Normal forms specify “good schema” patterns

First normal form (1NF):
- All attributes must be atomic
- Easy in relational model, harder/less desirable in SQL

Boyce-Codd normal form (BCNF):
- Eliminates redundancy using functional dependencies
- Given a relation schema R and a set of dependencies F
- For all functional dependencies $\alpha \rightarrow \beta$ in F^+, where $\alpha \cup \beta \subseteq R$, at least one of these conditions must hold:
 - $\alpha \rightarrow \beta$ is a trivial dependency
 - α is a superkey for R
Can convert a schema into BCNF

If R is a schema not in BCNF:

- There is at least one nontrivial functional dependency $\alpha \rightarrow \beta \in F^+$ such that α is not a superkey for R

Replace R with two schemas:

$(\alpha \cup \beta)$

$(R - (\beta - \alpha))$

May need to repeat this decomposition process until all schemas are in BCNF
Functional Dependency Theory

- Important to be able to reason about functional dependencies!
- Main question:
 - What functional dependencies are logically implied by a set F of functional dependencies?
- Other useful questions:
 - Which attributes are functionally determined by a particular attribute-set?
 - What *minimal* set of functional dependencies must actually be enforced in a database?
 - Is a particular schema decomposition lossless?
 - Does a decomposition preserve dependencies?
Rules of Inference

- Given a set F of functional dependencies
 - Actual dependencies listed in F may be insufficient for normalizing a schema
 - Must consider all dependencies logically implied by F

- For a relation schema R
 - A functional dependency f on R is logically implied by F on R if every relation instance $r(R)$ that satisfies F also satisfies f

- Example:
 - Dependencies:
 - $A \rightarrow B$, $A \rightarrow C$, $CG \rightarrow H$, $CG \rightarrow I$, $B \rightarrow H$
 - Logically implies: $A \rightarrow H$, $CG \rightarrow HI$, $AG \rightarrow I$
Axioms are rules of inference for dependencies
This group is called Armstrong’s axioms
Greek letters α, β, γ, … represent attribute sets
Reflexivity rule:
If α is a set of attributes and $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ holds.
Augmentation rule:
If $\alpha \rightarrow \beta$ holds, and γ is a set of attributes, then $\gamma \alpha \rightarrow \gamma \beta$ holds.
Transitivity rule:
If $\alpha \rightarrow \beta$ holds, and $\beta \rightarrow \gamma$ holds, then $\alpha \rightarrow \gamma$ holds.
Computing Closure of F

Can use Armstrong’s axioms to compute F^+ from F
- F is a set of functional dependencies

$$F^+ = F$$

repeat
 for each functional dependency f in F^+
 apply reflexivity and augmentation rules to f
 add resulting functional dependencies to F^+
 for each pair of functional dependencies f_1, f_2 in F^+
 if f_1 and f_2 can be combined using transitivity
 add resulting functional dependency to F^+
 until F^+ stops changing
Armstrong’s Axioms

- Axioms are **sound**
 - They don’t generate any incorrect functional dependencies

- Axioms are **complete**
 - Given a set of functional dependencies F, repeated application generates all F^+

- F^+ could be **very** large
 - LHS and RHS of a dependency are subsets of R
 - A set of size n has 2^n subsets
 - $2^n \times 2^n = 2^{2n}$ possible functional dependencies in R!
More Rules of Inference

- Additional rules can be proven from Armstrong’s axioms
 - These make it easier to generate F^+
- Union rule:
 - If $\alpha \rightarrow \beta$ holds, and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta \gamma$ holds.
- Decomposition rule:
 - If $\alpha \rightarrow \beta \gamma$ holds, then $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds.
- Pseudotransitivity rule:
 - If $\alpha \rightarrow \beta$ holds, and $\gamma \beta \rightarrow \delta$ holds, then $\alpha \gamma \rightarrow \delta$ holds.
Attribute-Set Closure

- How to tell if an attribute-set α is a superkey?
 - If $\alpha \rightarrow R$ then α is a superkey.
 - What attributes are functionally determined by an attribute-set α?

- Given:
 - Attribute-set α
 - Set of functional dependencies F
 - The set of all attributes functionally determined by α under F is called the closure of α under F
 - Written as α^+
It’s easy to compute the closure of attribute-set \(\alpha \)!

- Algorithm is very simple

Inputs:
- attribute-set \(\alpha \)
- set of functional dependencies \(F \)

\[
\alpha^+ = \alpha
\]

repeat

for each functional dependency \(\beta \rightarrow \gamma \) in \(F \)

if \(\beta \subseteq \alpha^+ \) **then** \(\alpha^+ = \alpha^+ \cup \gamma \)

until \(\alpha^+ \) stops changing
Attribute-Set Closure (3)

- Can easily test if α is a superkey
 - Compute α^+
 - If $R \subseteq \alpha^+$ then α is a superkey of R

- Can also use to identify functional dependencies
 - $\alpha \rightarrow \beta$ holds if $\beta \subseteq \alpha^+$
 - Find closure of α under F; if it contains β then $\alpha \rightarrow \beta$ holds!
 - Can compute F^+ with attribute-set closure too:
 - For each $\gamma \subseteq R$, find closure γ^+ under F
 - We know that $\gamma \rightarrow \gamma^+$
 - For each subset $S \subseteq \gamma^+$, add functional dependency $\gamma \rightarrow S$
Attribute-Set Closure Example

- Relation schema \(R(A, B, C, G, H, I) \)
 - Dependencies:
 \[
 A \rightarrow B, \ A \rightarrow C, \ CG \rightarrow H, \ CG \rightarrow I, \ B \rightarrow H
 \]
- Is \(AG \) a superkey of \(R \) ?
- Compute \((AG)^+ \)
 - Start with \(\alpha^+ = AG \)
 - \(A \rightarrow B, \ A \rightarrow C \) cause \(\alpha^+ = ABCG \)
 - \(CG \rightarrow H, \ CG \rightarrow I \) cause \(\alpha^+ = ABCGHI \)
- \(AG \) is a superkey of \(R \)!
Attribute-Set Closure Example (2)

 - Dependencies: $A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H$

- Is AG a candidate key of R?
 - A candidate key is a minimal superkey
 - Compute attribute-set closure of all proper subsets of superkey; if we get R then it’s not a candidate key

- Compute the attribute-set closures under F
 - $A^+ = ABCH$
 - $G^+ = G$

- AG is indeed a candidate key!
BCNF Revisited

- BCNF algorithm states, if R_i is a schema not in BCNF:
 - There is at least one nontrivial functional dependency $\alpha \rightarrow \beta$ such that α is not a superkey for R_i

- Two points:
 - $\alpha \rightarrow \beta \in F^+$, not just in F
 - For R_i, only care about func. deps. where $\alpha \cup \beta \in R_i$

- How do we tell if R_i is not in BCNF?
 - Can use attribute-set closure under F to find if there is a dependency in F^+ that affects R_i
 - For each proper subset $\alpha \subset R_i$, compute α^+ under F
 - If α^+ doesn’t contain R_i, but α^+ does contain any attributes in $R_i - \alpha$, then R_i is not in BCNF
BCNF Revisited (2)

- If α^+ doesn’t contain R_i, but α^+ does contain any attributes in $R_i - \alpha$, then R_i is not in BCNF.

- If α^+ doesn’t contain R_i, what do we know about α with respect to R_i?
 - α is not a superkey of R_i.

- If α^+ contains attributes in $R_i - \alpha$:
 - Let $\beta = R_i \cap (\alpha^+ - \alpha)$
 - We know there is some non-trivial functional dependency $\alpha \rightarrow \beta$ that holds on R_i.

- Since $\alpha \rightarrow \beta$ holds on R_i, but α is not a candidate key of R_i, we know that R_i cannot be in BCNF.
BCNF Example

- Start with schema \(R(A, B, C, D, E) \), and \(F = \{ A \rightarrow B, BC \rightarrow D \} \)

- Is \(R \) in BCNF?
 - Obviously not.
 - Using \(A \rightarrow B \), decompose into \(R_1(A, B) \) and \(R_2(A, C, D, E) \)

- Are we done?
 - Pseudotransitivity rule says that if \(\alpha \rightarrow \beta \) and \(\gamma\beta \rightarrow \delta \), then \(\alpha\gamma \rightarrow \delta \)
 - \(AC \rightarrow D \) also holds on \(R_2 \), so \(R_2 \) is not in BCNF!
 - Or, compute \(\{AC\}^+ = ABCD \). Again, \(R_2 \) is not in BCNF.
Database Constraints

- Enforcing database constraints can easily become very expensive
 - Especially CHECK constraints!
- Best to define database schema such that constraint enforcement is efficient
- Ideally, enforcing a functional dependency involves only one relation
 - Then, can specify a key constraint instead of a multi-table CHECK constraint!
Example: Personal Bankers

- Bank sets a requirement on employees:
 - Each employee can work at only one branch
 - $emp_id \rightarrow branch_name$

- Bank wants to give customers a personal banker at each branch
 - At each branch, a customer has only one personal banker
 - (A customer could have personal bankers at multiple branches.)
 - $cust_id, branch_name \rightarrow emp_id$
Personal Bankers

- **E-R diagram:**

 ![E-R Diagram](image)

- **Relationship-set schemas:**

 works_in(emp_id, branch_name)
 cust_banker_branch(cust_id, branch_name, emp_id, type)
Personal Bankers (2)

- **Schemas:**
 - `works_in(emp_id, branch_name)`
 - `cust_banker_branch(cust_id, branch_name, emp_id, type)`

- **Is this schema in BCNF?**
 - `emp_id → branch_name`
 - `cust_banker_branch` isn’t in BCNF
 - `emp_id` isn’t a candidate key on `cust_banker_branch`
 - `cust_banker_branch` repeats `branch_name` unnecessarily, since `emp_id → branch_name`

- **Decompose into two BCNF schemas:**
 - `works_in` already has `(emp_id, branch_name)`
 - `(α ∪ β)`
 - Create `cust_banker(cust_id, emp_id, type)`
 - `(R − (β − α))`
New BCNF schemas:

\textit{works_in}(emp_id, branch_name)
\textit{cust_banker}(cust_id, emp_id, type)

- A customer can have one personal banker at each branch, so both \textit{cust_id} and \textit{emp_id} must be in the primary key

Any problems with this new BCNF version?

- Now we can’t \textit{easily} constrain that each customer has only one personal banker at each branch!
- Could still create a complicated \texttt{CHECK} constraint involving multiple tables...
Preserving Dependencies

- The BCNF decomposition doesn’t preserve this dependency:
 - cust_id, branch_name → emp_id
 - Can’t enforce this dependency within a single table

- In general, BCNF decompositions are not dependency-preserving
 - Some functional dependencies are not enforceable within a single table
 - Can’t enforce them with a simple key constraint, so they are more expensive

- Solution: Third Normal Form
Third Normal Form

- Slightly weaker than Boyce-Codd normal form
 - Preserves more functional dependencies
 - Also allows more repeated information!

- Given:
 - Relation schema R
 - Set of functional dependencies F

- R is in 3NF with respect to F if:
 - For all functional dependencies $\alpha \rightarrow \beta$ in F^+, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
 - $\alpha \rightarrow \beta$ is a trivial dependency
 - α is a superkey for R
 - α is a superkey for R
 - Each attribute A in $\beta - \alpha$ is contained in a candidate key for R
Third Normal Form (2)

- New condition:
 - Each attribute A in $\beta - \alpha$ is contained in a candidate key for R

- A general constraint:
 - Doesn’t require a single candidate key to contain all attributes in $\beta - \alpha$
 - Just requires that each attribute in $\beta - \alpha$ appears in some candidate key in R
 - …possibly even different candidate keys!
Personal Banker Example

- Our non-BCNF personal banker schemas again:
 - \texttt{works_in(emp_id, \text{branch_name})}
 - \texttt{cust_banker_branch(cust_id, \text{branch_name}, emp_id, type)}

- Is this schema in 3NF?
 - \texttt{emp_id \rightarrow branch_name}
 - \texttt{cust_id, branch_name \rightarrow emp_id}

- \texttt{works_in} is in 3NF (\texttt{emp_id} is the primary key)

- What about \texttt{cust_banker_branch}?
 - Both dependencies hold on \texttt{cust_banker_branch}
 - \texttt{emp_id \rightarrow branch_name}, but \texttt{emp_id} isn’t the primary key
 - \texttt{cust_id, branch_name \rightarrow emp_id} ; is \texttt{emp_id} part of any candidate key on \texttt{cust_banker_branch}?
Personal Banker Example (2)

- Look carefully at the functional dependencies:
 - Primary key of `cust_banker_branch` is `(cust_id, branch_name)`
 - `{ cust_id, branch_name } → cust_banker_branch` (all attributes)
 (constraint arises from the E-R diagram & schema translation)
 - (Also specified this constraint: `cust_id, branch_name → emp_id`)
 - We also know that `emp_id → branch_name`
 - Pseudotransitivity rule: if $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$
 - `{ emp_id } → { branch_name }`
 - `{ cust_id, branch_name } → cust_banker_branch`
 - Therefore, `{ emp_id, cust_id } → cust_banker_branch` also holds!
 - `(cust_id, emp_id)` is a candidate key of `cust_banker_branch`

- So `cust_banker_branch` is in fact in 3NF
 - (And we need to enforce this second candidate key too...)
Canonical Cover

- Given a relation schema, and a set of functional dependencies F
- Database needs to enforce F on all relations
 - Invalid changes should be rolled back
- F could contain a lot of functional dependencies
 - Dependencies might even logically imply each other
- Want a minimal version of F, that still represents all constraints imposed by F
 - Should be more efficient to enforce minimal version
A canonical cover F_c for F is a set of functional dependencies such that:

- F logically implies all dependencies in F_c
- F_c logically implies all dependencies in F
- Can’t infer any functional dependency in F_c from other dependencies in F_c
- No functional dependency in F_c contains an extraneous attribute
- Left side of all functional dependencies in F_c are unique
 - There are no two dependencies $\alpha_1 \rightarrow \beta_1$ and $\alpha_2 \rightarrow \beta_2$ in F_c such that $\alpha_1 = \alpha_2$
Extraneous Attributes

- Given a set of functional dependencies F
 - An attribute in a functional dependency is **extraneous** if it can be removed from F without affecting closure of F

- Formally: given F, and $\alpha \rightarrow \beta$
 - If $A \in \alpha$, and F logically implies $(F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - A) \rightarrow \beta\}$, then A is extraneous
 - If $A \in \beta$, and $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies F, then A is extraneous
 - i.e. generate a new set of functional dependencies F' by replacing $\alpha \rightarrow \beta$ with $\alpha \rightarrow (\beta - A)$
 - See if F' logically implies F
Testing Extraneous Attributes

- Given relation schema R, and a set F of functional dependencies that hold on R
- Attribute A in $\alpha \rightarrow \beta$
- If $A \in \alpha$ (i.e. A is on left side of the dependency), then let $\gamma = \alpha - \{A\}$
 - See if $\gamma \rightarrow \beta$ can be inferred from F
 - Compute γ^+ under F
 - If $\beta \subseteq \gamma^+$, then A is extraneous in α
Testing Extraneous Attributes (2)

- Given relation schema R, and a set F of functional dependencies that hold on R
- Attribute A in $\alpha \rightarrow \beta$
- If $A \in \beta$ (on right side of the dependency), then try the altered set F'
 - $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$
 - See if $\alpha \rightarrow A$ can be inferred from F'
 - Compute α^+ under F'
 - If α^+ includes A, then A is extraneous in β
Computing Canonical Cover

- A simple way to compute the canonical cover of F

$$F_c = F$$

repeat

apply union rule to replace dependencies in F_c of form

$\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1\beta_2$

find a functional dependency $\alpha \rightarrow \beta$ in F_c with an extraneous attribute

/* Use F_c for the extraneous attribute test, not F !!! */

if an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$

until F_c stops changing
Functional dependencies F on schema (A, B, C)

- $F = \{ A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C \}$
- Find F_c

Apply union rule to $A \rightarrow BC$ and $A \rightarrow B$

- Left with: $\{ A \rightarrow BC, B \rightarrow C, AB \rightarrow C \}$

- A is extraneous in $AB \rightarrow C$
 - $B \rightarrow C$ is logically implied by F (obvious)
 - Left with: $\{ A \rightarrow BC, B \rightarrow C \}$

- C is extraneous in $A \rightarrow BC$
 - Logically implied by $A \rightarrow B, B \rightarrow C$

- $F_c = \{ A \rightarrow B, B \rightarrow C \}$
Another Example

- Functional dependencies F on schema (A, B, C, D)
 - $F = \{ A \rightarrow B, \ BC \rightarrow D, \ AC \rightarrow D \}$
 - Find F_c

- In this case, it may look like $F_c = F$...

- However, can infer $AC \rightarrow D$ from $A \rightarrow B, \ BC \rightarrow D$ (pseudotransitivity), so $AC \rightarrow D$ is extraneous in F
 - Therefore, $F_c = \{ A \rightarrow B, \ BC \rightarrow D \}$

- Alternately, can argue that D is extraneous in $AC \rightarrow D$
 - With $F' = \{ A \rightarrow B, \ BC \rightarrow D \}$, we see that $\{AC\}^+ = ACD$, so D is extraneous in $AC \rightarrow D$
 - (If you eliminate the entire RHS of a functional dependency, it goes away)
A set of functional dependencies can have multiple canonical covers!

Example:

\[F = \{ A \rightarrow BC, B \rightarrow AC, C \rightarrow AB \} \]

Has several canonical covers:

\[F_c = \{ A \rightarrow B, B \rightarrow C, C \rightarrow A \} \]
\[F_c = \{ A \rightarrow B, B \rightarrow AC, C \rightarrow B \} \]
\[F_c = \{ A \rightarrow C, C \rightarrow B, B \rightarrow A \} \]
\[F_c = \{ A \rightarrow C, B \rightarrow C, C \rightarrow AB \} \]
\[F_c = \{ A \rightarrow BC, B \rightarrow A, C \rightarrow A \} \]