schema:
 employee(emp_id, emp_name)
 emp_info(emp_id, dependent, phone_num)
- What tuples must appear in emp_info?
 - emp_info is a relation
 - If an employee has M dependents and N phone numbers, emp_info must contain M × N tuples
 - Exactly what we get if we natural-join emp_depts and emp_nums
 - Every combination of the employee’s dependents and their phone numbers
Independent Multivalued Attributes

- Example data:

<table>
<thead>
<tr>
<th>emp_id</th>
<th>emp_name</th>
<th>dependent</th>
<th>phone_num</th>
</tr>
</thead>
<tbody>
<tr>
<td>125623</td>
<td>Rick</td>
<td>Jeff</td>
<td>555-8888</td>
</tr>
<tr>
<td>125623</td>
<td>Jeff</td>
<td>555-2222</td>
<td></td>
</tr>
<tr>
<td>125623</td>
<td>Alice</td>
<td>555-8888</td>
<td></td>
</tr>
<tr>
<td>125623</td>
<td>Alice</td>
<td>555-2222</td>
<td></td>
</tr>
</tbody>
</table>

- Clearly has unnecessary redundancy
- Can’t formulate functional dependencies to represent multivalued attributes
- Can’t use BCNF or 3NF decompositions to eliminate redundancy in these cases
Multivalued Attributes Example

- Two employees: Rick and Bob
 - Both share a phone number at work
 - Both have two kids
 - Both have a kid named Alice

- Can’t use functional dependencies to reason about this situation!
 - \(emp_id \rightarrow phone_num \) doesn’t hold since an employee can have several phone numbers
 - \(phone_num \rightarrow emp_id \) doesn’t hold either, since several employees can have the same phone number
 - Same with \(emp_id \) and dependent…
Functional dependencies rule out what tuples can appear in a relation

- If $A \rightarrow B$ holds, then tuples cannot have the same value for A but different values for B
- Also called equality-generating dependencies

Multivalued dependencies specify what tuples must be present

- To represent a multivalued attribute’s values properly, a certain set of tuples must be present
- Also called tuple-generating dependencies
Multivalued Dependencies

- Given a relation schema R
 - Attribute-sets $\alpha \in R$, $\beta \in R$
 - $\alpha \rightarrow \beta$ is a multivalued dependency
 - “α multidetermines β”

- A multivalued dependency $\alpha \rightarrow \beta$ holds on R if, in any legal relation $r(R)$:
 For all pairs of tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there also exists tuples t_3 and t_4 in r such that:
 - $t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha]$
 - $t_1[\beta] = t_3[\beta]$ and $t_2[\beta] = t_4[\beta]$
 - $t_1[R - \beta] = t_4[R - \beta]$ and $t_2[R - \beta] = t_3[R - \beta]$
Multivalued Dependencies (2)

- Multivalued dependency $\alpha \rightarrow \beta$ holds on R if, in any legal relation $r(R)$:
 For all pairs of tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, There also exists tuples t_3 and t_4 in r such that:
 - $t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha]$
 - $t_1[\beta] = t_3[\beta]$ and $t_2[\beta] = t_4[\beta]$
 - $t_1[R - \beta] = t_4[R - \beta]$ and $t_2[R - \beta] = t_3[R - \beta]$

- Pictorially:

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>$R - (\alpha \cup \beta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>$a_1...a_i$</td>
<td>$a_{i+1}...a_j$</td>
<td>$a_{j+1}...a_n$</td>
</tr>
<tr>
<td>t_2</td>
<td>$a_1...a_i$</td>
<td>$b_{i+1}...b_j$</td>
<td>$b_{j+1}...b_n$</td>
</tr>
<tr>
<td>t_3</td>
<td>$a_1...a_i$</td>
<td>$a_{i+1}...a_j$</td>
<td>$b_{j+1}...b_n$</td>
</tr>
<tr>
<td>t_4</td>
<td>$a_1...a_i$</td>
<td>$b_{i+1}...b_j$</td>
<td>$a_{j+1}...a_n$</td>
</tr>
</tbody>
</table>
Multivalued Dependencies (3)

- Multivalued dependency:

<table>
<thead>
<tr>
<th></th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(R - (\alpha \cup \beta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>(a_1 \ldots a_i)</td>
<td>(a_{i+1} \ldots a_j)</td>
<td>(a_{j+1} \ldots a_n)</td>
</tr>
<tr>
<td>(t_2)</td>
<td>(a_1 \ldots a_i)</td>
<td>(b_{i+1} \ldots b_j)</td>
<td>(b_{j+1} \ldots b_n)</td>
</tr>
<tr>
<td>(t_3)</td>
<td>(a_1 \ldots a_i)</td>
<td>(a_{i+1} \ldots a_j)</td>
<td>(b_{j+1} \ldots b_n)</td>
</tr>
<tr>
<td>(t_4)</td>
<td>(a_1 \ldots a_i)</td>
<td>(b_{i+1} \ldots b_j)</td>
<td>(a_{j+1} \ldots a_n)</td>
</tr>
</tbody>
</table>

- If \(\alpha \rightarrow \beta \) then \(R - (\alpha \cup \beta) \) is independent of this fact
 - Every distinct value of \(\beta \) must be associated once with every distinct value of \(R - (\alpha \cup \beta) \)

- Let \(\gamma = R - (\alpha \cup \beta) \)
 - If \(\alpha \rightarrow \beta \) then also \(\alpha \rightarrow \gamma \)
 - \(\alpha \rightarrow \beta \) implies \(\alpha \rightarrow \gamma \)
 - Sometimes written \(\alpha \rightarrow \beta \ | \ \gamma \)
Trivial Multivalued Dependencies

- $\alpha \rightarrow\rightarrow \beta$ is a trivial multivalued dependency on R if all relations $r(R)$ satisfy the dependency.
- Specifically, $\alpha \rightarrow\rightarrow \beta$ is trivial if $\beta \subseteq \alpha$, or if $\alpha \cup \beta = R$.
- Employee examples:
 - For schema $emp_deps(emp_id, dependent)$, $emp_id \rightarrow dependent$ is trivial.
 - For $emp_info(emp_id, dependent, phone_num)$, $emp_id \rightarrow dependent$ is not trivial.
Inference Rules

- Can reason about multivalued dependencies, just like functional dependencies
- There is a set of complete, sound inference rules for MVDs

Example inference rules:

- Complementation rule:
 - If $\alpha \rightarrow \beta$ holds on R, then $\alpha \rightarrow R - (\alpha \cup \beta)$ holds

- Multivalued augmentation rule:
 - If $\alpha \rightarrow \beta$ holds, and $\gamma \subseteq R$, and $\delta \subseteq \gamma$, then $\gamma \alpha \rightarrow \delta \beta$ holds

- Multivalued transitivity rule:
 - If $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$ holds, then $\alpha \rightarrow \gamma - \beta$ holds

- Coalescence rule:
 - If $\alpha \rightarrow \beta$ holds, and $\gamma \subseteq \beta$, and there is a δ such that $\delta \subseteq R$, and $\delta \cap \beta = \emptyset$, and $\delta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ holds
Functional Dependencies

- Functional dependencies are also multivalued dependencies

- Replication rule:
 - If $α → β$, then $α →→ β$ too
 - Note there is an additional constraint from $α → β$: each value of $α$ has at most one associated value for $β$

- Usually, functional dependencies are not stated as multivalued dependencies
 - The extra caveat is *important*, but not obvious in notation
 - Also, functional dependencies are easier to reason about!
Closures and Restrictions

- For a set D of functional and multivalued dependencies, can compute closure D^+
 - Use inference rules for both functional and multivalued dependencies to compute closure
- Sometimes need the restriction of D^+ to a relation schema R, too
- The restriction of D to a schema R_i includes:
 - All functional dependencies in D^+ that include only attributes in R_i
 - All multivalued dependencies of the form $\alpha \rightarrow \beta \cap R_i$, where $\alpha \subseteq R_i$, and $\alpha \rightarrow \beta$ is in D^+
Fourth Normal Form

- **Given:**
 - Relation schema R
 - Set of functional and multivalued dependencies D

- R is in 4NF with respect to D if:
 - For all multivalued dependencies $\alpha \rightarrow \beta$ in D^+, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
 - $\alpha \rightarrow \beta$ is a trivial multivalued dependency
 - α is a superkey for R
 - **Note:** If $\alpha \rightarrow \beta$ then $\alpha \rightarrow \beta$

- A database design is in 4NF if all schemas in the design are in 4NF
4NF and BCNF

- Main difference between 4NF and BCNF is use of multivalued dependencies instead of functional dependencies
- Every schema in 4NF is also in BCNF
 - If a schema is not in BCNF then there is a nontrivial functional dependency \(\alpha \rightarrow \beta \) such that \(\alpha \) is not a superkey for \(R \)
 - If \(\alpha \rightarrow \beta \) then \(\alpha \rightarrow \rightarrow \beta \)
4NF Decompositions

- Decomposition rule very similar to BCNF
- If schema R is not in 4NF with respect to a set of multivalued dependencies D:
 - There is some nontrivial dependency $\alpha \rightarrow \beta$ in D^+ where $\alpha \subseteq R$ and $\beta \subseteq R$, and α is not a superkey of R
 - Also constrain that $\alpha \cap \beta = \emptyset$
 - Replace R with two new schemas:
 - $R_1 = (\alpha \cup \beta)$
 - $R_2 = (R - \beta)$
Employee Information Example

- **Combined schema:**

 \[
 \begin{align*}
 &\text{employee}(\text{emp_id}, \text{emp_name}) \\
 &\text{emp_info}(\text{emp_id}, \text{dependent}, \text{phone_num})
 \end{align*}
 \]

 - Also have these dependencies:
 - \(\text{emp_id} \rightarrow \text{emp_name} \)
 - \(\text{emp_id} \rightarrow \text{dependent} \)
 - \(\text{emp_id} \rightarrow \text{phone_num} \)

- **emp_info** is not in 4NF

- **Following the rules for 4NF decomposition produces:**

 \[
 \begin{align*}
 &(\text{emp_id}, \text{dependent}) \\
 &(\text{emp_id}, \text{phone_num})
 \end{align*}
 \]

 - **Note:** Each relation’s candidate key is the entire relation. The multivalued dependencies are trivial.
Can also define lossless decomposition with multivalued dependencies

R_1 and R_2 form a lossless decomposition of R if at least one of these dependencies is in D^+:

$R_1 \cap R_2 \rightarrow R_1$

$R_1 \cap R_2 \rightarrow R_2$
Additional normal forms with various constraints

Example: join dependencies

Given R, and a decomposition R_1 and R_2 where $R_1 \cup R_2 = R$:

- The decomposition is lossless if, for all legal instances of $r(R)$,
 \[\Pi_{R_1}(r) \Join \Pi_{R_2}(r) = r \]

Can state this as a join dependency: \((R_1, R_2)\)

- This is actually identical to a multivalued dependency!
- \((R_1, R_2)\) is equivalent to $R_1 \cap R_2 \rightarrow R_1 \mid R_2$
Join Dependencies and 5NF

- Join dependencies (JD) are a generalization of multivalued dependencies (MVD)
 - Can specify JDs involving N relation schemas, $N \geq 2$
 - JDs are equivalent to MVDs when $N = 2$
 - Can easily construct JDs where $N > 2$, with no equivalent set of MVDs

- Project-Join Normal Form (a.k.a. PJNF or 5NF):
 - A relation schema R is in PJNF with respect to a set of join dependencies D if, for all JDs in D^+ of the form
 *

 (R_1, R_2, \ldots, R_n) where $R_1 \cup R_2 \cup \ldots \cup R_n = R$, at least one of the following holds:
 - (R_1, R_2, \ldots, R_n) is a trivial join dependency
 - Every R_i is a superkey for R
Join Dependencies and 5NF (2)

- If a schema is in Project-Join Normal Form then it is also in 4NF (and thus, in BCNF)
 - Every multivalued dependency is also a join dependency
 - (Every functional dependency is also a multivalued dependency)

- One small problem:
 - There isn’t a complete, sound set of inference rules for join dependencies!
 - Can’t reason about our set of join dependencies D...
 - This limits PJNF’s real-world usefulness
Domain-Key Normal Form

- Domain-key normal form (DKNF) is an even more general normal form, based on:
 - **Domain constraints**: what values may be assigned to attribute A
 - Usually inexpensive to test, even with **CHECK** constraints
 - **Key constraints**: all attribute-sets K that are a superkey for a schema R (i.e. $K \rightarrow R$)
 - Almost always inexpensive to test
 - **General constraints**: other predicates on valid relations in a schema
 - Could be very expensive to test!

- A schema R is in DKNF if the domain constraints and key constraints logically imply the general constraints
 - An “ideal” normal form difficult to achieve in practice…