ENTITY-RELATIONSHIP MODEL II
Last Lecture

- Began to explore the Entity-Relationship Model
 - A visual representation of database schemas
 - Can represent entities and relationships
 - Can represent constraints in the schema

- Last time, left off with mapping cardinalities
Entity-Set Keys

- Entities in an entity-set must be uniquely distinguishable using their values
 - **Entity-set**: each entity is unique

- E-R model also includes the notion of keys:
 - **Superkey**: a set of one or more attributes that can uniquely identify an entity
 - **Candidate key**: a *minimal* superkey
 - **Primary key**: a candidate key chosen by DB designer as the primary means of accessing entities

- Keys are a property of the entity-set
 - They apply to *all* entities in the entity-set
Choosing Candidate Keys

- Candidate keys constrain the values of the key attributes
 - No two entities can have the same values for those attributes
 - Need to ensure that database can actually represent all expected circumstances

- Simple example: customer entity-set
 - Using customer name as a candidate key is bad design: different customers can have the same name
Choosing Primary Keys

- An entity-set may have multiple candidate keys.
- The primary key is the candidate key most often used to reference entities in the set.
 - In logical/physical design, primary key values will be used to represent relationships.
 - External systems may also use primary key values to reference entities in the database.
- The primary key attributes should **never** change!
 - If ever, it should be extremely rare.
Choosing Keys: Performance

- Large, complicated, or multiple-attribute keys are generally slower
 - Use smaller, single-attribute keys
 - (You can always generate them…)
 - Use faster, fixed-size types
 - e.g. INT or BIGINT

- Especially true for primary keys!
 - Values used in both database and in access code
 - Use something small and simple, if possible
Diagramming Primary Keys

- In an entity-set diagram, all attributes in the primary key have an underlined name.

```
customer
  cust_id
  name
  street_address
  city
```

```
loan
  loan_id
  amount
```

- Another example: a geocache location entity-set

```
location
  latitude
  longitude
  description
  last_visited
```
Keys and Relationship-Sets

- Need to be able to distinguish between individual relationships in a relationship-set as well
 - Relationships aren’t distinguished by their descriptive attributes
 - (They might not even have descriptive attributes)
- Relationships are identified by the entities participating in the relationship
 - Specific relationship instances are uniquely identified by the primary keys of the participating entities
Given:
- R is a relationship-set with no descriptive attributes
- Entity-sets E_1, E_2, ..., E_n participate in R
- $primary_key(E_i)$ denotes set of attributes in E_i that represent the primary key of E_i

A relationship instance in R is identified by
- $primary_key(E_1) \cup primary_key(E_2) \cup ... \cup primary_key(E_n)$

This is a superkey

Is it a candidate key?
- Depends on the mapping cardinality of the relationship set!
If R also has descriptive attributes $\{a_1, a_2, \ldots\}$, a relationship instance is described by:

$$\text{primary_key}(E_1) \cup \text{primary_key}(E_2) \cup \ldots \cup \text{primary_key}(E_n) \cup \{a_1, a_2, \ldots\}$$

Not a minimal superkey!

By definition, there can only be one relationship between $\{E_1, E_2, \ldots, E_n\}$ in the relationship-set

- i.e. the descriptive attributes do not identify specific relationships

Thus, just as before, this is also a superkey:

$$\text{primary_key}(E_1) \cup \text{primary_key}(E_2) \cup \ldots \cup \text{primary_key}(E_n)$$
What is the primary key for a binary relationship-set?
- Must also be a candidate key
- Depends on the mapping cardinalities

Relationship-set R, involving entity-sets A and B
- If mapping is many-to-many, primary key is:
 \[
 \text{primary_key}(A) \cup \text{primary_key}(B)
 \]
- Any given entity’s primary-key values can appear multiple times in R
- We need both entity-sets’ primary key attributes to uniquely identify relationship instances
Relationship-Set Primary Keys (2)

- Relationship-set R, involving entity-sets A and B
 - Individual relationships are described by $\text{primary_key}(A) \cup \text{primary_key}(B)$
- If mapping is one-to-many:
 - Entities in B associated with at most one entity in A
 - A given value of $\text{primary_key}(A)$ can appear in multiple relationships
 - Each value of $\text{primary_key}(B)$ can appear only once
 - Relationships in R are uniquely identified by $\text{primary_key}(B)$
 - $\text{primary_key}(B)$ is primary key of relationship-set
Relationship-Set Primary Keys (3)

- Relationship-set R, involving entity-sets A and B

- Many-to-one is exactly the opposite of one-to-many
 - $\text{primary_key}(A)$ uniquely identifies relationships in R
Relationship-Set Primary Keys (4)

- Relationship-set R, involving entity-sets A and B
- If mapping is one-to-one:
 - Entities in A associated with at most one entity in B
 - Entities in B associated with at most one entity in A
 - Each entity’s key-value can appear only once in R
 - Either entity-set’s primary key can be primary key of R
- For one-to-one mapping, $primary_key(A)$ and $primary_key(B)$ are both candidate keys
 - Make sure to enforce both candidate keys in the implementation schema!
What is the primary key for borrower?

borrower is a many-to-many mapping

- Relationship instances are described by
 (cust_id, loan_id, access_date)
- Primary key for relationship-set is (cust_id, loan_id)
Participation Constraints

- Given entity-set E, relationship-set R
 - How many entities in E participate in R?
 - In other words, what is minimum number of relationships that each entity in E must participate in?

- If every entity in E participates in at least one relationship in R, then:
 - E’s participation in R is total

- If only some entities in E participate in relationships in R, then:
 - E’s participation in R is partial
Participation Constraints (2)

- Example: borrower relationship between customer and loan

- A customer might not have a bank loan
 - Could have a bank account instead
 - Could be a new customer
 - Participation of customer in borrower is partial

- Every loan definitely has at least one customer
 - Doesn’t make any sense not to!
 - Participation of loan in borrower is total
Diagramming Participation

- Can indicate participation constraints in entity-relationship diagrams
 - Partial participation shown with a single line
 - Total participation shown with a double line
Numerical Constraints

- Can also state numerical participation constraints
 - Specifies how many different relationship instances each entity in the entity-set can participate in
 - Indicated on link between entity and relationship
- Form: lower..upper
 - * means “unlimited”
 - 1..* = one or more
 - 0..3 = between zero and three, inclusive
 - etc.

![Diagram of entity set and relationship set with participation constraints](image)
Numerical Constraints (2)

- Can also state mapping constraints with numerical participation constraints
- Total participation:
 - Lower bound at least 1
- Partial participation:
 - Lower bound is 0

```
entity_set 1..* relationship_set
```
Numerical Constraint Example

- What does this mean?

- Each customer entity may participate in zero or more relationships in this relationship-set
 - A customer can have zero or more loans.

- Each loan entity must participate in exactly one relationship (no more, no less) in this relationship-set
 - Each loan must be owned by exactly one customer.
Numerical Constraint Example (2)

- What is the mapping cardinality of borrower?

 From last slide:
 - A customer can have zero or more loans
 - Each loan must be owned by exactly one customer.
 - This is a one-to-many mapping from customer to loan
Diagramming Roles

- Entities have **roles** in relationships
 - An entity’s role indicates the entity’s function in the relationship
 - e.g. role of customer in *borrower* relationship-set is that they own the loan
- Sometimes roles are ambiguous
 - e.g. when the same kind of entity is involved in a relationship multiple times
- Example: *works_for* relationship
 - Relationship is between two *employee* entities
 - One is the *manager*; the other is the *worker*
Diagramming Roles (2)

- If roles need to be indicated, put labels on the lines connecting entity to relationship

- `works_for` relationship-set is one-to-many from managers to workers

```
employee
  employee_id
  name
  { phone_number }
  num_reports ()

manager
  works_for

worker
  works_for

0..1 participation constraint
0..* participation constraint
```
Weak Entity-Sets

- Sometimes an entity-set doesn’t have distinguishing attributes
 - Can’t define a primary key for the entity-set!
 - Called a **weak entity-set**

- Example:
 - Checking accounts have a unique account number
 - Checks have a check number
 - Unique for a given account, but not across all accounts!
 - Number only makes sense in context of a particular account
 - Want to store check transactions in the database
Weak Entity-Sets (2)

- Weak entity-sets *must* be associated with another (strong) entity-set
 - Called the identifying entity-set, or owner entity-set
 - The identifying entity-set *owns* the weak entity-set
 - Association called the identifying relationship

- Every weak entity *must* be associated with an identifying entity
 - Weak entity’s participation in relationship-set is total
 - The weak entity-set is existence dependent on the identifying entity-set
 - If the identifying entity is removed, its weak entities should also cease to exist
 - *(this is where cascade-deletes may be appropriate…)*
Weak Entity-Set Keys

- Weak entity-sets don’t have a primary key
 - Still need to distinguish between weak entities associated with a particular strong entity

- Weak entities have a discriminator
 - A set of attributes that distinguishes between weak entities associated with a strong entity
 - Also known as a partial key

- Checking account example:
 - The check number is the discriminator for check transactions
Using discriminator, can define a primary key for weak entity-sets

For a weak entity-set W, and an identifying entity-set S, primary key of W is:

$$\text{primary_key}(S) \cup \text{discriminator}(W)$$

Checking account example:

- `account_number` is primary key for checking accounts
- `check_number` is discriminator (partial key) for checks
- Primary key for check transactions would be `(account_number, check_number)`
Diagramming Weak Entity-Sets

- Weak entity-sets drawn similarly to strong entity-sets
 - Difference: discriminator attributes are underlined with a dashed underline
- Identifying relationship to the owning entity-set is indicated with a double diamond
 - One-to-many mapping
 - Total participation on weak entity side
Common Attribute Mistakes

- Don’t include entity-set primary key attributes on other entity-sets!
 - e.g. customers and loans, in a one-to-many mapping

- Even if every loan is owned by only one customer, this is still wrong
 - The association is recorded by the relationship, so specifying foreign key attributes on the entity-set is redundant
Don’t include primary key attributes as descriptive attributes on relationship-set, either!

This time, assume borrower is a 1:1 mapping
- IDs used as descriptive attributes on borrower

Again, this is implicit in the relationship