Limits on Computationally Efficient VCG-Based Mechanisms for Combinatorial Auctions and Public Projects

Dave Buchfuhrer

May 20, 2011
Outline

1. Introduction
 - Definitions
 - MIR Hardness
 - Single-Player Hardness

2. Instance Oracles
 - Definition
 - Reductions and Completeness

3. Instance Oracle Reductions
 - Simple Results
 - 2-Player Coverage Public Projects
 - Summary of Other Results

4. Conclusions
Outline

1 Introduction
 - Definitions
 - MIR Hardness
 - Single-Player Hardness

2 Instance Oracles
 - Definition
 - Reductions and Completeness

3 Instance Oracle Reductions
 - Simple Results
 - 2-Player Coverage Public Projects
 - Summary of Other Results

4 Conclusions
A combinatorial auction consists of
- \(n \) players 1, \ldots, \(n \)
- \(m \) items 1, \ldots, \(m \)
- \(n \) valuation functions \(\nu_1, \ldots, \nu_n \) where \(\nu_i : 2^{[m]} \to \mathbb{R}_{0+} \)

An allocation is a partition of the items \(S_1, \ldots, S_n \) where
- \(S_i \cap S_j = \emptyset \) for \(i \neq j \)
- \(\bigcup_i S_i \subseteq [m] \)

We wish to maximize the social welfare, \(\sum_i \nu_i(S_i) \).
A combinatorial public project consists of

- n players $1, \ldots, n$
- m items $1, \ldots, m$
- n valuation functions v_1, \ldots, v_n where $v_i : 2^m \to \mathbb{R}_0^+$
- An integer k, $0 \leq k \leq m$.

An allocation is a subset $S \subseteq [m]$ of size k. We wish to maximize the social welfare, $\sum_i v_i(S)$.

Truthful Mechanism

Definition (Truthful Mechanism)

A mechanism \mathcal{M} consists of an allocation algorithm A and an algorithm to determine the prices p_1, \ldots, p_n to charge the players. \mathcal{M} is truthful if for any v_1, \ldots, v_n,

$$v_i(A(v_1, \ldots, v_n)) - p_i \geq v_i(A(v_1, \ldots, v'_i, \ldots, v_n)) - p'_i$$

In other words, no player can possibly benefit by falsely reporting its valuation function.

Question

Are efficient truthful mechanisms capable of approximating the social welfare as well as other polynomial-time algorithms?
Both problems can be solved truthfully by the VCG mechanism if a maximal-in-range algorithm is used.

Definition (Maximal-in-Range (MIR))

An allocation algorithm A takes in valuation functions and outputs an allocation. If R is the set of possible allocations output by A, A is maximal-in-range if it always outputs an allocation from R maximizing the social welfare.

We examine the capabilities of maximal-in-range mechanisms.
Outline

1. Introduction
 - Definitions
 - MIR Hardness
 - Single-Player Hardness

2. Instance Oracles
 - Definition
 - Reductions and Completeness

3. Instance Oracle Reductions
 - Simple Results
 - 2-Player Coverage Public Projects
 - Summary of Other Results

4. Conclusions
How to Show Hardness for MIR Algorithms

We use the following general framework to show that MIR algorithms are bad approximations.

1. Show that a good approximation ratio implies a large range
2. Show that a large range implies a large VC-dimension
3. Embed a reduction into the VC-dimension
4. A can’t be MIR and poly-time unless $\text{NP} \subseteq \text{P/poly}$
We showed that all public projects in the hierarchy (except additive) don’t have better MIR approximations than \sqrt{m} [BSS10], matching a \sqrt{m} approximation in [SS08].
We showed that capped-additive auctions are hard to approximate by MIR algorithms better than \(\min(n, O(\sqrt{m})) \) \([BDF+10]\), matching a \(\min(n, 2\sqrt{m}) \) approximation in \([DNS05]\).
1 Introduction
 ■ Definitions
 ■ MIR Hardness
 ■ Single-Player Hardness

2 Instance Oracles
 ■ Definition
 ■ Reductions and Completeness

3 Instance Oracle Reductions
 ■ Simple Results
 ■ 2-Player Coverage Public Projects
 ■ Summary of Other Results

4 Conclusions
A coverage valuation v_i consists of sets V_i^1, \ldots, V_i^m and the value of a set S is $v_i(S) = \left| \bigcup_{j \in S} V_i^j \right|$.
Coverage Valuations

Definition (Coverage Valuation)

A coverage valuation v_i consists of sets V_i^1, \ldots, V_i^m and the value of a set S is $v_i(S) = |\bigcup_{j \in S} V_i^j|$.

Example (Exercise Machines)

- [] Arms
- [] Legs
- [] Chest
- [] Core
- [] Cardio
Definition (Coverage Valuation)

A coverage valuation v_i consists of sets V_i^1, \ldots, V_i^m and the value of a set S is $v_i(S) = \left| \bigcup_{j \in S} V_i^j \right|$.

Example (Exercise Machines)

- Arms
- Legs
- Chest
- Core
- Cardio
Coverage Valuations

Definition (Coverage Valuation)
A coverage valuation v_i consists of sets V_{i1}, \ldots, V_{im} and the value of a set S is $v_i(S) = \left| \bigcup_{j \in S} V_{ij} \right|$.

Example (Exercise Machines)

- Arms
- Legs
- Chest
- Core
- Cardio
Coverage Valuations

Definition (Coverage Valuation)

A coverage valuation v_i consists of sets V_{i1}, \ldots, V_{im} and the value of a set S is $v_i(S) = |\bigcup_{j \in S} V_{ij}|$.

Example (Exercise Machines)

- ☑ Arms
- ☐ Legs
- ☑ Chest
- ☐ Core
- ☑ Cardio
Definition (Scaled Coverage)

A scaled coverage valuation v_i consists of sets V_i^1, \ldots, V_i^n and a scaling factor α. The value of a set S is

$$v_i(S) = \alpha \left| \bigcup_{j \in S} V_i^j \right|.$$

Theorem

Public projects with a single scaled coverage valuation player can’t be approximated better than \sqrt{m} by polynomial-time truthful mechanisms unless $NP \subseteq P/poly$.
Hi! I can only give you k items, but I want to give you the best k I can.

Well, I want the best k I can get, so this should work out great.
The Weird Scenario

I'll just need your valuation function.

What will you do with it?
The Weird Scenario

I'm computationally limited, so I'll just do a greedy approximation.

Umm... it's v'.

If I say it's v, I'll only get a fraction of my maximum value.

Umm... it's v'.
Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses k items by repeatedly choosing the item of maximum marginal value.

Example (Greedy Algorithm not Optimal)

- $v(S) = \left| \bigcup_{j \in S} V^j \right|$
- $V^1 = \{1, 2\}$, $V^2 = \{3, 4\}$, $V^3 = \{5, 6\}$, $V^4 = \{1, 3, 5\}$
Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses k items by repeatedly choosing the item of maximum marginal value.

Example (Greedy Algorithm not Optimal)

- $\nu(S) = \left| \bigcup_{j \in S} V^j \right|$
- $V^1 = \{1, 2\}, \; V^2 = \{3, 4\}, \; V^3 = \{5, 6\}, \; V^4 = \{1, 3, 5\}$
- If $k = 3$, $|V^1 \cup V^2 \cup V^3| = 6$, but greed gets value 5

<table>
<thead>
<tr>
<th>Round</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Covered Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses k items by repeatedly choosing the item of maximum marginal value.

Example (Greedy Algorithm not Optimal)

- $v(S) = \left| \bigcup_{j \in S} V^j \right|$
- $V^1 = \{1, 2\}$, $V^2 = \{3, 4\}$, $V^3 = \{5, 6\}$, $V^4 = \{1, 3, 5\}$
- If $k = 3$, $|V^1 \cup V^2 \cup V^3| = 6$, but greed gets value 5

<table>
<thead>
<tr>
<th>Round</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Covered Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>${1, 3, 5}$</td>
</tr>
</tbody>
</table>
Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses k items by repeatedly choosing the item of maximum marginal value.

Example (Greedy Algorithm not Optimal)

- $v(S) = \left| \bigcup_{j \in S} V^j \right|$
- $V^1 = \{1, 2\}, V^2 = \{3, 4\}, V^3 = \{5, 6\}, V^4 = \{1, 3, 5\}$
- If $k = 3$, $|V^1 \cup V^2 \cup V^3| = 6$, but greed gets value 5

<table>
<thead>
<tr>
<th>Round</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Covered Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>${1,3,5}$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses k items by repeatedly choosing the item of maximum marginal value.

Example (Greedy Algorithm not Optimal)

- $v(S) = \left| \bigcup_{j \in S} V^j \right|$
- $V^1 = \{1, 2\}, V^2 = \{3, 4\}, V^3 = \{5, 6\}, V^4 = \{1, 3, 5\}$
- If $k = 3$, $|V^1 \cup V^2 \cup V^3| = 6$, but greed gets value 5

<table>
<thead>
<tr>
<th>Round</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Covered Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>${1,3,5}$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>${1,2,3,5}$</td>
</tr>
</tbody>
</table>
Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses k items by repeatedly choosing the item of maximum marginal value.

Example (Greedy Algorithm not Optimal)

- $\nu(S) = \left| \bigcup_{j \in S} V^j \right|$
- $V^1 = \{1, 2\}, V^2 = \{3, 4\}, V^3 = \{5, 6\}, V^4 = \{1, 3, 5\}$
- If $k = 3$, $|V^1 \cup V^2 \cup V^3| = 6$, but greed gets value 5

<table>
<thead>
<tr>
<th>Round</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Covered Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>${1,3,5}$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>${1,2,3,5}$</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses k items by repeatedly choosing the item of maximum marginal value.

Example (Greedy Algorithm not Optimal)

- $\nu(S) = \left| \bigcup_{j \in S} V^j \right|$
- $V^1 = \{1, 2\}$, $V^2 = \{3, 4\}$, $V^3 = \{5, 6\}$, $V^4 = \{1, 3, 5\}$
- If $k = 3$, $|V^1 \cup V^2 \cup V^3| = 6$, but greed gets value 5

<table>
<thead>
<tr>
<th>Round</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Covered Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>${1,3,5}$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>${1,2,3,5}$</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>${1,2,3,4,5}$</td>
</tr>
</tbody>
</table>
Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses k items by repeatedly choosing the item of maximum marginal value.

Example (Lies Improve Welfare)

- $v(S) = \left| \bigcup_{j \in S} V^j \right|$
- $V^1 = \{1, 2\}$, $V^2 = \{3, 4\}$, $V^3 = \{5, 6\}$, $V^4 = \{1, 3, 5\}$
- Define v' by $V^{1'} = \{1\}$, $V^{2'} = \{2\}$, $V^{3'} = \{3\}$, $V^{4'} = \{\}$
Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses k items by repeatedly choosing the item of maximum marginal value.

Example (Lies Improve Welfare)

- $v(S) = \left| \bigcup_{j \in S} V^j \right|
- V^1 = \{1, 2\}, V^2 = \{3, 4\}, V^3 = \{5, 6\}, V^4 = \{1, 3, 5\}
- Define v' by $V'^1 = \{1\}, V'^2 = \{2\}, V'^3 = \{3\}, V'^4 = \{\}$
- The greedy algorithm on v' chooses 1, 2, 3
Why is the greedy algorithm not truthful?

Definition (Greedy Algorithm)

The greedy algorithm chooses \(k \) items by repeatedly choosing the item of maximum marginal value.

Example (Lies Improve Welfare)

- \(\nu(S) = \left| \bigcup_{j \in S} V^j \right| \)
- \(V^1 = \{1, 2\}, V^2 = \{3, 4\}, V^3 = \{5, 6\}, V^4 = \{1, 3, 5\} \)
- Define \(\nu' \) by \(V^{1'} = \{1\}, V^{2'} = \{2\}, V^{3'} = \{3\}, V^{4'} = \{\} \)
- The greedy algorithm on \(\nu' \) chooses 1, 2, 3
- If a player has value function \(\nu \) and declares \(\nu \), he gets value 5
- If a player has value function \(\nu \) and declares \(\nu' \), he gets value 6
The Problem

The mechanism does the best it can to help the player out, but the player will still lie to it. Why does this happen?

- For efficiency, the mechanism must run in polynomial time
- For truthfulness, the players are not computationally limited
The Problem

The mechanism does the best it can to help the player out, but the player will still lie to it. Why does this happen?

- For efficiency, the mechanism must run in polynomial time
- For truthfulness, the players are not computationally limited

Asymmetry between efficiency and truthfulness is the problem here. We want to resolve this such that:

- Problems that should be easy are easy
- Problems that should be hard are hard
[NR07] suggested a "second-chance" mechanism.

Tell me your valuation function.

It's v, but you should also try running your algorithm on v'.

Second-Chance Mechanism
Second-Chance Mechanism

The second-chance mechanism cannot be implemented efficiently with multiple players.

Tell me your valuation function.

It's v, but if player 2 says w, try running on (v',w'). If he says y, try running on (v'',y'). If he says...
The second-chance mechanism cannot be efficiently implemented with multiple players.

How about if you just give me the program you use to compute alternate valuations?

Alright, but you won't be able to run it without my supercomputer.
Others suggest replacing limits on computation with limits on communication.

Tell me your valuation function, but please be brief.
Communication complexity makes anything with succinct representations easy.

I only like sets that correspond to true quantified Boolean formulas.

Not a problem.
Is It Even a Game?

You could argue that a single-player game isn't really even a game.

Why the game-theoretic analysis? Just give me the set I want.
Is It Even a Game?

The one player case will come up eventually though.

Why can't you implement a good truthful approximation for 2 players?

Because one player is a special case, and it's hard.
Maybe Truthfulness is Wrong

Perhaps truthfulness is the wrong equilibrium notion for these games.

Why do you even care if I lie? You can still end up with a good approximation.

But truthful mechanisms have such nice properties and are easier to analyze...
Summary of Issues

- Mechanisms are computationally limited, but players are not.
- This asymmetry leads to hardness results that should not be.
- Existing methods for resolving this asymmetry do not work.
Outline

1 Introduction
 - Definitions
 - MIR Hardness
 - Single-Player Hardness

2 Instance Oracles
 - Definition
 - Reductions and Completeness

3 Instance Oracle Reductions
 - Simple Results
 - 2-Player Coverage Public Projects
 - Summary of Other Results

4 Conclusions
We developed a model in which the mechanism can query information about valuation functions to solve an instance.

Definition (Instance Oracle)

An instance oracle answers queries related to specific problem instances. Let \(a \in A \) be an instance of a problem \(A \). We define an oracle \(O \) such that

- Queries to \(O \) are made in the form of a string \(x \)
- \(O \) returns some function \(O(a, x) \)

We denote the pairing of \(A \) with \(O \) by \(A^O \).
Instance Oracles

Example (Demand Oracle)

A demand oracle takes in a set of per-item prices p_1, \ldots, p_m and returns a set S maximizing

$$v(S) - \sum_{j \in S} p_j$$

We empower mechanisms with access to oracles.
Benefits of Our Model

- Efficient mechanisms in this model work well in practice if worst-case hardness is unnatural.
- Hardness results do not depend on unnatural worst cases.
- All single-player games are easy.
1 Introduction
 - Definitions
 - MIR Hardness
 - Single-Player Hardness

2 Instance Oracles
 - Definition
 - Reductions and Completeness

3 Instance Oracle Reductions
 - Simple Results
 - 2-Player Coverage Public Projects
 - Summary of Other Results

4 Conclusions
Suppose we have two allocation problems A and B and we want to show that B is at least as hard as A.

- Usual answer: reduce A to B
- Trickier: what if A and B are paired with oracles?
Suppose we have two allocation problems \(A \) and \(B \) and we want to show that \(B \) is at least as hard as \(A \).

- Usual answer: reduce \(A \) to \(B \)
- Trickier: what if \(A \) and \(B \) are paired with oracles?

If \(A^O \) reduces to \(B^Q \), we want

- A poly-time solution to \(B^Q \) implies one for \(A^O \)
- No poly-time solution to \(A^O \) implies none for \(B^Q \)
- If \(B^Q \) reduces to \(C^U \), so does \(A^O \)
Suppose we have two allocation problems A and B and we want to show that B is at least as hard as A.

- Usual answer: reduce A to B
- Trickier: what if A and B are paired with oracles?

If A^O reduces to B^Q, we want
- A poly-time solution to B^Q implies one for A^O
- If B^Q reduces to C^U, so does A^O
Reductions Definition

Reducing A^O to B^Q

1. Find a polynomial-time reduction R from A to B
2. Show that if $R(a) = b$, queries to Q on b can be answered in polynomial time with access to O on a
If A^O reduces to B^Q, we want

- A poly-time solution to B^Q implies one for A^O
- If B^Q reduces to C^U, so does $A^O
If A^O reduces to B^Q, we want

- A poly-time solution to B^Q implies one for A^O
- If B^Q reduces to C^U, so does A^O

\[
\begin{align*}
A & \xrightarrow{R} B \xrightarrow{R'} C \\
O(a, y) & \xleftarrow{O} (a, y) \\
Q(b, x) & \xleftarrow{f} f' \xrightarrow{f'} U(c, z)
\end{align*}
\]
Completeness

Reducing A^O to B^Q

1. Find a polynomial-time reduction R from A to B
2. Show that if $R(a) = b$, queries to Q on b can be answered in polynomial time with access to O on a

We define IONP to be the class of problems A^O with $A \in$ NP.

Any of the following conditions show that A^O is IONP-hard:

- A is NP-hard and queries to O are poly-time computable
- B^Q is IONP-hard and reduces to A^O
- A is shown NP-hard via R and O is easy on $R(a)$
Outline

1 Introduction
 - Definitions
 - MIR Hardness
 - Single-Player Hardness

2 Instance Oracles
 - Definition
 - Reductions and Completeness

3 Instance Oracle Reductions
 - Simple Results
 - 2-Player Coverage Public Projects
 - Summary of Other Results

4 Conclusions
We begin by showing that oracle queries are easy for several of the
classes of public projects we study.
Oracle Definitions

Definition (k-Demand Oracle)

A k-demand oracle takes in a list of prices p_1, \ldots, p_m and returns a set S of size k maximizing $v_i(S) - \sum_{j \in S} p_j$

Definition (Demand Oracle)

A demand oracle takes in a list of prices p_1, \ldots, p_m and returns a set S maximizing $v_i(S) - \sum_{j \in S} p_j$
How to compute \(k \)-demand queries

Theorem

Let \(\mathcal{V} \) be a valuation class for which 2-player public projects have a polynomial-time exact solution. \(k \)-demand queries can be solved exactly in polynomial time for valuations in \(\mathcal{V} \).

Proof.

Consider a query \(p_1, \ldots, p_m \) to a valuation function \(v_i \).

1. Let \(P = \max_j p_j \)
2. Let \(v'_i(S) = \sum_{j \in S} (P - p_j) \)
3. Solve the public project with players \(v_i, v'_i \) to get \(S \)
How to compute \(k \)-demand queries

Theorem

Let \(\mathcal{V} \) be a valuation class for which 2-player public projects have a polynomial-time exact solution. \(k \)-demand queries can be solved exactly in polynomial time for valuations in \(\mathcal{V} \).

Proof.

Consider a query \(p_1, \ldots, p_m \) to a valuation function \(v_i \).

1. Let \(P = \max_j p_j \)
2. Let \(v'_i(S) = \sum_{j \in S} (P - p_j) \)
3. Solve the public project with players \(v_i, v'_i \) to get \(S \)

\(S \) maximizes \(v_i(S) + v'_i(S) = v_i(S) - \sum_{j \in S} p_j + kP \), and is therefore an answer to the \(k \)-demand query.
How to compute demand queries

Theorem

Let \mathcal{V} be a valuation class for which 2-player auctions have a polynomial-time exact solution. Demand queries can be solved exactly in polynomial time for valuations in \mathcal{V}.

This theorem has a similar proof to the one for k-demand queries.
Results following from easy oracles

All the classes of public projects which are easy for two players have easy oracles, so oracles do not affect their complexity.

- Subadditive (Complement-Free)
- Fractionally-Subadditive (XOS)
- Submodular
- Gross Substitute
- Capped-Additive (Budget-Additive)
- Weighted Coverage
- Multi-Unit-Demand (OXS)
- Scaled Coverage
- Additive (OS)
- Coverage
- Unit-Demand (XS)
- Scaled Coverage
- Coverage
- 2-(0,1)-Unit-Demand

- Easy
- Hard with one player
- Hard with two players
- Hard with three players
- Hard with an unbounded number of players
1 Introduction
 - Definitions
 - MIR Hardness
 - Single-Player Hardness

2 Instance Oracles
 - Definition
 - Reductions and Completeness

3 Instance Oracle Reductions
 - Simple Results
 - 2-Player Coverage Public Projects
 - Summary of Other Results

4 Conclusions
What We Show

Theorem

Public projects with 2 players with coverage valuations and k-demand or demand oracles are IONP hard.

Definition (Coverage Valuation)

A coverage valuation \(v_i \) consists of \(m \) sets \(V_i^1, \ldots, V_i^m \) and the value of a set \(S \) is

\[
v_i(S) = \left| \bigcup_{j \in S} V_i^j \right|
\]

- These public projects are NP-hard with 1 player, so we can’t show that oracle queries are easy
- We show a reduction to a special case where oracles are easy
The Reduction

Theorem

Public projects with 2 players with coverage valuations and \(k \)-demand or demand oracles are IONP hard.

- We reduce from vertex cover on a 3-regular graph
The Reduction

Theorem

Public projects with 2 players with coverage valuations and k-demand or demand oracles are IONP hard.

- We reduce from vertex cover on a 3-regular graph
The Reduction

Theorem

Public projects with 2 players with coverage valuations and k-demand or demand oracles are IONP hard.

- We reduce from vertex cover on a 3-regular graph
The Reduction

Theorem

Public projects with 2 players with coverage valuations and k-demand or demand oracles are IONP hard.

- We reduce from vertex cover on a 3-regular graph
- We can construct \(v(S) = \# \text{ edges covered by } S \)
The Reduction

Theorem

Public projects with 2 players with coverage valuations and k-demand or demand oracles are IONP hard.

- We reduce from vertex cover on a 3-regular graph
- We can construct $v(S) = \# \text{ edges covered by } S$
- We split the graph into two simpler graphs where queries are easy
- Simultaneously maximizing both valuations is hard
We begin with an instance of vertex cover on a 3-regular graph.
First, 4-color the edges (possible by Vizing’s theorem)
Split the Graph

Partition the edges by colors to get two 2-colorable graphs.
Split the Graph

Partition the edges by colors to get two 2-colorable graphs

A set of nodes is a vertex cover in the original graph iff it covers both of these graphs, so we have a valid reduction here.
Split the Graph

Partition the edges by colors to get two 2-colorable graphs
Split the Graph

Partition the edges by colors to get two 2-colorable graphs

A set of nodes is a vertex cover in the original graph iff it covers both of these graphs, so we have a valid reduction here.
It’s easy to compute queries on paths and cycles
Results

Theorem

Public projects with 2 players with coverage valuations and k-demand or demand oracles are IONP hard.
Theorem

Public projects with 2 players with coverage valuations and \(k \)-demand or demand oracles are IONP hard.
Outline

1. Introduction
 - Definitions
 - MIR Hardness
 - Single-Player Hardness

2. Instance Oracles
 - Definition
 - Reductions and Completeness

3. Instance Oracle Reductions
 - Simple Results
 - 2-Player Coverage Public Projects
 - Summary of Other Results

4. Conclusions
We were able to show hardness for all classes using oracles.

The only case we missed was 2 capped-additive players.
We showed that public projects with 2 capped-additive players and k-demand queries reduce to both public projects and auctions with 2 capped-additive players and demand queries.

Diagram:

- PC_2^{kdem}
- AC_2^{dem}
- PC_2^{dem}
- PC_3^{kdem}
- AC_3^{dem}
- $PCOV_2^{dem}$
- $PCOV_2^{kdem}$
- $PCOV_3^{kdem}$

Abbreviations:

- P: public project
- A: auction
- C: capped-additive valuation
- COV: coverage valuation

Subscript: number of players
1 Introduction
 ■ Definitions
 ■ MIR Hardness
 ■ Single-Player Hardness

2 Instance Oracles
 ■ Definition
 ■ Reductions and Completeness

3 Instance Oracle Reductions
 ■ Simple Results
 ■ 2-Player Coverage Public Projects
 ■ Summary of Other Results

4 Conclusions
Tables of Results

Bounds on best achievable approximation ratio r for public projects

<table>
<thead>
<tr>
<th>Valuation Class</th>
<th>Number of Players</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive</td>
<td>1</td>
</tr>
<tr>
<td>Unit-Demand</td>
<td>1</td>
</tr>
<tr>
<td>Multi-Unit-Demand</td>
<td>1</td>
</tr>
<tr>
<td>Capped-Additive</td>
<td>$1 + \epsilon$ [New]</td>
</tr>
<tr>
<td>Coverage</td>
<td>$r = e/(e-1)$</td>
</tr>
<tr>
<td>Fractionally-Subadditive</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valuation Class</th>
<th>Constant</th>
<th>Unbounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Unit-Demand</td>
<td>1</td>
<td>$r = e/(e-1)$ [New]</td>
</tr>
<tr>
<td>Multi-Unit-Demand</td>
<td>$1 + \epsilon$ [New]</td>
<td>$r = e/(e-1)$ [New]</td>
</tr>
<tr>
<td>Capped-Additive</td>
<td>$r = 1 + \epsilon$ [New]</td>
<td>$r = e/(e-1)$ [New]</td>
</tr>
<tr>
<td>Coverage</td>
<td>$r = e/(e-1)$</td>
<td>$r = e/(e-1)$</td>
</tr>
<tr>
<td>Fractionally-Subadditive</td>
<td>1</td>
<td>$r \geq 2^{\log^{1-\gamma}(\min(n,m))}$ [New]</td>
</tr>
</tbody>
</table>
Tables of Results

Best achievable MIR approximations for public projects

<table>
<thead>
<tr>
<th>Valuation Class</th>
<th>Number of Players</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additive</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit-Demand</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>\sqrt{m} [New]</td>
</tr>
<tr>
<td>Multi-Unit-Demand</td>
<td></td>
<td>1</td>
<td>1 [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td></td>
</tr>
<tr>
<td>Capped-Additive</td>
<td></td>
<td>1</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td></td>
</tr>
<tr>
<td>Coverage</td>
<td></td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td></td>
</tr>
<tr>
<td>Fractionally-Subadditive</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>\sqrt{m} [New]</td>
</tr>
</tbody>
</table>

Best MIR approximations with demand or k-demand oracles

<table>
<thead>
<tr>
<th>Valuation Class</th>
<th>Number of Players</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additive</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit-Demand</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>\sqrt{m} [New]</td>
</tr>
<tr>
<td>Multi-Unit-Demand</td>
<td></td>
<td>1</td>
<td>1 [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td></td>
</tr>
<tr>
<td>Capped-Additive</td>
<td></td>
<td>1</td>
<td>?</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td></td>
</tr>
<tr>
<td>Coverage</td>
<td></td>
<td>1/?</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td>\sqrt{m} [New]</td>
<td></td>
</tr>
<tr>
<td>Fractionally-Subadditive</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>\sqrt{m} [New]</td>
</tr>
</tbody>
</table>
Conclusions and Open Problems

Conclusions

- Truthful mechanisms for submodular valuations are hard
- Hardness is mostly preserved even with oracle access

Open Problems

- What is the complexity of $\text{PC}_2^{k\text{dem}}$, PC_2^{dem}, $\text{PCOV}_1^{\text{dem}}$?
- Are there reasonable oracles that make some of our hard problems easy?
- Auctions remain largely open in our oracle framework
- Our framework is an interesting tool that can be used to study other problems
Thanks to everyone who helped me get to this point.

- Shaddin Dughmi
- John Ledyard
- Michael Schapira
- Leonard Schulman
- Yaron Singer
- Chris Umans
- Adam Wierman
In Theaters Now

PIRATES of the CARIBBEAN
ON STRANGER TIDES
Definition (Capped-Additive)

A capped-additive valuation function v_i has values v_i^1, \ldots, v_i^m for items 1, \ldots, m and a value cap c_i. The value for a set S is

$$v_i(S) = \min \left(\sum_{j \in S} v_i^j, c_i \right).$$
3-Dimensional Matching

Definition (3DM)

An instance of 3DM consists of a set $T \subseteq [k] \times [k] \times [k]$. Is there some $S \subseteq T$ of size $|S| = k$ such that $\forall i, j \exists (x_1, x_2, x_3) \in S$ such that $x_i = j$?

Equivalently, does there exist an S of size k such that the projection of S onto any of its coordinates is $[k]$?
Question

Does there exist an S of size k such that the projection of S onto any of its coordinates is $[k]$?

Consider a single coordinate. Let $T_i = \{x_i^1, \ldots, x_i^m\}$ be the projection of T to coordinate i. Does there exist some $S_i \subseteq T_i$ where $|S_i| = k$ and $S_i = [k]$?

Easy to answer, but let’s try a reduction:

- Player 1 has $v_1^i = 2x_i^i$ and $c_1 = 2^{m+1} - 1$
- Player 2 has $v_2^i = 2^{m+1} - 2x_i^i$ and $c_2 = k2^{m+1} - (2^{m+1} - 1)$

$S_i = [k]$ iff $v_1(S) = c_1$ and $v_2(S) = c_2$.
3-Coordinate Reduction

- We saw that 2 players are enough to perform a reduction that checks a single coordinate. So 6 players are enough to do this for all 3 coordinates.
- Each player either has positive or negative value for items in their coordinate.
- We could combine players such that a single player has values corresponding to multiple coordinates.
- If we reduce to 2 players, each player has 3 coordinates, so queries must solve 3DM.
- If we reduce to 3 players, each player has 2 coordinates, so we need only solve bipartite matching.
Capped-Additive Auctions

So far, our reductions haven’t made use of oracles. We now reduce from capped-additive public projects with demand oracles to capped-additive auctions with demand oracles.
Start with a public project with m items, of which we allocate k

\[1 \ 2 \ 3 \ 4 \ \cdots \ m\]
The Reduction

Create n duplicates of the items, one for each player

\[
\begin{array}{cccccc}
1_1 & 2_1 & 3_1 & 4_1 & \cdots & m_1 \\
1_2 & 2_2 & 3_2 & 4_2 & \cdots & m_2 \\
1_3 & 2_3 & 3_3 & 4_3 & \cdots & m_3 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1_n & 2_n & 3_n & 4_n & \cdots & m_n \\
\end{array}
\]
Create n duplicates of the items, one for each player

<table>
<thead>
<tr>
<th>v_1</th>
<th>1_1</th>
<th>2_1</th>
<th>3_1</th>
<th>4_1</th>
<th>\cdots</th>
<th>m_1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1_2</td>
<td>2_2</td>
<td>3_2</td>
<td>4_2</td>
<td>\cdots</td>
<td>m_2</td>
</tr>
<tr>
<td></td>
<td>1_3</td>
<td>2_3</td>
<td>3_3</td>
<td>4_3</td>
<td>\cdots</td>
<td>m_3</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\vdots</td>
</tr>
<tr>
<td>1_n</td>
<td>2_n</td>
<td>3_n</td>
<td>4_n</td>
<td>\cdots</td>
<td>m_n</td>
<td></td>
</tr>
</tbody>
</table>
Create n duplicates of the items, one for each player

\[\begin{array}{ccccccc}
\nu_1 & 1_1 & 2_1 & 3_1 & 4_1 & \cdots & m_1 \\
\nu_2 & 1_2 & 2_2 & 3_2 & 4_2 & \cdots & m_2 \\
1_3 & 2_3 & 3_3 & 4_3 & \cdots & m_3 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1_n & 2_n & 3_n & 4_n & \cdots & m_n \\
\end{array} \]
Create n duplicates of the items, one for each player

	1_1	2_1	3_1	4_1	...	m_1
---	------	------	------	------	------
v_1	1	2	3	4	...	m_1
v_2	1	2	3	4	...	m_2
v_3	1	2	3	4	...	m_3
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
1_n	2	3	4	\ldots	m_n	
The Reduction

Create n duplicates of the items, one for each player

\[
\begin{array}{ccccccc}
\nu_1 & 1_1 & 2_1 & 3_1 & 4_1 & \cdots & m_1 \\
\nu_2 & 1_2 & 2_2 & 3_2 & 4_2 & \cdots & m_2 \\
\nu_3 & 1_3 & 2_3 & 3_3 & 4_3 & \cdots & m_3 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\nu_n & 1_n & 2_n & 3_n & 4_n & \cdots & m_n \\
\end{array}
\]
Create m additional players, one for each original item

$$
\begin{array}{cccccccc}
\nu_1 & 1_1 & 2_1 & 3_1 & 4_1 & \cdots & m_1 \\
\nu_2 & 1_2 & 2_2 & 3_2 & 4_2 & \cdots & m_2 \\
\nu_3 & 1_3 & 2_3 & 3_3 & 4_3 & \cdots & m_3 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\nu_n & 1_n & 2_n & 3_n & 4_n & \cdots & m_n \\
\end{array}
$$

The other $m - k$ need their whole column

The original n players get the same k items each

Demand queries can all be answered
Create m additional players, one for each original item

\[
\begin{array}{cccccc}
\nu_1 & 1_1 & 2_1 & 3_1 & 4_1 & \cdots & m_1 \\
\nu_2 & 1_2 & 2_2 & 3_2 & 4_2 & \cdots & m_2 \\
\nu_3 & 1_3 & 2_3 & 3_3 & 4_3 & \cdots & m_3 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\nu_n & 1_n & 2_n & 3_n & 4_n & \cdots & m_n \\
\nu_{n+1} & & & & & & \\
\end{array}
\]
The Reduction

Create m additional players, one for each original item

<table>
<thead>
<tr>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>\vdots</th>
<th>v_n</th>
<th>v_{n+1}</th>
<th>v_{n+2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1_1</td>
<td>1_2</td>
<td>1_3</td>
<td>\vdots</td>
<td>1_n</td>
<td>1_{n+1}</td>
<td>1_{n+2}</td>
</tr>
<tr>
<td>2_1</td>
<td>2_2</td>
<td>2_3</td>
<td>\vdots</td>
<td>2_n</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>3_1</td>
<td>3_2</td>
<td>3_3</td>
<td>\vdots</td>
<td>3_n</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>4_1</td>
<td>4_2</td>
<td>4_3</td>
<td>\vdots</td>
<td>4_n</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\ddots</td>
</tr>
<tr>
<td>m_1</td>
<td>m_2</td>
<td>m_3</td>
<td>\vdots</td>
<td>m_n</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Create m additional players, one for each original item

$$
\begin{array}{ccccccc}
\nu_1 & 1_1 & 2_1 & 3_1 & 4_1 & \ldots & m_1 \\
\nu_2 & 1_2 & 2_2 & 3_2 & 4_2 & \ldots & m_2 \\
\nu_3 & 1_3 & 2_3 & 3_3 & 4_3 & \ldots & m_3 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\nu_n & 1_n & 2_n & 3_n & 4_n & \ldots & m_n \\
\nu_{n+1} & \nu_{n+2} & \nu_{n+3} & & & & \\
\end{array}
$$

The other $m - k$ need their whole column.

The original n players get the same k items each.

Demand queries can all be answered.
The Reduction

Create m additional players, one for each original item

<table>
<thead>
<tr>
<th>v_1</th>
<th>1_1</th>
<th>2_1</th>
<th>3_1</th>
<th>4_1</th>
<th>...</th>
<th>m_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_2</td>
<td>1_2</td>
<td>2_2</td>
<td>3_2</td>
<td>4_2</td>
<td>...</td>
<td>m_2</td>
</tr>
<tr>
<td>v_3</td>
<td>1_3</td>
<td>2_3</td>
<td>3_3</td>
<td>4_3</td>
<td>...</td>
<td>m_3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>v_n</td>
<td>1_n</td>
<td>2_n</td>
<td>3_n</td>
<td>4_n</td>
<td>...</td>
<td>m_n</td>
</tr>
<tr>
<td>v_{n+1}</td>
<td>v_{n+2}</td>
<td>v_{n+3}</td>
<td>v_{n+4}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Reduction

Create m additional players, one for each original item

<table>
<thead>
<tr>
<th>v_1</th>
<th>1_1</th>
<th>2_1</th>
<th>3_1</th>
<th>4_1</th>
<th>...</th>
<th>m_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_2</td>
<td>1_2</td>
<td>2_2</td>
<td>3_2</td>
<td>4_2</td>
<td>...</td>
<td>m_2</td>
</tr>
<tr>
<td>v_3</td>
<td>1_3</td>
<td>2_3</td>
<td>3_3</td>
<td>4_3</td>
<td>...</td>
<td>m_3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>v_n</td>
<td>1_n</td>
<td>2_n</td>
<td>3_n</td>
<td>4_n</td>
<td>...</td>
<td>m_n</td>
</tr>
<tr>
<td>v_{n+1}</td>
<td>v_{n+2}</td>
<td>v_{n+3}</td>
<td>v_{n+4}</td>
<td>...</td>
<td>v_{n+m}</td>
<td></td>
</tr>
</tbody>
</table>
The Reduction

Create k additional items which each player v_{n+j} values at c_{n+j}

v_1 1_1 2_1 3_1 4_1 \cdots m_1
v_2 1_2 2_2 3_2 4_2 \cdots m_2
v_3 1_3 2_3 3_3 4_3 \cdots m_3
\vdots \vdots \vdots \vdots \vdots \vdots \vdots
v_n 1_n 2_n 3_n 4_n \cdots m_n
v_{n+1} v_{n+2} v_{n+3} v_{n+4} \cdots v_{n+m}
The Reduction

Create k additional items which each player v_{n+j} values at c_{n+j}

<table>
<thead>
<tr>
<th></th>
<th>v_1</th>
<th>1_1</th>
<th>2_1</th>
<th>3_1</th>
<th>4_1</th>
<th>...</th>
<th>m_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_2</td>
<td>1_2</td>
<td>2_2</td>
<td>3_2</td>
<td>4_2</td>
<td>...</td>
<td>m_2</td>
<td></td>
</tr>
<tr>
<td>v_3</td>
<td>1_3</td>
<td>2_3</td>
<td>3_3</td>
<td>4_3</td>
<td>...</td>
<td>m_3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>v_n</td>
<td>1_n</td>
<td>2_n</td>
<td>3_n</td>
<td>4_n</td>
<td>...</td>
<td>m_n</td>
<td></td>
</tr>
<tr>
<td>v_{n+1}</td>
<td>v_{n+2}</td>
<td>v_{n+3}</td>
<td>v_{n+4}</td>
<td>...</td>
<td>v_{n+m}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

k players are satisfied by these k items
Create k additional items which each player v_{n+j} values at c_{n+j}

\[
\begin{array}{cccccc}
v_1 & 1_1 & 2_1 & 3_1 & 4_1 & \cdots & m_1 \\
v_2 & 1_2 & 2_2 & 3_2 & 4_2 & \cdots & m_2 \\
v_3 & 1_3 & 2_3 & 3_3 & 4_3 & \cdots & m_3 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
v_n & 1_n & 2_n & 3_n & 4_n & \cdots & m_n \\
v_{n+1} & v_{n+2} & v_{n+3} & v_{n+4} & \cdots & v_{n+m}
\end{array}
\]

- k players are satisfied by these k items
- The other $m - k$ need their whole column
Create k additional items which each player v_{n+j} values at c_{n+j}

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>...</td>
<td>m</td>
</tr>
<tr>
<td>v_2</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>...</td>
<td>m</td>
</tr>
<tr>
<td>v_3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>...</td>
<td>m</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_n</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>...</td>
<td>m</td>
</tr>
<tr>
<td>v_{n+1}</td>
<td>v_{n+2}</td>
<td>v_{n+3}</td>
<td>v_{n+4}</td>
<td>...</td>
<td>v_{n+m}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- k players are satisfied by these k items
- The other $m - k$ need their whole column
- The original n players get the same k items each
The Reduction

Create k additional items which each player v_{n+j} values at c_{n+j}

\[\begin{array}{cccccccc}
 v_1 & 1_1 & 2_1 & 3_1 & 4_1 & \ldots & m_1 \\
 v_2 & 1_2 & 2_2 & 3_2 & 4_2 & \ldots & m_2 \\
 v_3 & 1_3 & 2_3 & 3_3 & 4_3 & \ldots & m_3 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 v_n & 1_n & 2_n & 3_n & 4_n & \ldots & m_n \\
 v_{n+1} & v_{n+2} & v_{n+3} & v_{n+4} & \ldots & v_{n+m} \\
\end{array} \]

- k players are satisfied by these k items
- The other $m - k$ need their whole column
- The original n players get the same k items each
- Demand queries can all be answered
Reductions Without Completeness

- Subadditive (Complement-Free)
 - Fractionally-Subadditive (XOS)
 - Gross Substitute
 - Multi-Unit-Demand (OXS)
 - Unit-Demand (XS)
 - 2-(0,1)-Unit-Demand
- Submodular
 - Capped-Additive (Budget-Additive)
 - Weighted Coverage
 - Scaled Coverage
 - Coverage
- Additive (OS)
This picture leaves open 2 capped-additive players.
Two Kinds of Oracles

We denote the 2-player capped-additive public project with k-demand and demand oracles by $\text{PC}_2^{k\text{dem}}$ and PC_2^{dem}.

We don’t yet know whether $\text{PC}_2^{k\text{dem}}$ and PC_2^{dem} are IONP-hard, but we can reduce between them.
Consider a public project where player i has valuation function

$$v_i(S) = \min\left(\sum_{j \in S} v^j_i, c_i\right).$$

Let $V = \sum_{i,j} v^j_i$ and

$$v'_i(S) = \min\left(\sum_{j \in S} (v^j_i + V), c_i + kV\right).$$

The social welfare of a set S of size k after this reduction is just the social welfare before it, plus nkV. So the welfare-maximizing set is not changed.
Oracle Queries

\[v'_i(S) = \min \left(\sum_{j \in S} (v'_i + V), c_i + kV \right) \]

- If the demand query returns a set of size \(k \), the \(k \)-demand query can tell us which set it is.
- If the demand query returns a set of size \(< k \), the cap isn’t reached, so it’s as easy as additive.
- If the demand query returns a set of size \(> k \), the cap is reached, so we only need to minimize the price.
Reduction to Auctions

We can reduce not only across oracles, but from public projects to auctions as well. Let AC_2^{dem} be the 2-player combinatorial auction problem with capped-additive valuations and demand queries.
Consider an AC_2^{dem} instance with values

\[
v_i(S) = \min \left(\sum_{j \in S} v_i^j, c_i \right).
\]

Let $V = \sum_{i,j} v_i^j$ and $W = \sum_j v_2^j$. We produce an instance with valuations

\[
v_1'(S) = \min \left(\sum_{j \in S} \left(v_1^j + V \right), kV + c_1 \right)
\]

\[
v_2'(S) = \min \left(\sum_{j \in S} \left(V - v_2^j \right), (m - k)V - (W - c_2) \right)
\]
Reduction is Valid

\[v'_1(S) = \min \left(\sum_{j \in S} \left(V + v'_1^j \right), kV + c_1 \right) \]

\[v'_2(S) = \min \left(\sum_{j \in S} \left(V - v'_2^j \right), (m - k)V - (W - c_2) \right) \]

- In an optimal allocation, player 1 gets a set \(S \) of size \(k \) and player 2 gets \(S^C \).
- The social welfare of such an allocation is equal to the social welfare of the \(PC_2^{kdem} \) instance, plus some fixed terms.
Computing Oracle Queries

\[v_1'(S) = \min \left(\sum_{j \in S} (V + v_1^j), kV + c_1 \right) \]

\[v_2'(S) = \min \left(\sum_{j \in S} (V - v_2^j), (m - k)V - (W - c_2) \right) \]

- If player 1 doesn’t get \(k \) items, queries are easy.
- If player 1 gets \(k \) items, the \(k \)-demand oracle gives the answer.
- If player 2 doesn’t get \(m - k \) items, queries are easy.
- If player 2 gets \(m - k \) items, the \(k \)-demand oracle can give us a set \(S \) of size \(k \) which is the complement of the best \(m - k \)

