First assignment will be available today

- Due next Thursday, October 6, 2:00 AM

- I will choose TAs by Friday
One relation schema can include the attributes of another schema’s primary key

Example: depositir relation

- Depositor_schema = (cust_id, acct_id)
- Associates customers with bank accounts
- cust_id and acct_id are both foreign keys
 - cust_id references the primary key of customer
 - acct_id references the primary key of account
- depositir is the referencing relation
 - It refers to the customer and account relations
- customer and account are the referenced relations
depositor Relation

- depositor relation references customer and account
- Represents relationships between customers and their accounts
- Example: Joe Smith’s accounts
 - “Joe Smith” has an account at the “Los Angeles” branch, with a balance of 550.
Foreign Key Constraints

- Tuples in `depositor` relation specify values for `cust_id`
 - `customer` relation must contain a tuple corresponding to each `cust_id` value in `depositor`
- Same is true for `acct_id` values and `account` relation
- Valid tuples in a relation are also constrained by foreign key references
 - Called a foreign-key constraint
- Consistency between two dependent relations is called referential integrity
 - Every foreign key value must have a corresponding primary key value
Foreign Key Constraints (2)

- Given a relation $r(R)$
 - A set of attributes $K \subseteq R$ is the primary key for R

- Another relation $s(S)$ references r
 - $K \subseteq S$ too
 - $\langle \forall t_s \in s : \exists t_r \in r : t_s[K] = t_r[K] \rangle$

- Notes:
 - K is not required to be a candidate key for S, only R
 - K may also be part of a larger candidate key for S
Query Languages

- A **query language** specifies how to access the data in the database.

- Different kinds of query languages:
 - **Declarative** languages specify what data to retrieve, but not how to retrieve it.
 - **Procedural** languages specify what to retrieve, as well as the process for retrieving it.

- Query languages often include updating and deleting data as well.

- Also called **data manipulation language** (DML).
The Relational Algebra

- A procedural query language
- Comprised of relational algebra operations
- Relational operations:
 - Take one or two relations as input
 - Produce a relation as output
- Relational operations can be composed together
 - Each operation produces a relation
 - A query is simply a relational algebra expression
- Six “fundamental” relational operations
- Other useful operations can be composed from these fundamental operations
“Why is this useful?”

- SQL is only loosely based on relational algebra
- SQL is much more on the “declarative” end of the spectrum
- Many relational database implementations use relational algebra operations as basis for representing execution plans
 - Simple, clean, effective abstraction for representing how results will be generated
 - Relatively easy to manipulate for query optimization
Fundamental Relational Algebra Operations

- Six fundamental operations:
 - σ select operation
 - Π project operation
 - \cup set-union operation
 - $-$ set-difference operation
 - \times Cartesian product operation
 - ρ rename operation

- Each operation takes one or two relations as input
- Produces another relation as output
- Important details:
 - What tuples are included in the result relation?
 - Any constraints on input schemas? What is schema of result?
Select Operation

- Written as: $\sigma_P(r)$
- P is the predicate for selection
 - P can refer to attributes in r (but no other relation!), as well as literal values
 - Can use comparison operators: $=, \neq, <, \leq, >, \geq$
 - Can combine multiple predicates using: \land (and), \lor (or), \neg (not)
- r is the input relation
- Result relation contains all tuples in r for which P is true
- Result schema is identical to schema for r
Select Examples

Using the account relation:

"Retrieve all tuples for accounts in the Los Angeles branch."
\[\sigma_{\text{branch_name} = \text{"Los Angeles"}}(\text{account})\]

"Retrieve all tuples for accounts in the Los Angeles branch, with a balance under $300."
\[\sigma_{\text{branch_name} = \text{"Los Angeles"} \land \text{balance} < 300}(\text{account})\]

<table>
<thead>
<tr>
<th>acct_id</th>
<th>branch_name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-301</td>
<td>New York</td>
<td>350</td>
</tr>
<tr>
<td>A-307</td>
<td>Seattle</td>
<td>275</td>
</tr>
<tr>
<td>A-318</td>
<td>Los Angeles</td>
<td>550</td>
</tr>
<tr>
<td>A-319</td>
<td>New York</td>
<td>80</td>
</tr>
<tr>
<td>A-322</td>
<td>Los Angeles</td>
<td>275</td>
</tr>
</tbody>
</table>

account

<table>
<thead>
<tr>
<th>acct_id</th>
<th>branch_name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-318</td>
<td>Los Angeles</td>
<td>550</td>
</tr>
<tr>
<td>A-322</td>
<td>Los Angeles</td>
<td>275</td>
</tr>
</tbody>
</table>

account

<table>
<thead>
<tr>
<th>acct_id</th>
<th>branch_name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-322</td>
<td>Los Angeles</td>
<td>275</td>
</tr>
</tbody>
</table>
Project Operation

- Written as: $\Pi_{a,b,...}(r)$
- Result relation contains only specified attributes of r
 - Specified attributes must actually be in schema of r
 - Result’s schema only contains the specified attributes
 - Domains are same as source attributes’ domains

- Important note:
 - Result relation may have fewer rows than input relation!
 - Why?
 - Relations are sets of tuples, not multisets
Using the account relation:

\[
\Pi_{\text{branch_name}}(\text{account})
\]

“Retrieve all branch names that have at least one account.”

- Result only has three tuples, even though input has five
- Result schema is just (branch_name)

<table>
<thead>
<tr>
<th>acct_id</th>
<th>branch_name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-301</td>
<td>New York</td>
<td>350</td>
</tr>
<tr>
<td>A-307</td>
<td>Seattle</td>
<td>275</td>
</tr>
<tr>
<td>A-318</td>
<td>Los Angeles</td>
<td>550</td>
</tr>
<tr>
<td>A-319</td>
<td>New York</td>
<td>80</td>
</tr>
<tr>
<td>A-322</td>
<td>Los Angeles</td>
<td>275</td>
</tr>
</tbody>
</table>
Composing Operations

- Input can also be an expression that evaluates to a relation, instead of just a relation

\[\Pi_{acct_id}(\sigma_{balance \geq 300}(account)) \]

\[\Pi_{acct_id}(\sigma_{balance \geq 300}(account)) \]
- Selects the account IDs of all accounts with a balance of $300 or more

- Input relation’s schema is:

 \[Account_schema = (acct_id, branch_name, balance) \]

- Final result relation’s schema?
 - Just one attribute: \(acct_id \)

- Distinguish between base and derived relations

 - \(account \) is a base relation
 - \(\sigma_{balance \geq 300}(account) \) is a derived relation
Set-Union Operation

- Written as: $r \cup s$
- Result contains all tuples from r and s
 - Each tuple is unique, even if it’s in both r and s
- Constraints on schemas for r and s?
- r and s must have compatible schemas:
 - r and s must have same arity
 (same number of attributes)
 - For each attribute i in r and s, $r[i]$ must have the same domain as $s[i]$
 - (Our examples also generally have same attribute names, but not required! Arity and domains are what matter.)
Set-Union Example

- More complicated schema:

account

<table>
<thead>
<tr>
<th>acct_id</th>
<th>branch_name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-301</td>
<td>New York</td>
<td>350</td>
</tr>
<tr>
<td>A-307</td>
<td>Seattle</td>
<td>275</td>
</tr>
<tr>
<td>A-318</td>
<td>Los Angeles</td>
<td>550</td>
</tr>
<tr>
<td>A-319</td>
<td>New York</td>
<td>80</td>
</tr>
<tr>
<td>A-322</td>
<td>Los Angeles</td>
<td>275</td>
</tr>
</tbody>
</table>

loan

<table>
<thead>
<tr>
<th>loan_id</th>
<th>branch_name</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
</tbody>
</table>

depositor

<table>
<thead>
<tr>
<th>cust_name</th>
<th>acct_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson</td>
<td>A-318</td>
</tr>
<tr>
<td>Smith</td>
<td>A-322</td>
</tr>
<tr>
<td>Reynolds</td>
<td>A-319</td>
</tr>
<tr>
<td>Lewis</td>
<td>A-307</td>
</tr>
<tr>
<td>Reynolds</td>
<td>A-301</td>
</tr>
</tbody>
</table>

borrower

<table>
<thead>
<tr>
<th>cust_name</th>
<th>loan_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>L-437</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
</tr>
</tbody>
</table>
Set-Union Example (2)

Find names of all customers that have either a bank account or a loan at the bank

<table>
<thead>
<tr>
<th>acct_id</th>
<th>branch_name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-301</td>
<td>New York</td>
<td>350</td>
</tr>
<tr>
<td>A-307</td>
<td>Seattle</td>
<td>275</td>
</tr>
<tr>
<td>A-318</td>
<td>Los Angeles</td>
<td>550</td>
</tr>
<tr>
<td>A-319</td>
<td>New York</td>
<td>80</td>
</tr>
<tr>
<td>A-322</td>
<td>Los Angeles</td>
<td>275</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cust_name</th>
<th>acct_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson</td>
<td>A-318</td>
</tr>
<tr>
<td>Smith</td>
<td>A-322</td>
</tr>
<tr>
<td>Reynolds</td>
<td>A-319</td>
</tr>
<tr>
<td>Lewis</td>
<td>A-307</td>
</tr>
<tr>
<td>Reynolds</td>
<td>A-301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>loan_id</th>
<th>branch_name</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cust_name</th>
<th>loan_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>L-437</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
</tr>
</tbody>
</table>
Find names of all customers that have either a bank account or a loan at the bank.

Easy to find the customers with an account:
\[\Pi_{\text{cust}_\text{name}}(\text{depositor}) \]

Also easy to find customers with a loan:
\[\Pi_{\text{cust}_\text{name}}(\text{borrower}) \]

Result is set-union of these expressions:
\[\Pi_{\text{cust}_\text{name}}(\text{depositor}) \cup \Pi_{\text{cust}_\text{name}}(\text{borrower}) \]

Note that inputs have 8 tuples, but result has 6 tuples.
Set-Difference Operation

- Written as: $r - s$
- Result contains tuples that are only in r, but not in s
 - Tuples in both r and s are excluded
 - Tuples only in s do not affect the result
- Constraints on schemas of r and s?
 - Schemas must be compatible
 - (Exactly like set-union.)
“Find all customers that have an account but not a loan.”
Set-Difference Example (2)

- Again, each component is easy
 - All customers that have an account:
 \[\Pi_{cust_name}(depositor) \]
 - All customers that have a loan:
 \[\Pi_{cust_name}(borrower) \]

- Result is set-difference of these expressions
 \[\Pi_{cust_name}(depositor) - \Pi_{cust_name}(borrower) \]
Cartesian Product Operation

- **Written as:** \(r \times s \)
 - Read as “\(r \) cross \(s \)”

- **No** constraints on schemas of \(r \) and \(s \)

- **Schema of result is concatenation** of schemas for \(r \) and \(s \)

- **If** \(r \) and \(s \) have overlapping attribute names:
 - All overlapping attributes are included; none are eliminated
 - Distinguish overlapping attribute names by prepending the source relation’s name

- **Example:**
 - Input relations: \(r(a, b) \) and \(s(b, c) \)
 - Schema of \(r \times s \) is \((a, r.b, s.b, c) \)
Cartesian Product Operation (2)

- **Result of** \(r \times s \)
 - Contains every tuple in \(r \), combined with every tuple in \(s \)
 - If \(r \) contains \(N_r \) tuples, and \(s \) contains \(N_s \) tuples, result contains \(N_r \times N_s \) tuples

- Allows two relations to be compared and/or combined
 - If we want to correlate tuples in relation \(r \) with tuples in relation \(s \)...
 - Compute \(r \times s \), then select out desired results with an appropriate predicate
Cartesian Product Example

- **Compute result of** \(\text{borrower} \times \text{loan} \)

<table>
<thead>
<tr>
<th>cust_name</th>
<th>loan_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>L-437</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>loan_id</th>
<th>branch_name</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
</tbody>
</table>

- **Result will contain** \(4 \times 4 = 16 \) tuples
Cartesian Product Example (2)

- **Schema for borrower is:**

 \[\text{Borrower_schema} = (\text{cust_name}, \text{loan_id})\]

- **Schema for loan is:**

 \[\text{Loan_schema} = (\text{loan_id}, \text{branch_name}, \text{amount})\]

- **Schema for result of borrower \times loan is:**

 \[(\text{cust_name}, \text{borrower_loan_id}, \text{loan_loan_id}, \text{branch_name}, \text{amount})\]

 - Overlapping attribute names are distinguished by including name of source relation
Cartesian Product Example (3)

Result:

<table>
<thead>
<tr>
<th>cust_name</th>
<th>borrower. loan_id</th>
<th>loan. loan_id</th>
<th>branch_name</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>L-437</td>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>Anderson</td>
<td>L-437</td>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>Anderson</td>
<td>L-437</td>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>Anderson</td>
<td>L-437</td>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
</tbody>
</table>
Cartesian Product Example (4)

- Can use Cartesian product to associate related rows between two tables
 - …but, a lot of extra rows are included!

<table>
<thead>
<tr>
<th>cust_name</th>
<th>borrower.loan_id</th>
<th>loan.loan_id</th>
<th>branch_name</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Combine Cartesian product with a select operation
 \[\sigma_{\text{borrower.loan_id}=\text{loan.loan_id}}(\text{borrower} \times \text{loan}) \]
“Retrieve the names of all customers with loans at the Seattle branch.”

Need both borrower and loan relations

Correlate tuples in the relations using loan_id

Then, computing result is easy.
Cartesian Product Example (6)

- Associate customer names with loan details, using Cartesian product and a select:
 \[\sigma_{\text{borrower.loan_id}=\text{loan.loan_id}}(\text{borrower} \times \text{loan}) \]

- Select out loans at Seattle branch:
 \[\sigma_{\text{branch_name}="Seattle"}(\sigma_{\text{borrower.loan_id}=\text{loan.loan_id}}(\text{borrower} \times \text{loan})) \]

 Simplify:
 \[\sigma_{\text{borrower.loan_id}=\text{loan.loan_id} \land \text{branch_name}="Seattle"}(\text{borrower} \times \text{loan}) \]

- Project results down to customer name:
 \[\Pi_{\text{cust_name}}(\sigma_{\text{borrower.loan_id}=\text{loan.loan_id} \land \text{branch_name}="Seattle"}(\text{borrower} \times \text{loan})) \]

- Final result:
<table>
<thead>
<tr>
<th>cust_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackson</td>
</tr>
</tbody>
</table>
Rename Operation

- Results of relational operations are unnamed
 - Result has a schema, but the relation itself is unnamed
- Can give result a name using the rename operator
- Written as: \(\rho_x(E) \)
 - \(E \) is an expression that produces a relation
 - \(E \) can also be a named relation or a relation-variable
 - \(x \) is new name of relation
- More general form is: \(\rho_{x(A_1, A_2, \ldots, A_n)}(E) \)
 - Allows renaming of relation’s attributes
 - Requirement: \(E \) has arity \(n \)
Scope of Renamed Relations

- Rename operation ρ only applies within a specific relational algebra expression
 - This does not create a new relation-variable!
 - The new name is only visible to enclosing relational-algebra expressions

- Rename operator is used for two main purposes:
 - Allow a derived relation and its attributes to be referred to by enclosing relational-algebra operations
 - Allow a base relation to be used multiple ways in one query
 - $r \times \rho_s(r)$

- In other words, rename operation ρ is used to resolve ambiguities within a specific relational algebra expression
“Find the ID of the loan with the largest amount.”

- Hard to find the loan with the largest amount!
 - (At least, with the tools we have so far…)
- Much easier to find all loans that have an amount smaller than some other loan
- Then, use set-difference to find the largest loan
Rename Example (2)

- How to find all loans with an amount smaller than some other loan?
 - Use Cartesian Product of loan with itself:
 \[\text{loan} \times \text{loan} \]
 - Compare each loan’s amount to all other loans

- Problem: Can’t distinguish between attributes of left and right loan relations!

- Solution: Use rename operation
 \[\text{loan} \times \rho_{\text{test}}(\text{loan}) \]
 - Now, right relation is named test
Find IDs of all loans with an amount smaller than some other loan:

\[\Pi_{\text{loan.loan_id}}(\sigma_{\text{loan.amount}<\text{test.amount}}(\text{loan} \times \rho_{\text{test}}(\text{loan}))) \]

Finally, we can get our result:

\[\Pi_{\text{loan_id}}(\text{loan}) - \Pi_{\text{loan.loan_id}}(\sigma_{\text{loan.amount}<\text{test.amount}}(\text{loan} \times \rho_{\text{test}}(\text{loan}))) \]

What if multiple loans have max value?

All loans with max value appear in result.
Additional Relational Operations

- The fundamental operations are sufficient to query a relational database...
- Can produce some large expressions for common operations!
- Several additional operations, defined in terms of fundamental operations:
 - \cap set-intersection
 - \bowtie natural join
 - \div division
 - \leftarrow assignment
Set-Intersection Operation

- **Written as:** \(r \cap s \)
- \(r \cap s = r - (r - s) \)
 - \(r - s = \) the rows in \(r \), but not in \(s \)
 - \(r - (r - s) = \) the rows in both \(r \) and \(s \)
- Relations must have compatible schemas
- **Example:** find all customers with both a loan and a bank account
 \[\Pi_{\text{cust_name}}(\text{borrower}) \cap \Pi_{\text{cust_name}}(\text{depositor}) \]
Natural Join Operation

- Most common use of Cartesian product is to correlate tuples with same key-values
 - Called a join operation
- The natural join is a shorthand for this operation
- Written as: \(r \bowtie s \)
 - \(r \) and \(s \) must have common attributes
 - The common attributes are usually a key for \(r \) and/or \(s \), but certainly don’t have to be
Natural Join Definition

- For two relations \(r(R) \) and \(s(S) \)
- Attributes used to perform natural join:
 \[R \cap S = \{ A_1, A_2, \ldots, A_n \} \]
- Formal definition:
 \[
 r \Join s = \Pi_{R \cup S} (\sigma_{r.A_1 = s.A_1 \land r.A_2 = s.A_2 \land \ldots \land r.A_n = s.A_n}(r \times s))
 \]
- \(r \) and \(s \) are joined on their common attributes
- Result is projected so that common attributes only appear once
Simple example:
“Find the names of all customers with loans.”

Result:
\[\Pi_{\text{cust_name}}(\sigma_{\text{borrower_loan_id}=\text{loan_loan_id}}(\text{borrower} \times \text{loan})) \]

Rewritten with natural join:
\[\Pi_{\text{cust_name}}(\text{borrower} \bowtie \text{loan}) \]
Natural Join Characteristics

- Very common to compute joins across multiple tables
- Example: $\textit{customer} \Join \textit{borrower} \Join \textit{loan}$
- Natural join operation is associative:
 - $(\textit{customer} \Join \textit{borrower}) \Join \textit{loan}$ is equivalent to $\textit{customer} \Join (\textit{borrower} \Join \textit{loan})$

- Note:
 - Even though these expressions are equivalent, order of join operations can dramatically affect query cost!
 - (Keep this in mind for later…)
Division Operation

- Binary operator: $r \div s$
- Implements a “for each” type of query
 - “Find all rows in r that have one row corresponding to each row in s.”
 - Relation r divided by relation s
- Easiest to illustrate with an example:
 - Puzzle Database
 - `puzzle_list(puzzle_name)`
 - Simple list of puzzles by name
 - `completed(person_name, puzzle_name)`
 - Records which puzzles have been completed by each person
“Who has solved every puzzle?”

- Need to find every person in completed that has an entry for every puzzle in puzzle_list.
- Divide completed by puzzle_list to get answer:

\[
\text{completed} \div \text{puzzle_list} = \begin{array}{c|c}
\text{person_name} & \text{puzzle_name} \\
\hline
\text{Alex} & \text{altekruse} \\
\text{Alex} & \text{soma cube} \\
\text{Bob} & \text{puzzle box} \\
\text{Carl} & \text{altekruse} \\
\text{Bob} & \text{soma cube} \\
\text{Carl} & \text{puzzle box} \\
\text{Alex} & \text{puzzle box} \\
\text{Carl} & \text{soma cube} \\
\end{array}
\]

- Only Alex and Carl have completed every puzzle in puzzle_list.
“Who has solved every puzzle?”

\[
\text{completed} \div \text{puzzle_list} = \begin{array}{c}
\text{person_name} \\
\text{Alex} \\
\text{Carl}
\end{array}
\]

- Very reminiscent of integer division
 - Result relation contains tuples from \text{completed} that are evenly divided by \text{puzzle_name}

- Several other kinds of relational division operators
 - e.g. some can compute “remainder” of the division operation
Division Operation

For \(r(R) \div s(S) \)

- **Required:** \(S \subseteq R \)
 - All attributes in \(S \) must also be in \(R \)

- **Result has schema** \(R - S \)
 - Result has attributes that are in \(R \) but not also in \(S \)
 - (This is why we don’t allow \(S = R \))

- **Every tuple** \(t \) in result satisfies these conditions:
 \[
 t \in \Pi_{R-S}(r) \\
 \left\langle \forall t_s \in s : \exists t_r \in r : t_r[S] = t_s[S] \land t_r[R-S] = t \right\rangle
 \]
 - Every tuple in the result has a row in \(r \) corresponding to every row in \(s \)
For completed ÷ puzzle_list

- Schemas are compatible
- Result has schema (person_name)
 - Attributes in completed schema, but not also in puzzle_list schema

<table>
<thead>
<tr>
<th>person_name</th>
<th>puzzle_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alex</td>
<td>altekruse</td>
</tr>
<tr>
<td>Alex</td>
<td>soma cube</td>
</tr>
<tr>
<td>Bob</td>
<td>puzzle box</td>
</tr>
<tr>
<td>Carl</td>
<td>altekruse</td>
</tr>
<tr>
<td>Bob</td>
<td>soma cube</td>
</tr>
<tr>
<td>Carl</td>
<td>puzzle box</td>
</tr>
<tr>
<td>Alex</td>
<td>puzzle box</td>
</tr>
<tr>
<td>Carl</td>
<td>soma cube</td>
</tr>
</tbody>
</table>

completed ÷ puzzle_list

- Every tuple t in result satisfies these conditions:
 \[t \in \Pi_{R\rightarrow S}(r) \]
 \[\langle \forall t_s \in s : \exists t_r \in r : t_r[S] = t_s[S] \land t_r[R\rightarrow S] = t \rangle \]
Division Operation

- Not provided natively in most SQL databases
 - Rarely needed!
 - Easy enough to implement in SQL, if needed

- Will see it in the homework assignments, and on the midterm… 😊
 - Often a very nice shortcut for more involved queries
Relation-Variables

- **Recall:** relation variables refer to a specific relation
 - A specific set of tuples, with a particular schema
- **Example:** account relation

<table>
<thead>
<tr>
<th>acct_id</th>
<th>branch_name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-301</td>
<td>New York</td>
<td>350</td>
</tr>
<tr>
<td>A-307</td>
<td>Seattle</td>
<td>275</td>
</tr>
<tr>
<td>A-318</td>
<td>Los Angeles</td>
<td>550</td>
</tr>
<tr>
<td>A-319</td>
<td>New York</td>
<td>80</td>
</tr>
<tr>
<td>A-322</td>
<td>Los Angeles</td>
<td>275</td>
</tr>
</tbody>
</table>

- account is actually technically a relation-variable, as are all our named relations so far
Assignment Operation

- Can assign a relation-value to a relation-variable
- Written as: \(\text{relvar} \leftarrow E \)
 - \(E \) is an expression that evaluates to a relation
- Unlike \(\rho \), the name \(\text{relvar} \) persists in the database
- Often used for temporary relation-variables:

 \[
 \begin{align*}
 \text{temp1} & \leftarrow \Pi_{R \rightarrow S}(r) \\
 \text{temp2} & \leftarrow \Pi_{R \rightarrow S}((\text{temp1} \times s) \setminus \Pi_{R \rightarrow S, S}(r)) \\
 \text{result} & \leftarrow \text{temp1} - \text{temp2}
 \end{align*}
 \]
 - Query evaluation becomes a sequence of steps
 - (This is an implementation of the \(\div \) operator)
- Can also use to represent data updates
 - More about updates next time…