First assignment will be available today
- Due next Thursday, October 5, 2:00 AM

TAs will be decided soon
- Should start having office hours on Sunday or Monday
Query Languages

- A query language specifies how to access the data in the database.

- Different kinds of query languages:
 - Declarative languages specify what data to retrieve, but not how to retrieve it.
 - Procedural languages specify what to retrieve, as well as the process for retrieving it.

- Query languages often include updating and deleting data as well.

- Also called data manipulation language (DML).
The Relational Algebra

- A procedural query language
- Comprised of relational algebra operations
- Relational operations:
 - Take one or two relations as input
 - Produce a relation as output
- Relational operations can be composed together
 - Each operation produces a relation
 - A query is simply a relational algebra expression
- Six “fundamental” relational operations
- Other useful operations can be composed from these fundamental operations
“Why is this useful?”

- SQL is only loosely based on relational algebra
- SQL is much more on the “declarative” end of the spectrum
- Many relational database implementations use relational algebra operations as a basis for representing execution plans
 - Simple, clean, effective abstraction for representing how results will be generated
 - Relatively easy to manipulate for query optimization
Fundamental Relational Algebra Operations

- Six fundamental operations:
 - \(\sigma \) select operation
 - \(\Pi \) project operation
 - \(\cup \) set-union operation
 - \(- \) set-difference operation
 - \(\times \) Cartesian product operation
 - \(\rho \) rename operation

- Each operation takes one or two relations as input
- Produces another relation as output

- Important details:
 - What tuples are included in the result relation?
 - Any constraints on input schemas? What is schema of result?
Select Operation

- **Written as:** $\sigma_P(r)$
- **P** is the predicate for selection
 - **P** can refer to attributes in r (but no other relation!), as well as literal values
 - Can use comparison operators: $=, \neq, <, \leq, >, \geq$
 - Can combine multiple predicates using: \land (and), \lor (or), \neg (not)
- **r** is the input relation
- Result relation contains all tuples in r for which P is true
- Result schema is identical to schema for r
Select Examples

Using the account relation:

“Retrieve all tuples for accounts in the Los Angeles branch.”

\[\sigma_{\text{branch name}= \text{“Los Angeles”}}(\text{account}) \]

“Retrieve all tuples for accounts in the Los Angeles branch, with a balance under $300.”

\[\sigma_{\text{branch name}= \text{“Los Angeles”}/ \text{balance}<300}(\text{account}) \]
Project Operation

- Written as: $\Pi_{a,b,...}(r)$

- Result relation contains only specified attributes of r
 - Specified attributes must actually be in schema of r
 - Result’s schema only contains the specified attributes
 - Domains are same as source attributes’ domains

- Important note:
 - Result relation may have fewer rows than input relation!
 - Why?
 - Relations are sets of tuples, not multisets
Project Example

Using the account relation:

"Retrieve all branch names that have at least one account."

\[\Pi_{\text{branch_name}}(\text{account}) \]

- Result only has three tuples, even though input has five
- Result schema is just \(\text{branch_name} \)
Composing Operations

- Input can also be an expression that evaluates to a relation, instead of just a relation

- \(\Pi_{\text{acct_id}}(\sigma_{\text{balance} \geq 300}(\text{account})) \)
 - Selects the account IDs of all accounts with a balance of $300 or more
 - Input relation’s schema is:
 \(\text{Account_schema} = (\text{acct_id}, \text{branch_name}, \text{balance}) \)
 - Final result relation’s schema?
 - Just one attribute: \((\text{acct_id}) \)

- Distinguish between base and derived relations
 - \text{account} is a base relation
 - \(\sigma_{\text{balance} \geq 300}(\text{account}) \) is a derived relation
Set-Union Operation

- Written as: \(r \cup s \)
- Result contains all tuples from \(r \) and \(s \)
 - Each tuple is unique, even if it’s in both \(r \) and \(s \)
- Constraints on schemas for \(r \) and \(s \)?
- \(r \) and \(s \) must have compatible schemas:
 - \(r \) and \(s \) must have same arity
 - (same number of attributes)
 - For each attribute \(i \) in \(r \) and \(s \), \(r[i] \) must have the same domain as \(s[i] \)
 - (Our examples also generally have same attribute names, but not required! Arity and domains are what matter.)
Set-Union Example

More complicated schema: accounts and loans

<table>
<thead>
<tr>
<th>acct_id</th>
<th>branch_name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-301</td>
<td>New York</td>
<td>350</td>
</tr>
<tr>
<td>A-307</td>
<td>Seattle</td>
<td>275</td>
</tr>
<tr>
<td>A-318</td>
<td>Los Angeles</td>
<td>550</td>
</tr>
<tr>
<td>A-319</td>
<td>New York</td>
<td>80</td>
</tr>
<tr>
<td>A-322</td>
<td>Los Angeles</td>
<td>275</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>loan_id</th>
<th>branch_name</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cust_name</th>
<th>acct_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson</td>
<td>A-318</td>
</tr>
<tr>
<td>Smith</td>
<td>A-322</td>
</tr>
<tr>
<td>Reynolds</td>
<td>A-319</td>
</tr>
<tr>
<td>Lewis</td>
<td>A-307</td>
</tr>
<tr>
<td>Reynolds</td>
<td>A-301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cust_name</th>
<th>loan_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>L-437</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
</tr>
</tbody>
</table>
Find names of all customers that have either a bank account or a loan at the bank.

<table>
<thead>
<tr>
<th>acct_id</th>
<th>branch_name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-301</td>
<td>New York</td>
<td>350</td>
</tr>
<tr>
<td>A-307</td>
<td>Seattle</td>
<td>275</td>
</tr>
<tr>
<td>A-318</td>
<td>Los Angeles</td>
<td>550</td>
</tr>
<tr>
<td>A-319</td>
<td>New York</td>
<td>80</td>
</tr>
<tr>
<td>A-322</td>
<td>Los Angeles</td>
<td>275</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cust_name</th>
<th>acct_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson</td>
<td>A-318</td>
</tr>
<tr>
<td>Smith</td>
<td>A-322</td>
</tr>
<tr>
<td>Reynolds</td>
<td>A-319</td>
</tr>
<tr>
<td>Lewis</td>
<td>A-307</td>
</tr>
<tr>
<td>Reynolds</td>
<td>A-301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>loan_id</th>
<th>branch_name</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cust_name</th>
<th>loan_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>L-437</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
</tr>
</tbody>
</table>
Set-Union Example (3)

- Find names of all customers that have either a bank account or a loan at the bank
 - Easy to find the customers with an account:
 \[\Pi_{\text{cust_name}}(\text{depositor}) \]
 - Also easy to find customers with a loan:
 \[\Pi_{\text{cust_name}}(\text{borrower}) \]

- Result is set-union of these expressions:
 \[\Pi_{\text{cust_name}}(\text{depositor}) \cup \Pi_{\text{cust_name}}(\text{borrower}) \]

- Note that inputs have 8 tuples, but result has 6 tuples.
Set-Difference Operation

- Written as: \(r - s \)
- Result contains tuples that are only in \(r \), but not in \(s \)
 - Tuples in both \(r \) and \(s \) are excluded
 - Tuples only in \(s \) are also excluded
- Constraints on schemas of \(r \) and \(s \)?
 - Schemas must be compatible
 - (Exactly like set-union.)
Set-Difference Example

“Find all customers that have an account but not a loan.”
Set-Difference Example (2)

- Again, each component is easy
 - All customers that have an account:
 \[\Pi_{\text{cust_name}}(\text{depositor}) \]
 - All customers that have a loan:
 \[\Pi_{\text{cust_name}}(\text{borrower}) \]

- Result is set-difference of these expressions
 \[\Pi_{\text{cust_name}}(\text{depositor}) - \Pi_{\text{cust_name}}(\text{borrower}) \]
Cartesian Product Operation

- **Written as:** $r \times s$
 - Read as “r cross s”
- **No** constraints on schemas of r and s
- **Schema of result is** concatenation **of schemas for** r and s
- **If** r and s have overlapping attribute names:
 - **All** overlapping attributes are included; none are eliminated
 - Distinguish overlapping attribute names by prepending the source relation’s name
- **Example:**
 - Input relations: $r(a, b)$ and $s(b, c)$
 - Schema of $r \times s$ is $(a, r.b, s.b, c)$
Cartesian Product Operation (2)

- Result of $r \times s$
 - Contains every tuple in r, combined with every tuple in s
 - If r contains N_r tuples, and s contains N_s tuples, result contains $N_r \times N_s$ tuples

- Allows two relations to be compared and/or combined
 - If we want to correlate tuples in relation r with tuples in relation s...
 - Compute $r \times s$, then select out desired results with an appropriate predicate
Cartesian Product Example

- Compute result of borrower \times loan

<table>
<thead>
<tr>
<th>cust_name</th>
<th>loan_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>L-437</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>loan_id</th>
<th>branch_name</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
</tbody>
</table>

- Result will contain $4 \times 4 = 16$ tuples
Cartesian Product Example (2)

- Schema for borrower is:
 \[\text{Borrower_schema} = (\text{cust_name}, \text{loan_id}) \]

- Schema for loan is:
 \[\text{Loan_schema} = (\text{loan_id}, \text{branch_name}, \text{amount}) \]

- Schema for result of borrower \times loan is:
 \[(\text{cust_name}, \text{borrower.loan_id}, \text{loan.loan_id}, \text{branch_name}, \text{amount}) \]

 Overlapping attribute names are distinguished by including name of source relation
Cartesian Product Example (3)

Result:

<table>
<thead>
<tr>
<th>cust_name</th>
<th>loan_id</th>
<th>loan_id</th>
<th>branch_name</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>L-437</td>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>Anderson</td>
<td>L-437</td>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>Anderson</td>
<td>L-437</td>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>Anderson</td>
<td>L-437</td>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>Smith</td>
<td>L-445</td>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
</tbody>
</table>
Can use Cartesian product to associate related rows between two tables

...but, a lot of extra rows are included!

<table>
<thead>
<tr>
<th>cust_name</th>
<th>borrower.loan_id</th>
<th>loan.loan_id</th>
<th>branch_name</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>Jackson</td>
<td>L-419</td>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>Lewis</td>
<td>L-421</td>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Combine Cartesian product with a select operation

\[\sigma_{\text{borrower.loan}_id = \text{loan.loan}_id}(\text{borrower} \times \text{loan}) \]
Cartesian Product Example (5)

- “Retrieve the names of all customers with loans at the Seattle branch.”

- Need both borrower and loan relations
- Correlate tuples in the relations using loan_id
- Then, computing result is easy.
Associate customer names with loan details, using Cartesian product and a select:

$$\sigma_{\text{borrower} \cdot \text{loan}_\text{id} = \text{loan} \cdot \text{loan}_\text{id}} (\text{borrower} \times \text{loan})$$

Select out loans at Seattle branch:

$$\sigma_{\text{branch}_\text{name} = \text{“Seattle”}} (\sigma_{\text{borrower} \cdot \text{loan}_\text{id} = \text{loan} \cdot \text{loan}_\text{id}} (\text{borrower} \times \text{loan}))$$

Simplify:

$$\sigma_{\text{borrower} \cdot \text{loan}_\text{id} = \text{loan} \cdot \text{loan}_\text{id} \land \text{branch}_\text{name} = \text{“Seattle”}} (\text{borrower} \times \text{loan})$$

Project results down to customer name:

$$\Pi_{\text{cust}_\text{name}} (\sigma_{\text{borrower} \cdot \text{loan}_\text{id} = \text{loan} \cdot \text{loan}_\text{id} \land \text{branch}_\text{name} = \text{“Seattle”}} (\text{borrower} \times \text{loan}))$$

Final result:

<table>
<thead>
<tr>
<th>cust_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackson</td>
</tr>
</tbody>
</table>
Rename Operation

- Results of relational operations are unnamed
 - Result has a schema, but the relation itself is unnamed
- Can give result a name using the rename operator
- Written as: $\rho_x(E)$ (Greek rho, not lowercase “P”)
 - E is an expression that produces a relation
 - E can also be a named relation or a relation-variable
 - x is new name of relation
- More general form is: $\rho_x(A_1, A_2, ..., A_n)(E)$
 - Allows renaming of relation’s attributes
 - Requirement: E has arity n
Scope of Renamed Relations

- Rename operation ρ only applies within a specific relational algebra expression
 - This does not create a new relation-variable!
 - The new name is only visible to enclosing relational-algebra expressions

- Rename operator is used for two main purposes:
 - Allow a derived relation and its attributes to be referred to by enclosing relational-algebra operations
 - Allow a base relation to be used multiple ways in one query
 - $r \times \rho_s(r)$

- In other words, rename operation ρ is used to resolve ambiguities within a specific relational algebra expression
“Find the ID of the loan with the largest amount.”

- Hard to find the loan with the largest amount!
 - (At least, with the tools we have so far…)
- Much easier to find all loans that have an amount smaller than some other loan
- Then, use set-difference to find the largest loan

<table>
<thead>
<tr>
<th>loan_id</th>
<th>branch_name</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-421</td>
<td>San Francisco</td>
<td>7500</td>
</tr>
<tr>
<td>L-445</td>
<td>Los Angeles</td>
<td>2000</td>
</tr>
<tr>
<td>L-437</td>
<td>Las Vegas</td>
<td>4300</td>
</tr>
<tr>
<td>L-419</td>
<td>Seattle</td>
<td>2900</td>
</tr>
</tbody>
</table>
How to find all loans with an amount smaller than some other loan?

- Use Cartesian Product of loan with itself:
 \[\text{loan} \times \text{loan} \]
- Compare each loan’s amount to all other loans

Problem: Can’t distinguish between attributes of left and right loan relations!

Solution: Use rename operation

\[\text{loan} \times \rho_{\text{test}}(\text{loan}) \]
- Now, right relation is named test
Find IDs of all loans with an amount smaller than some other loan:

\[\Pi_{\text{loan.loan_id}}(\sigma_{\text{loan.amount}<\text{test.amount}}(\text{loan} \times \rho_{\text{test}}(\text{loan}))) \]

Finally, we can get our result:

\[\Pi_{\text{loan_id}}(\text{loan}) - \Pi_{\text{loan.loan_id}}(\sigma_{\text{loan.amount}<\text{test.amount}}(\text{loan} \times \rho_{\text{test}}(\text{loan}))) \]

What if multiple loans have max value?
- All loans with max value appear in result.
Additional Relational Operations

- The fundamental operations are sufficient to query a relational database...
- Can produce some large expressions for common operations!
- Several additional operations, defined in terms of fundamental operations:
 - \(\cap \) set-intersection
 - \(\bowtie \) natural join
 - \(\div \) division
 - \(\leftarrow \) assignment
Set-Intersection Operation

- Written as: \(r \cap s \)

- \(r \cap s = r - (r - s) \)

 \(r - s = \) the rows in \(r \), but not in \(s \)

 \(r - (r - s) = \) the rows in both \(r \) and \(s \)

- Relations must have compatible schemas

- Example: find all customers with both a loan and a bank account

 \[\Pi_{\text{cust_name}}(\text{borrower}) \cap \Pi_{\text{cust_name}}(\text{depositor}) \]
Most common use of Cartesian product is to correlate tuples with the same key-values
- Called a join operation

The natural join is a shorthand for this operation

Written as: \(r \bowtie s \)
- \(r \) and \(s \) must have common attributes
- The common attributes are usually a key for \(r \) and/or \(s \), but certainly don’t have to be
Natural Join Definition

- For two relations \(r(R) \) and \(s(S) \)
- Attributes used to perform natural join:
 \(R \cap S = \{A_1, A_2, \ldots, A_n\} \)
- Formal definition:
 \[r \bowtie s = \Pi_{R \cup S} (\sigma_{r.A_1 = s.A_1 \land r.A_2 = s.A_2 \land \ldots \land r.A_n = s.A_n} (r \times s)) \]
 - \(r \) and \(s \) are joined using an equality condition based on their common attributes
 - Result is projected so that common attributes only appear once
Natural Join Example

- **Simple example:**

 “Find the names of all customers with loans.”

- **Result:**

 \[\Pi_{\text{cust_name}}(\sigma_{\text{borrower.loan_id}=\text{loan.loan_id}}(\text{borrower } \times \text{ loan})) \]

- **Rewritten with natural join:**

 \[\Pi_{\text{cust_name}}(\text{borrower } \bowtie \text{ loan}) \]
Natural Join Characteristics

- Very common to compute joins across multiple tables
- Example: $\text{customer} \bowtie \text{borrower} \bowtie \text{loan}$
- Natural join operation is associative:

 $(\text{customer} \bowtie \text{borrower}) \bowtie \text{loan}$ is equivalent to $\text{customer} \bowtie (\text{borrower} \bowtie \text{loan})$

- Note:

 Even though these expressions are equivalent, order of join operations can dramatically affect query cost!

 (Keep this in mind for later…)
Division Operation

- Binary operator: \(r \div s \)
- Implements a “for each” type of query
 - “Find all rows in \(r \) that have one row corresponding to each row in \(s \).”
 - Relation \(r \) divided by relation \(s \)
- Easiest to illustrate with an example:
- Puzzle Database
 - \textit{puzzle_list} (puzzle_name)
 - Simple list of puzzles by name
 - \textit{completed} (person_name, puzzle_name)
 - Records which puzzles have been completed by each person
“Who has solved every puzzle?”

- Need to find every person in completed that has an entry for every puzzle in puzzle_list
- Divide completed by puzzle_list to get answer:
 \[
 \text{completed} \div \text{puzzle_list} = \\
 \begin{array}{|c|}
 \hline
 \text{person_name} \\
 \hline
 \text{Alex} \\
 \text{Carl} \\
 \hline
 \end{array}
 \]

- Only Alex and Carl have completed every puzzle in puzzle_list.
“Who has solved every puzzle?”

\[
\text{completed} \div \text{puzzle_list} = \begin{array}{|c|}
\hline
\text{person_name} \\
\hline
\text{Alex} \\
\text{Carl} \\
\hline
\end{array}
\]

- Very reminiscent of integer division
 - Result relation contains tuples from \text{completed} that are evenly divided by \text{puzzle_name}
- Several other kinds of relational division operators
 - e.g. some can compute “remainder” of the division operation
Division Operation

For $r(R) \div s(S)$

- **Required:** $S \subseteq R$
 - All attributes in S must also be in R

- **Result has schema** $R - S$
 - Result has attributes that are in R but not also in S
 - (This is why we don’t allow $S = R$)

- **Every tuple t in result satisfies these conditions:**

 $t \in \Pi_{R-S}(r)$

 $\langle \forall t_s \in s : \exists t_r \in r : t_r[S] = t_s[S] \land t_r[R-S] = t \rangle$

 - Every tuple in the result has a row in r corresponding to every row in s
Puzzle Database

For completed ÷ puzzle_list

- Schemas are compatible
- Result has schema (person_name)
 - Attributes in completed schema, but not also in puzzle_list schema

Every tuple \(t \) in result satisfies these conditions:

\[
t \in \Pi_{R-S}(r) \\
\langle \forall t_s \in s : \exists t_r \in r : t_r[S] = t_s[S] \land t_r[R-S] = t \rangle
\]
Division Operation

- Not provided natively in most SQL databases
 - Rarely needed!
 - Easy enough to implement in SQL, if needed

- Will see it in the homework assignments, and on the midterm… 😊
 - Often a very nice shortcut for more involved queries
Recall: relation variables refer to a specific relation
- A specific set of tuples, with a particular schema

Example: account relation

<table>
<thead>
<tr>
<th>acct_id</th>
<th>branch_name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-301</td>
<td>New York</td>
<td>350</td>
</tr>
<tr>
<td>A-307</td>
<td>Seattle</td>
<td>275</td>
</tr>
<tr>
<td>A-318</td>
<td>Los Angeles</td>
<td>550</td>
</tr>
<tr>
<td>A-319</td>
<td>New York</td>
<td>80</td>
</tr>
<tr>
<td>A-322</td>
<td>Los Angeles</td>
<td>275</td>
</tr>
</tbody>
</table>

account is actually technically a relation variable, as are all our named relations so far
Assignment Operation

- Can assign a relation-value to a relation-variable
 - Written as: \(\text{relvar} \leftarrow E \)
 - \(E \) is an expression that evaluates to a relation
- Unlike \(\rho \), the name \(\text{relvar} \) persists in the database
- Often used for temporary relation-variables:

 \[
 \begin{align*}
 \text{temp1} & \leftarrow \Pi_{R\leftarrow S}(r) \\
 \text{temp2} & \leftarrow \Pi_{R\leftarrow S}((\text{temp1} \times s) - \Pi_{R\leftarrow S,S}(r)) \\
 \text{result} & \leftarrow \text{temp1} - \text{temp2}
 \end{align*}
 \]
 - Query evaluation becomes a sequence of steps
 - (This is an implementation of the \(\div \) operator)
- Can also use assignment operation to modify data
 - More about updates next time…