Normal forms specify “good schema” patterns

First normal form (1NF):
- All attributes must be atomic
- Easy in relational model, harder/less desirable in SQL

Boyce-Codd normal form (BCNF):
- Eliminates redundancy using functional dependencies
- Given a relation R and a set of dependencies F
- For all functional dependencies $\alpha \rightarrow \beta$ in F^+, where $\alpha \cup \beta \subseteq R$, at least one of these conditions must hold:
 - $\alpha \rightarrow \beta$ is a trivial dependency
 - α is a superkey for R
Can convert a schema into BCNF

If \(R \) is a schema not in BCNF:
- There is at least one nontrivial functional dependency \(\alpha \rightarrow \beta \in F^+ \) such that \(\alpha \) is not a superkey for \(R \)

Replace \(R \) with two schemas:
- \((\alpha \cup \beta) \)
- \((R - (\beta - \alpha)) \)

May need to repeat this decomposition process until all schemas are in BCNF
Functional Dependency Theory

- Important to be able to reason about functional dependencies!
- Main question:
 - What functional dependencies are implied by a set F of functional dependencies?
- Other useful questions:
 - Which attributes are functionally determined by a particular attribute-set?
 - What *minimal* set of functional dependencies must actually be enforced in a database?
 - Is a particular schema decomposition lossless?
 - Does a decomposition preserve dependencies?
Rules of Inference

- Given a set F of functional dependencies
 - Actual dependencies listed in F may be insufficient for normalizing a schema
 - Must consider all dependencies logically implied by F

- For a relation schema R
 - A functional dependency f on R is logically implied by F on R if every relation instance $r(R)$ that satisfies F also satisfies f

- Example:
 - Dependencies: $A \rightarrow B$, $A \rightarrow C$, $CG \rightarrow H$, $CG \rightarrow I$, $B \rightarrow H$
 - Logically implies: $A \rightarrow H$, $CG \rightarrow HI$, $AG \rightarrow I$
Rules of Inference (2)

- **Axioms** are rules of inference for dependencies
- This group is called Armstrong’s axioms
- Greek letters α, β, γ, … represent attribute sets
- **Reflexivity rule:**

 If α is a set of attributes and $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ holds.

- **Augmentation rule:**

 If $\alpha \rightarrow \beta$ holds, and γ is a set of attributes, then $\gamma\alpha \rightarrow \gamma\beta$ holds.

- **Transitivity rule:**

 If $\alpha \rightarrow \beta$ holds, and $\beta \rightarrow \gamma$ holds, then $\alpha \rightarrow \gamma$ holds.
Computing Closure of F

Can use Armstrong’s axioms to compute F^+ from F

- F is a set of functional dependencies

\[
F^+ = F
\]

repeat

for each functional dependency f in F^+

- apply reflexivity and augmentation rules to f
- add resulting functional dependencies to F^+

for each pair of functional dependencies f_1, f_2 in F^+

- if f_1 and f_2 can be combined using transitivity
 - add resulting functional dependency to F^+

until F^+ stops changing
Armstrong’s Axioms

- **Axioms are sound**
 - They don’t generate any incorrect functional dependencies

- **Axioms are complete**
 - Given a set of functional dependencies F, repeated application generates all F^+

- F^+ could be very large
 - LHS and RHS of a dependency are subsets of R
 - A set of size n has 2^n subsets
 - $2^n \times 2^n = 2^{2n}$ possible functional dependencies in R!
More Rules of Inference

- Additional rules can be proven from Armstrong’s axioms
 - These make it easier to generate F^+

- Union rule:
 If $\alpha \rightarrow \beta$ holds, and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta\gamma$ holds.

- Decomposition rule:
 If $\alpha \rightarrow \beta\gamma$ holds, then $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds.

- Pseudotransitivity rule:
 If $\alpha \rightarrow \beta$ holds, and $\gamma\beta \rightarrow \delta$ holds, then $\alpha\gamma \rightarrow \delta$ holds.
Attribute-Set Closure

- **How to tell if an attribute-set α is a superkey?**
 - If $\alpha \rightarrow R$ then α is a superkey.
 - What attributes are functionally determined by an attribute-set α?

- **Given:**
 - Attribute-set α
 - Set of functional dependencies F
 - The set of all attributes functionally determined by α under F is called the closure of α under F
 - Written as α^+
Attribute-Set Closure (2)

- It’s easy to compute the closure of attribute-set α!
 - Algorithm is very simple

- Inputs:
 - attribute-set α
 - set of functional dependencies F

\[
\alpha^+ = \alpha
\]

repeat
 for each functional dependency $\beta \rightarrow \gamma$ in F
 if $\beta \subseteq \alpha^+$ then
 $\alpha^+ = \alpha^+ \cup \gamma$
 until α^+ stops changing
Attribute-Set Closure (3)

- Can easily test if α is a superkey
 - Compute α^+
 - If $R \subseteq \alpha^+$ then α is a superkey of R

- Can also use to identify functional dependencies
 - $\alpha \rightarrow \beta$ holds if $\beta \subseteq \alpha^+$
 - Find closure of α under F; if it contains β then $\alpha \rightarrow \beta$ holds!
 - Can compute F^+ with attribute-set closure too:
 - For each $\gamma \subseteq R$, find closure γ^+ under F
 - We know that $\gamma \rightarrow \gamma^+$
 - For each subset $S \subseteq \gamma^+$, add functional dependency $\gamma \rightarrow S$
Attribute-Set Closure Example

- Relation schema \(R(A, B, C, G, H, I) \)
 - Dependencies:
 \(A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H \)
- Is \(AG \) a superkey of \(R \)?
- Compute \((AG)^+\)
 - Start with \(\alpha^+ = AG \)
 - \(A \rightarrow B, A \rightarrow C \) cause \(\alpha^+ = ABCG \)
 - \(CG \rightarrow H, CG \rightarrow I \) cause \(\alpha^+ = ABCGHI \)
- \(AG \) is a superkey of \(R \)!
Attribute-Set Closure Example (2)

 - Dependencies: $A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H$

- Is AG a candidate key of R?
 - A candidate key is a minimal superkey
 - Compute attribute-set closure of all proper subsets of superkey; if we get R then it’s not a candidate key

- Compute the attribute-set closures under F
 - $A^+ = ABCH$
 - $G^+ = G$

- AG is indeed a candidate key!
BCNF Revisited

BCNF algorithm states, if \(R_i \) is a schema not in BCNF:

- There is at least one nontrivial functional dependency \(\alpha \rightarrow \beta \) such that \(\alpha \) is not a superkey for \(R_i \).

Two points:
- \(\alpha \rightarrow \beta \in F^+ \), not just in \(F \)
- For \(R_i \), only care about func. deps. where \(\alpha \cup \beta \in R_i \)

How do we tell if \(R_i \) is not in BCNF?
- Can use attribute-set closure under \(F \) to find if there is a dependency in \(F^+ \) that affects \(R_i \)
- For each proper subset \(\alpha \subset R_i \), compute \(\alpha^+ \) under \(F \)
- If \(\alpha^+ \) doesn’t contain \(R_i \), but \(\alpha^+ \) does contain any attributes in \(R_i - \alpha \), then \(R_i \) is not in BCNF
BCNF Revisited (2)

- If α^+ doesn’t contain R_i, but α^+ does contain any attributes in $R_i - \alpha$, then R_i is not in BCNF.

- If α^+ doesn’t contain R_i, what do we know about α with respect to R_i?
 - α is not a superkey of R_i.

- If α^+ contains attributes in $R_i - \alpha$:
 - Let $\beta = R_i \cap (\alpha^+ - \alpha)$
 - We know there is some non-trivial functional dependency $\alpha \rightarrow \beta$ that holds on R_i.
 - Since $\alpha \rightarrow \beta$ holds on R_i, but α is not a candidate key of R_i, we know that R_i cannot be in BCNF.
BCNF Example

- Start with schema $R(A, B, C, D, E)$, and $F = \{ A \rightarrow B, BC \rightarrow D \}$
- Is R in BCNF?
 - Obviously not.
 - Using $A \rightarrow B$, decompose into $R_1(A, B)$ and $R_2(A, C, D, E)$
- Are we done?
 - Pseudotransitivity rule says that if $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$
 - $AC \rightarrow D$ also holds on R_2, so R_2 is not in BCNF!
 - Or, compute $\{AC\}^+ = ABCD$. Again, R_2 is not in BCNF.
Enforcing database constraints can easily become very expensive

- Especially CHECK constraints!

Best to define database schema such that constraint enforcement is efficient

Ideally, enforcing a functional dependency involves only one relation

- Then, can specify a key constraint instead of a multi-table CHECK constraint!
Example: Personal Bankers

- Bank sets a requirement on employees:
 - Each employee can work at only one branch
 - $emp_{id} \rightarrow branch_name$

- Bank wants to give customers a personal banker at each branch
 - At each branch, a customer has only one personal banker
 - (A customer could have personal bankers at multiple branches.)
 - $cust_id, branch_name \rightarrow emp_{id}$
E-R diagram:

```
works_in

branch
branch_name
branch_city
assets

cust_banker_branch
cust_id
cust_name
type

employee
emp_id
emp_name

customer

works_in(emp_id, branch_name)
cust_banker_branch(cust_id, branch_name, emp_id, type)
```
Personal Bankers (2)

- **Schemas:**
 - \(\text{works_in}(\text{emp_id}, \text{branch_name}) \)
 - \(\text{cust_banker_branch}(\text{cust_id}, \text{branch_name}, \text{emp_id}, \text{type}) \)

- **Is this schema in BCNF?**
 - \(\text{emp_id} \rightarrow \text{branch_name} \)
 - \(\text{cust_banker_branch} \) isn’t in BCNF
 - \(\text{emp_id} \) isn’t a candidate key on \(\text{cust_banker_branch} \)
 - \(\text{cust_banker_branch} \) repeats \(\text{branch_name} \) unnecessarily, since \(\text{emp_id} \rightarrow \text{branch_name} \)

- **Decompose into two BCNF schemas:**
 - \(\text{works_in} \) already has \((\text{emp_id}, \text{branch_name}) \) \((\alpha \cup \beta) \)
 - Create \(\text{cust_banker}(\text{cust_id}, \text{emp_id}, \text{type}) \) \((R - (\beta - \alpha)) \)
New BCNF schemas:

- `works_in(emp_id, branch_name)`
- `cust_banker(cust_id, emp_id, type)`

A customer can have one personal banker at each branch, so both `cust_id` and `emp_id` must be in the primary key.

Any problems with this new BCNF version?

- Now we can’t easily constrain that each customer has only one personal banker at each branch!
- Could still create a complicated **CHECK** constraint involving multiple tables…
Preserving Dependencies

- The BCNF decomposition doesn’t preserve this dependency:
 - cust_id, branch_name → emp_id
 - Can’t enforce this dependency within a single table

- In general, BCNF decompositions are not dependency-preserving
 - Some functional dependencies are not enforceable within a single table
 - Can’t enforce them with a simple key constraint, so they are more expensive

- Solution: Third Normal Form
Third Normal Form

- Slightly weaker than Boyce-Codd normal form
 - Preserves more functional dependencies
 - Also allows more repeated information!

- Given:
 - Relation schema R
 - Set of functional dependencies F

- R is in 3NF with respect to F if:
 - For all functional dependencies $\alpha \rightarrow \beta$ in F^+, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
 - $\alpha \rightarrow \beta$ is a trivial dependency
 - α is a superkey for R
 - Each attribute A in $\beta - \alpha$ is contained in a candidate key for R
Third Normal Form (2)

- New condition:
 - Each attribute A in $\beta - \alpha$ is contained in a candidate key for R

- A general constraint:
 - Doesn’t require a single candidate key to contain all attributes in $\beta - \alpha$
 - Just requires that each attribute in $\beta - \alpha$ appears in some candidate key in R
 - …possibly even different candidate keys!
Our non-BCNF personal banker schemas again:

- \(\text{works_in}(\text{emp_id}, \text{branch_name}) \)
- \(\text{cust_banker_branch}(\text{cust_id}, \text{branch_name}, \text{emp_id}, \text{type}) \)

Is this schema in 3NF?

- \(\text{emp_id} \rightarrow \text{branch_name} \)
- \(\text{cust_id, branch_name} \rightarrow \text{emp_id} \)

\(\text{works_in} \) is in 3NF (\(\text{emp_id} \) is the primary key)

What about \(\text{cust_banker_branch} \) ?

- Both dependencies hold on \(\text{cust_banker_branch} \)
 - \(\text{emp_id} \rightarrow \text{branch_name} \), but \(\text{emp_id} \) isn’t the primary key
 - \(\text{cust_id, branch_name} \rightarrow \text{emp_id} \); is \(\text{emp_id} \) part of any candidate key on \(\text{cust_banker_branch} \)?
Look carefully at the functional dependencies:

- Primary key of `cust_banker_branch` is `(cust_id, branch_name)`
 - `{ cust_id, branch_name } → cust_banker_branch (all attributes) (constraint arises from the E-R diagram & schema translation)
 - (Also specified this constraint: `cust_id, branch_name → emp_id`)
- We also know that `emp_id → branch_name`
- Pseudotransitivity rule: if $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$
 - `{ emp_id } → { branch_name }
 - `{ cust_id, branch_name } → cust_banker_branch
 - Therefore, `{ emp_id, cust_id } → cust_banker_branch` also holds!
- `(cust_id, emp_id)` is a candidate key of `cust_banker_branch`

So `cust_banker_branch` is in fact in 3NF

(And we need to enforce this second candidate key too...)
Canonical Cover

- Given a relation schema, and a set of functional dependencies F
- Database needs to enforce F on all relations
 - Invalid changes should be rolled back
- F could contain a lot of functional dependencies
 - Dependencies might even logically imply each other
- Want a minimal version of F, that still represents all constraints imposed by F
 - Should be more efficient to enforce minimal version
A canonical cover F_c for F is a set of functional dependencies such that:

- F logically implies all dependencies in F_c
- F_c logically implies all dependencies in F
- Can’t infer any functional dependency in F_c from other dependencies in F_c
- No functional dependency in F_c contains an extraneous attribute
- Left side of all functional dependencies in F_c are unique
 - There are no two dependencies $\alpha_1 \rightarrow \beta_1$ and $\alpha_2 \rightarrow \beta_2$ in F_c such that $\alpha_1 = \alpha_2$
Extraneous Attributes

- Given a set of functional dependencies F
 - An attribute in a functional dependency is extraneous if it can be removed from F without affecting closure of F

- Formally: given F, and $\alpha \rightarrow \beta$
 - If $A \in \alpha$, and F logically implies $(F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - A) \rightarrow \beta\}$, then A is extraneous
 - If $A \in \beta$, and $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies F, then A is extraneous
 - i.e. generate a new set of functional dependencies F' by replacing $\alpha \rightarrow \beta$ with $\alpha \rightarrow (\beta - A)$$
 - See if F' logically implies F
Testing Extraneous Attributes

- Given relation schema \(R \), and a set \(F \) of functional dependencies that hold on \(R \)
- Attribute \(A \) in \(\alpha \rightarrow \beta \)
- If \(A \in \alpha \) (i.e. \(A \) is on left side of the dependency), then let \(\gamma = \alpha - \{A\} \)
 - See if \(\gamma \rightarrow \beta \) can be inferred from \(F \)
 - Compute \(\gamma^+ \) under \(F \)
 - If \(\beta \supseteq \gamma^+ \), then \(A \) is extraneous in \(\alpha \)
Testing Extraneous Attributes (2)

- Given relation schema \(R \), and a set \(F \) of functional dependencies that hold on \(R \)
- Attribute \(A \) in \(\alpha \rightarrow \beta \)
- If \(A \in \beta \) (on right side of the dependency), then try the altered set \(F' \)
 - \(F' = (F - \{ \alpha \rightarrow \beta \}) \cup \{ \alpha \rightarrow (\beta - A) \} \)
 - See if \(\alpha \rightarrow A \) can be inferred from \(F' \)
 - Compute \(\alpha^+ \) under \(F' \)
 - If \(\alpha^+ \) includes \(A \), then \(A \) is extraneous in \(\beta \)
Computing Canonical Cover

- A simple way to compute the canonical cover of F

\[F_c = F \]

```
repeat
    apply union rule to replace dependencies in $F_c$ of form
    $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1\beta_2$
    find a functional dependency $\alpha \rightarrow \beta$ in $F_c$ with an extraneous attribute
    /* Use $F_c$ for the extraneous attribute test, not $F$ !!! */
    if an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$
until $F_c$ stops changing
```
Canonical Cover Example

- Functional dependencies F on schema (A, B, C)
 - $F = \{ A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C \}$
 - Find F_c

- Apply union rule to $A \rightarrow BC$ and $A \rightarrow B$
 - Left with: $\{ A \rightarrow BC, B \rightarrow C, AB \rightarrow C \}$

- A is extraneous in $AB \rightarrow C$
 - $B \rightarrow C$ is logically implied by F (obvious)
 - Left with: $\{ A \rightarrow BC, B \rightarrow C \}$

- C is extraneous in $A \rightarrow BC$
 - Logically implied by $A \rightarrow B, B \rightarrow C$

- $F_c = \{ A \rightarrow B, B \rightarrow C \}$
Another Example

- Functional dependencies F on schema (A, B, C, D)
 - $F = \{ A \rightarrow B, BC \rightarrow D, AC \rightarrow D \}$
 - Find F_c

- In this case, it may look like $F_c = F$...

- However, can infer $AC \rightarrow D$ from $A \rightarrow B, BC \rightarrow D$ (pseudotransitivity), so $AC \rightarrow D$ is extraneous in F
 - Therefore, $F_c = \{ A \rightarrow B, BC \rightarrow D \}$

- Alternately, can argue that D is extraneous in $AC \rightarrow D$
 - With $F' = \{ A \rightarrow B, BC \rightarrow D \}$, we see that $\{AC\}^+ = ACD$, so D is extraneous in $AC \rightarrow D$.
 - (If you eliminate the entire RHS of a functional dependency, it goes away)
A set of functional dependencies can have multiple canonical covers!

Example:

\[F = \{ A \rightarrow BC, B \rightarrow AC, C \rightarrow AB \} \]

Has several canonical covers:

- \(F_c = \{ A \rightarrow B, B \rightarrow C, C \rightarrow A \} \)
- \(F_c = \{ A \rightarrow B, B \rightarrow AC, C \rightarrow B \} \)
- \(F_c = \{ A \rightarrow C, C \rightarrow B, B \rightarrow A \} \)
- \(F_c = \{ A \rightarrow C, B \rightarrow C, C \rightarrow AB \} \)
- \(F_c = \{ A \rightarrow BC, B \rightarrow A, C \rightarrow A \} \)