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Abstract

The existence of incentive-compatible, computationally-
efficient mechanisms for combinatorial auctions with
good approximation ratios is the paradigmatic problem
in algorithmic mechanism design. It is believed that, in
many cases, good approximations for combinatorial auc-
tions may be unattainable due to an inherent clash be-
tween truthfulness and computational efficiency. In this
paper, we prove the first computational-complexity in-
approximability results for incentive-compatible mecha-
nisms for combinatorial auctions. Our results are tight,
hold for the important class of VCG-based mechanisms,
and are based on the complexity assumption that NP
has no polynomial-size circuits. We show two different
techniques to obtain such lower bounds: one for deter-
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ministic mechanisms that attains optimal dependence
on the number of players and number of items, and one
that also applies to a class of randomized mechanisms
and attains optimal dependence on the number of play-
ers. Both techniques are based on novel VC dimension
machinery.

1 Introduction

In a combinatorial auction, a set of items is sold to
bidders with private preferences over subsets of the
items, with the intent of maximizing the social wel-
fare (i.e., the sum of bidders’ values for their allocated
items). Manifesting the tension between bounded com-
putational resources and strategic interaction between
selfish participants, combinatorial auctions gained the
status of being the paradigmatic problem in algorith-
mic mechanism design [31].

From a computational perspective, the general prob-
lem is NP-hard, and cannot be approximated within
a constant factor [9]. From a strategic perspective, as
agents’ preferences are private, they may report false
information in an attempt to manipulate the outcome.
From a strictly computational perspective, extensive
work in past years identified a rich class of instances
that allow for positive computational results. While still
NP-hard, the assumption that bidders’ preferences are
complement-free (the value for bundles does not exceed
the sum of their components) allows for constant-factor
approximations (see [9] for a survey). These approxima-
tions, however, assume agents reveal their true prefer-
ences. From a purely strategic perspective, the famous
VCG mechanism can ensure bidders are incentivized to
reveal their true preferences in this setting. This how-
ever, is under the assumption that one has unlimited
computational resources, as the VCG mechanism re-
quires the allocation problem to be solved optimally –
an NP-hard task in our case.

At the heart of algorithmic mechanism design is
the quest for auction protocols that are both incentive-
compatible and computationally efficient, and guarantee
decent approximation ratios. Sadly, to date, huge gaps
exist between the state of the art approximation ratios
obtained by unrestricted, and by truthful, algorithms.
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It is believed that this could be due to an inherent clash
between the truthfulness and computational-efficiency
requirements, that manifests itself in greatly degraded
algorithm performance. For the first time, such tension
between the two desiderata was recently shown to
exist in [34] for a different mechanism design problem
called combinatorial public projects [38]. However, in
the context of combinatorial auctions, due to their
unique combinatorial structure, the algorithmic game
theory community currently lacks the machinery to
prove this [36].

The celebrated class of Vickrey-Clarke-Groves
(VCG) mechanisms [40, 11, 23] is the only known
universal technique for the design of deterministic
incentive-compatible mechanisms. (In certain interest-
ing cases VCG mechanisms are the only truthful mech-
anisms [8, 20, 26, 35, 34].) While a näıve application of
VCG is often computationally intractable, more clever
uses of VCG are the key to the best known (deter-
ministic) approximation ratios for combinatorial auc-
tions [17, 24]. For these reasons, the exploration of the
computational limitations of such mechanisms is an im-
portant research agenda (pursued in [16, 20, 26, 30, 34]).
Recently, it was shown [34] that the computational com-
plexity of VCG-based mechanisms is closely related to
the notion of VC dimension. Using existing VC ma-
chinery, [34] was able to prove computational hardness
results for combinatorial public projects. However, for
combinatorial auctions, these techniques are no longer
applicable. This is because, unlike combinatorial public
projects, the space of outcomes in combinatorial auc-
tions does not consist of subsets of the universe of items,
but rather of partitions of this universe (between the
bidders). This calls for the different VC machinery ap-
proaches for the handling of such problems.

1.1 Results In this paper, we show the first compu-
tational complexity lower bounds for VCG-based mech-
anisms, and truthful mechanisms in general, for combi-
natorial auctions (with the possible exception of a re-
sult in [26] for a related auction environment). First,
we show this for deterministic maximal-in-range mech-
anisms for combinatorial auctions with budget-additive
bidders. The class of budget-additive valuations, de-
fined formally in Sec. 3, is strictly contained in the class
of submodular valuations, which in turn is strictly con-
tained in the class of complement-free valuations. Our
inapproximability results depend on the computational
assumption that SAT does not have polynomial-size cir-
cuits.

Theorem 1.1. Let M be a VCG-based mechanism in
a combinatorial auctions with m items and n budget-
additive bidders, where n = n(m) ≤ mη, for any positive

constant η < 1/2. Then, M cannot approximate the
social welfare within a factor better than n/(1+ǫ) unless
NP ⊆ P/poly.

This result is tight, as [17] show a VCG-based upper
bound of

√
m, and a VCG-based upper bound of n is

trivial.
Next, we extend our lower bound to a class of

strictly more powerful randomized mechanisms. This
class includes all universally-truthful VCG-based mech-
anisms, and more importantly a strictly more pow-
erful class of truthful-in-expectation mechanisms —
which we term maximal-in-weighted-range (MIWR). It
also includes every randomized mechanism that is a
probability distributions over MIWR mechanisms; we
call such mechanisms randomized maximal-in-weighted-
range. Our result applies to any class of valuations sat-
isfying natural closure properties — we term such valua-
tion classes regular — and moreover rendering the algo-
rithmic problem of two-bidder combinatorial auctions
APX-hard. Such valuation classes include submodu-
lar, complement-free, superadditive, and coverage valu-
ations, but not budget-additive valuations. The exten-
sion to randomized mechanisms comes at a cost, how-
ever: we show an optimal lower bound only in terms
of the number of players. Nevertheless, as an easy
corollary this result rules out a constant-factor approx-
imation using randomized maximal-in-weighted-range
mechanisms.

Theorem 1.2. Fix a regular valuation class C for
which 2-player social welfare maximization is APX-
hard. Fix a constant n ≥ 1. For any constant ǫ > 0,
no polynomial-time randomized MIWR algorithm for n-
player combinatorial auctions achieves an approxima-
tion ratio of n − ǫ, unless NP ⊆ P/Poly.

1.2 Techniques Informally, our method of lower
bounding the approximability of deterministic VCG-
based mechanisms via VC arguments is the following:
We consider well-known auction environments for which
exact optimization is NP-hard. We show that if a VCG-
based mechanism approximates closely the optimal so-
cial welfare, then it is implicitly solving optimally a
smaller, but still relatively large, optimization problem
of the same nature — an NP-hard feat. We establish
this by showing that the subset of outcomes (partitions
of items) considered by the VCG-based mechanism is
“large”, and hence must “shatter” a relatively large sub-
set of the items.

For the extension to randomized MIWR mecha-
nisms, an additional idea is needed: rather than di-
rectly converting an r-approximate mechanism into an
exact optimization algorithm for a smaller problem, we
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instead convert an (r + δ)-approximate MIWR algo-
rithm into an (r − δ)-approximate MIWR algorithm
over a smaller set of items. When the problem is APX-
hard, we then reach a contradiction by taking α to be
the infimum of the approximation ratios achievable by
polynomial-time MIWR mechanisms. Translating this
idea into a rigorous proof requires a delicate induction
over the number of players, as well as the careful han-
dling of some complexity-theoretic difficulties.

For both results, dealing with partitions of items
rather than subsets of items, as is traditional in VC-
dimension machinery, poses a number of difficulties. For
one, extending the Sauer-Shelah lemma to partitions
requires carefully defining of what it means for a range
to be “large”: a lower-bound on the cardinality no
longer suffices for a useful shattering result. Moreover,
dealing with partitions requires that we handle the
possibility of unallocated items. We overcome these
difficulties by exhibiting counting arguments that show
that, for any mechanism that obtains a non-trivial
approximation ratio, there must be a reasonably large
subset of items that are fully allocated in exponentially
many different ways. This “shattering” of the allocation
space allows us to establish our lower bounds.

1.3 Related Work Combinatorial auctions have
been extensively studied in both the economics and the
computer science literature [9, 12, 13]. It is known
that if the preferences of the bidders are unrestricted
then no constant approximation ratios are achievable
(in polynomial time) [28, 33]. Hence, much research
has been devoted to the exploration of restrictions on
bidders’ preferences that allow for good approximations,
e.g., for complement-free (subadditive), and submodular,
preferences constant approximation ratios have been ob-
tained [17, 19, 21, 22, 27, 41]. In contrast, the known
truthful approximation algorithms for these classes have
non-constant approximation ratios [14, 17, 18]. It is be-
lieved that this gap may be due to the computational
burden imposed by the truthfulness requirement. How-
ever, to date, this belief remains unproven. In particu-
lar, no computational complexity lower bounds for truth-
ful mechanisms for combinatorial auctions are known.

Vickrey-Clarke-Groves (VCG) mechanisms [40, 11,
23], named after their three inventors, are the fun-
damental technique in mechanism design for inducing
truthful behaviour of strategic agents. Nisan and Ro-
nen [30, 31] were the first to consider the computational
issues associated with the VCG technique. In particu-
lar, [30] defines the notion of VCG-Based mechanisms.
VCG-based mechanisms have proven to be useful in
designing approximation algorithms for combinatorial
auctions [17, 24]. In fact, the best known (determinis-

tic) truthful approximation ratios for combinatorial auc-
tions were obtained via VCG-based mechanisms [17, 24]
(with the notable exception of an algorithm in [6] for the
case that many duplicates of each item exist). Moreover,
Lavi, Mu’alem and Nisan [26] have shown that in certain
interesting cases VCG-based mechanisms are essentially
the only truthful mechanisms (see also [20]).

Dobzinski and Nisan [16] tackled the problem of
proving inapproximability results for VCG-based mech-
anisms by taking a communication complexity [42, 25]
approach. Hence, in the settings considered in [16], it
is assumed that each bidder has an exponentially large
string of preferences (in the number of items). How-
ever, real-life considerations render problematic the as-
sumption that bidders’ preferences are exponential in
size. Our intractability results deal with bidder prefer-
ences that are succinctly described, and therefore relate
to computational complexity. Thus, our techniques en-
able us to prove lower bounds even for the important
case in which bidders’ preferences can be concisely rep-
resented.

The connection between the VC dimension and
VCG-based mechanisms was observed in [34], where a
general (i.e., not restricted to VCG-based mechanisms)
inapproximability result was presented, albeit in the
context of a different mechanism design problem, called
combinatorial public projects (see also [38]). The analy-
sis in [34] was carried out within the standard VC frame-
work, and so it relied on existing machinery (namely,
the Sauer-Shelah Lemma [37, 39] and its probabilistic
version due to Ajtai [2]). To handle the unique techni-
cal challenges posed by combinatorial auctions (specif-
ically, the fact that the universe of items is partitioned
between the bidders) new machinery is required. In-
deed, our technique can be interpreted as an extension
of the Sauer-Shelah Lemma to the case of partitions in
Sec. 4).

The VC framework has received much attention
in past decades (see, e.g., [3, 7, 29] and references
therein), and many generalizations of the VC dimension
have been proposed and studied. To the best of
our knowledge, none of these generalizations captures
the case of n-tuples of disjoint subsets of a universe
considered in this paper. In addition, no connection was
previously made between the the VC dimension and the
approximability of combinatorial auctions.

1.4 Organization of the Paper In Sec. 2, we for-
mally define the problem and develop the necessary
technical background. In Sec. 3 we present our first
result for maximal-in-range mechanisms as described
above. In Sec. 4 we present our second result, pertaining
to randomized maximal-in-weighted-range mechanisms.
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We conclude and present open questions in Sec. 5.

2 Preliminaries

2.1 Combinatorial Auctions In a combinatorial
auction there is a set [m] = {1, 2, . . . , m} of items, and
a set [n] = {1, 2, . . . , n} of players. Each player i has
a valuation function vi : 2[m] → R

+ that is normalized
(vi(∅) = 0) and monotone (vi(A) ≤ vi(B) whenever
A ⊆ B).

An allocation of items M to the players N is a
function S : M → N ∪ {∗}. Notice that we do not
require all items to be allocated. If an allocation S
allocates all items – i.e. S maps M into N – we say
S is a total allocation. The allocation that allocates no
items is called the empty allocation. For convenience,
we use S(j) to denote the player receiving item j, and
we use Si to denote the items allocated to player i. We
use X (M, N) to denote the set of all alocations of M to
N .

In combinatorial auctions, the feasible solutions are
the allocations X ([m], [n]) of the items to the players.
The social welfare of such an allocation S is defined
as
∑

i vi(Si). When the players have values {vi}i, we
often use v(S) as shorthand for the welfare of S. The
goal in combinatorial auctions is to find an allocation
that maximizes the social welfare.

2.2 Valuation Classes The hardness of designing
truthful combinatorial auction mechanisms depends on
the allowable player valuations. Recall that a valuation
over M is a function v : 2M → R

+. We let V denote the
set of all valuations over all abstract finite sets M . A
valuation class C is a subset of V . Examples of valua-
tion classes include submodular valuations, subadditive
valuations, single-minded valuations, etc.

Our first hardness result pertains to deterministic
mechanisms for a simple class: budget-additive valu-
ations. This is despite the fact that the social wel-
fare maximization problem admits an FPTAS when the
number of bidders is constant [4]. Budget-additive val-
uations are defined as follows.

Definition 2.1. We say a valuation v : 2M → R
+ is

budget-additive if there exists a constant B ≥ 0 (the
budget) such that v(A) = min(B,

∑

i∈A v({i})).
Our second result applies to any valuation class that

induces an APX-hard welfare maximization problem
over two bidders, and moreover satisfies some natural
properties.

Definition 2.2. We a say a valuation class C is regu-
lar if the following hold

1. Every valuation in C is monotone and normalized.

2. The canonical valuation on any singleton set is in
C. Namely, for any item a the valuation v : 2{a} →
R

+, defined as v({a}) = 1 and v(∅) = 0, is in C.

3. Closed under scaling: Let v : 2M → R
+ be in C, and

let c ≥ 0. The valuation v′ : 2M → R
+, defined as

v′(A) = c · v(A) for all A ⊆ M , is also in C.

4. Closed under disjoint union: Let M1 and M2 be
disjoint sets. Let the valuations v1 : 2M1 → R

+

and v2 : 2M2 → R
+ be in C. Their disjoint union

v3 = v1 ⊕ v2 : 2M1∪M2 → R
+, defined as v3(A) =

v1(A ∩ M1) + v2(A ∩ M2) for all A ⊆ M1 ∪ M2, is
in C.

5. Closed under relabeling: Let M1, M2 be sets with a
bijection f : M2 → M1. If v1 : 2M1 → R

+ is in
C, then the valuation v2 : 2M2 → R

+ defined by
v2(S) = v1(f(S)) is also in C.

Note that all regular valuation classes support zero-
extension. More formally, let M ⊆ M ′, and let v :
2M → R

+ be in C. The extension of v to M ′, defined as
v′(A) = v(A ∩ M) for all A ⊆ M ′, is also in C. In the
context of combinatorial auctions, we use Cm to denote
the subset of valuation class C that applies to items [m].

Most well-studied valuation classes for which the
underlying optimization problem is APX-hard are reg-
ular. This includes submodular, subadditive, coverage,
and weighted-sum-of-matroid-rank valuations. How-
ever, in addition to budget-additive valuations, two in-
teresting counter-examples come to mind: multi-unit
(where items are indistinguishable), and single-minded
valuations. Nevertheless, the underlying optimization
problem is not APX hard for multi-unit valuations, and
for single-minded valuations the computational hard-
ness of approximation is n1−ǫ even without the extra
constraint of truthfulness (see [10]).

2.3 Truthfulness An n-bidder, m-item mechanism
for combinatorial auctions with valuations in C is a
pair (f, p) where f : Cn

m → X ([m], [n]) is an allocation
rule, and p = (p1, · · · , pn) where pi : Cn

m → R is a
payment scheme. (f, p) might be either randomized or
deterministic.

We say deterministic mechanism (f, p) is truth-
ful if for all i, all vi, v

′
i and all v−i we have that

vi(f(vi, v−i)i)− pi(vi, v−i) ≥ v′i(f(v′i, v−i)i)− p(v′i, v−i).
A randomized mechanism (f, p) is universally truthful
if it is a probability distribution over truthful determin-
istic mechanisms. More generally, (f, p) is truthful in
expectation if for all i, all vi, v

′
i and all v−i we have

that E[vi(f(vi, v−i)i)− p(vi, v−i)] ≥ E[v′i(f(v′i, v−i)i) −
pi(v

′
i, v−i)], where the expectation is taken over the in-

ternal random coins of the algorithm.
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2.4 Algorithms and Approximation Fix a valua-
tion class C. An algorithm A for combinatorial auctions
with C valuations takes as input the number of players
n, the number of items m, and a player valuation pro-
file v1, . . . , vn where vi ∈ Cm. A must then output an
allocation of [m] to [n]. For each n and m, A induces
an allocation rule of m items to n bidders.

We say an algorithm A for n-player combinatorial
auctions achieves an α-approximation if, for every input
n, m and v1, . . . , vn:

αE[v(A(m, v1, . . . , vn))] ≥ max
S∈X ([m],[n])

v(S)

Moreover, we sayA achieves an α-approximation for
m items if the above holds whenever the number of
items is fixed at m.

2.5 MIR, Randomized MIR, MIDR, and
MIWR Maximal in range (MIR) algorithms were in-
troduced in [32] as a paradigm for designing truthful
approximation mechanisms for computationally hard
problems. An algorithm A is maximal-in-range if it in-
duces a maximal-in-range allocation rule when n and m
are fixed.

Definition 2.3. An n-bidder, m-item allocation rule
f is maximal-in-range (MIR) if there exists a
set of allocations R ⊆ X ([m], [n]), such that
∀v1, . . . , vn f(v1, ..., vn) ∈ argmaxS∈R Σivi(Si).

A generalization of maximal-in-range that uses ran-
domization sometimes yields better algorithms. An al-
gorithm A is randomized maximal-in-range if it induces
a maximal-in-range allocation rule for every realization
of its random coins. It is well known that a randomized
MIR algorithm can be combined with the VCG payment
scheme to yield a universally truthful mechanism.

Dobzinski and Dughmi defined a generalization
of randomized maximal-in-range algorithms in [15],
termed maximal-in-distributional-range (MIDR). Here,
each element of the range is a distribution over alloca-
tions. The resulting mechanism outputs the distribution
in the range that maximizes the expected welfare, and
charges VCG payments.

Definition 2.4. f is maximal-in-distributional-range
(MIDR) if there exists a set D of distributions over
allocations such that for all v1, . . . , vn, f(v1, ..., vn) is a
distribution D ∈ D that maximizes the expected welfare
of a random sample from D.

MIDR algorithms were used in [15] to obtain a
polynomial-time, polynomial-communication, truthful-
in-expectation FPTAS for multi-unit auctions, despite

a lower bound of 2 on maximal-in-range algorithms
that use polynomial communication. Moreover, they
exhibited a variant of multi-unit auctions for which
an MIDR FPTAS exists, yet no deterministic (or even
universally truthful) polynomial time mechanism can
attain an approximation ratio better than 2. Notably,
the MIDR algorithms presented in [15] are of the
following special form.

Definition 2.5. f is maximal in weighted range
(MIWR) if f is MIDR, and moreover each distribution
D in the range of f is a weighted allocation: There is
a pure allocation S ∈ X ([m], [n]) such that D outputs S
with some probability, and the empty allocation other-
wise.

We denote a weighted allocation that outputs S
with probabiliby w by the pair (w, S). When there is
room for confusion, we use the term pure allocation to
refer to an unweighted allocation.

Our second result will apply to all distributions
over MIWR mechanisms, a class of mechanisms we
term randomized maximal-in-weighted-range. Random-
ized MIWR mechanisms include all randomized MIR
mechanisms as a special case.

2.6 An MIR algorithm achieving a min(n, 2m1/2)
approximation ratio Given valuation functions vi for
each bidder i, first form a bipartite graph with nodes
on one side representing items and nodes on the other
representing bidders. Form edges with weight vi(j)
between the nodes representing bidder i and item j.
Find a maximum weighted matching in this graph. Call
the value of this matching Vmatching. Now, consider
vi([m]), the value to player i of getting all the items.
Let Vall = maxi vi([m]), and let i∗ be the bidder
that maximizes vi([m]). If Vmatching ≥ Vall, assign
items to bidders as in the maximum weighted matching.
Otherwise, give every item to bidder i∗.

Theorem 2.1. ([17], slightly rephrased) The
above algorithm achieves a min(n, 2m1/2) approxima-
tion of the social welfare under subadditive valuations
with free disposal.

Proof. First, note that since there are n bidders, the
maximum social welfare is at most n times the maxi-
mum welfare obtainable by any single bidder, Vall. So
this algorithm is at most an n approximation. We now
proceed to show that this algorithm is also at most a
2
√

m approximation.
Consider an assignment A which maximizes the

social welfare. There are at most
√

m bidders which get√
m or more of the items each. Call this set of bidders

Bhigh, and call the others Blow.
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If the bidders in Bhigh get more than half of the
social welfare, Vall will be at least as great as the
maximum value received by any bidder in Bhigh. Thus,
Vall is at least 1/

√
m times the social welfare from

bidders in Bhigh. Because the bidders in Bhigh get half
the social welfare, the maximum social welfare is at most
2
√

m times Vall in this case.
In the other case, the bidders in Blow get at least

half the social welfare. Consider the matching in
the bidder-and-item graph in which every bidder in
Blow receives the item maximizing vi(j) out of the
items assigned to them in A. Since the valuations are
subadditive and each bidder in Blow receives at most√

m items, the total value of Blow is at most
√

m
times the value of this matching. Since Vmatching is
the maximal value over any matching, we see that the
social welfare from Blow is at most

√
mVmatching. Thus,

since Blow gets at least half the social welfare, the social
welfare of A is at most 2

√
m times Vmatching .

Since Vall is always an n approximation and one
of Vall, Vmatching is a 2

√
m approximation of the social

welfare, assigning items to achieve the max of these two
welfares yields a min(n, 2

√
m) approximation.

2.7 A Primer on Non-Uniform Computation
Non-uniform computation is a standard notion from
complexity theory (see e.g. [5]). We say an algorithm
is non-uniform if it takes in an extra parameter, often
referred to as an advice string. However, the advice
string is allowed to vary only with the size of the input
(i.e. with m). Moreover, the length of the advice string
can grow only polynomially in the size of the input.
If a problem admits a non-uniform polynomial-time
algorithm, this is equivalent to the existence of a family
of polynomial-sized boolean circuits for the problem.
When we say a non-uniform algorithm is polynomial-
time MIR [MIWR], we mean that the algorithm runs in
time polynomial in m, and maximizes over a [weighted]
range, regardless of the advice string. When we say a
non-uniform algorithm achieves an approximation ratio
of α on m, we mean that there exists a choice of advice
string for input length m such that the algorithm always
outputs an α-approximate allocation.

2.8 Technical Assumptions For Second Result
For our second result, a note is in order on the represen-
tation of valuations. Our results hold in the computa-
tional model. Therefore, we may assume that valuation
functions are succinct, in that they are given as part of
the input, and can be evaluated in time polynomial in
the length of their description. Naturally, this result ap-
plies to non-succint valuations with oracle access, when
the resulting problem admits a suitable reduction from

an APX-hard optimization problem.
Moreoever, due to the generality of this result, we

need to make some technical assumptions. Namely, we
restrict our attention to combinatorial auctions over a
“well-behaved” family of instances. This restriction is
without loss of generality for all well-studied classes of
valuations for which the problem is APX-hard, such as
coverage, submodular, etc. A family I of inputs to com-
binatorial auctions is well-behaved if there exists a poly-
nomial b(m) such that for each input (k, m, v1, . . . , vk) ∈
I, the function vi is represented as a bit-string of length
O(b(m)), and moreover always evaluates to a rational
number represented using O(b(m)) bits. While we be-
lieve this assumption may be removed, we justify it on
two grounds. First, every well-studied variant of combi-
natorial auctions that is APX-hard is also APX-hard on
a well-behaved family of instances, so this restriction is
without loss for all such variants. Second, this assump-
tion greatly simplifies our proof, since it allows us to
describe the size of an instance by a single parameter,
namely m.

3 Hardness for MIR Mechanisms

In this section, we prove the following theorem:

Theorem 3.1. Let M be a polynomial-time maximal-
in-range mechanism for auctions with n budget-additive
bidders and m items, with n = n(m) ≤ mη for positive
constant η < 1/2. If M approximates the social welfare
with a ratio of n/(1 + ǫ) for positive constant ǫ, then
NP ⊆ P/poly.

Theorem 3.1 is a direct consequence of Lemmas 3.2, 3.4
and 3.5 below. It also leads to the following theorem,
which shows that it is not possible to find a polynomial-
time maximal-in-range mechanism that achieves an
approximation much better than the min(n, 2m1/2) in
[17] unless NP has polynomial circuits.

Theorem 3.2. For any positive constant ǫ and n =
n(m) ≤ poly(m), no polynomial-time maximal-in-range
auction mechanism can approximate the social welfare
with a ratio better than min(n, m1/2−ǫ) by a constant
factor unless NP ⊆ P/poly.

Proof. This follows from Theorem 3.1 by simply noting
that any mechanism M which performs well on n =
n(m) ≤ m1/2−ǫ bidders will perform well on n =
n(m) ≤ poly(m) bidders when all but m1/2−ǫ of the
bidders have valuation functions which are identically
zero. Thus, by setting all but m1/2−ǫ of the valuation
functions to 0, and simulating M, we are effectively
simulating M on an auction with n = m1/2−ǫ, as
assigning items to bidders with valuations functions
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equal to zero has the same effect as not assigning them
at all. Thus, setting n′ = min(n, m1/2−ǫ), we see
by Theorem 3.1 that achieving an approximation ratio
better than n′ implies NP ⊆ P/poly.

We begin the proof of Theorem 3.1 by examining
the structure of the range. Below we omit floors and
ceilings when dealing with them would be routine.

3.1 The Counting Argument Let M be a
maximal-in-range mechanism with range R ⊆ ([n] ∪
{⋆})m. For a vector x ∈ R, xi = j means that item
i is given to bidder j, while xi = ⋆ indicates that no
bidder is given item i. For S ⊆ [m], we define RS to be
the subset of the range where all of the items in S are
assigned to bidders,

RS = {x ∈ R : xi ∈ [n] for all i ∈ S}.

When considering RS we wish to focus on the
bidders that the items in S are assigned to, so we define
TS to be the projection of RS to the indices in S. So
TS ⊆ [n]|S|.

In order to show that M can solve a hard problem,
we will show that there is some TS with sufficiently
many elements so that subset sum can be embedded
in the valuations of S by the various bidders in such
a way that M will solve it. By focusing on a portion
of the range such that there are no unassigned items
within a fixed subset S, we can ignore the difficulties
associated with unassigned items. This idea allows for
the use of standard VC machinery. First, we show that
there must be some exponentially large TS. We begin
with a helpful lemma.

Lemma 3.1. For any positive constant ǫ and any m, n
for which the binomial coefficients below are positive,

(

m
ǫm/n

)

(((1+2ǫ)/n)m
ǫm/n

)
<

(

n

1 + ǫ

)ǫm/n

.

Proof. First, note that

(

m
ǫm/n

)

(((1+2ǫ)/n)m
ǫm/n

)
=

ǫm/n−1
∏

i=0

m − i

((1 + 2ǫ)/n)m − i
.

Now,

m − i

((1 + 2ǫ)/n)m − i
=

m − i

((1 + 2ǫ)/n)m− i

<
m

(1 + 2ǫ)m/n − ǫm/n

=
n

1 + ǫ

So multiplying the ǫm/n terms together, we have

(

m
αm

)

(((1+2ǫ)/n)m
ǫm/n

)
=

ǫm/n−1
∏

i=0

m − i

((1 + 2ǫ)/n)m− i

<

ǫm/n−1
∏

i=0

n

1 + ǫ

=

(

n

1 + ǫ

)ǫm/n

,

which proves the lemma.

Lemma 3.2. Let M be a maximal-in-range mechanism
for auctions with n bidders and m items that approxi-
mates the social welfare with a ratio of n/(1 + 2ǫ), for
positive constant ǫ. Then there exists a set S ⊆ [m] with
|S| = ǫm/n where TS has size |TS | ≥ (1 + ǫ)ǫm/n.

Proof. To begin, we associate with each x ∈ [n]m a set
of valuation functions. The valuation functions are such
that

vi,j =

{

1 xj = i
0 otherwise

bi = m.

Let x ∈ [n]m. Because M approximates the social
welfare with a ratio of (1 + 2ǫ)/n and the maximum
social welfare is m, there must be a member r ∈ R of
the range such that ri = xi for at least ((1 + 2ǫ)/n)m
different indices i. Let Sx be the set of these indices,

Sx = {i : ri = xi}.

There are at least
( |Sx|
ǫm/n

)

≥
(((1+2ǫ)/n)m

ǫm/n

)

subsets S′ ⊆
Sx of size ǫm/n. For each such set S′, TS′ contains the
projection of x to S′. If TS′ contains the projection of
x to S′, we say that x is covered by TS′ . If t ∈ TS′ is
the projection of x to S′, we say that t covers x.

For a subset S ⊆ [m], define C(S) to be the number
of vectors x ∈ [n]m which are covered by TS . Since each

x ∈ [n]m is covered by at least
(((1+2ǫ)/n)m

ǫm/n

)

sets TS with

|S| = ǫm/n,

(3.1)
∑

S⊆[m],|S|=ǫm/n

C(S) ≥ nm

(

((1 + 2ǫ)/n)m

ǫm/n

)

.

We now bound the sum
∑

S⊆[m],|S|=ǫm/n C(S). Suppose

by way of contradiction that for every subset S ⊆ [m] of
size ǫm/n, |TS| < (1+ǫ)ǫm/n. Consider a subset S ⊂ [m]
such that |S| = ǫm/n. Each t ∈ TS covers nm−ǫm/n

elements of [n]m. So C(S) < (1+ǫ)ǫm/nnm−ǫm/n, which
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gives the bound
(3.2)

∑

S⊆[m],|S|=ǫm/n

C(S) <

(

m

ǫm/n

)

(1 + ǫ)ǫm/nnm−ǫm/n.

So by Equations 3.1 and 3.2, we have

(

m

ǫm/n

)

(1 + ǫ)ǫm/nnm−ǫm/n > nm

(

((1 + 2ǫ)/n)m

ǫm/n

)

,

which we simplify to

(3.3)

(

m
ǫm/n

)

(((1+2ǫ)/n)m
ǫm/n

)
(1 + ǫ)ǫm/n > nǫm/n.

By Lemma 3.1, we get

(

m
ǫm/n

)

(((1+2ǫ)/n)m
ǫm/n

)
(1 + ǫ)ǫm/n <

(

n

1 + ǫ

)ǫm/n

(1 + ǫ)ǫm/n

which is simply nǫm/n, contradicting (3.3). This proves
that there exists some S ⊆ [m] with |S| = ǫm/n such
that |TS| ≥ (1 + ǫ)ǫm/n.

3.2 Using the VC Dimension At this point, we
would like to use Sauer’s lemma to show a large VC
dimension. Unfortunately, it does not generalize well to
auctions with three or more bidders because for n > 2
there exist sets of size (n − 1)m > 2m with n-ary VC
dimension equal to 0. To get around this difficulty, we
map TS injectively from [n]ǫm/n into [2]ǫm, and show
that the image of this map has a large VC dimension.
The large VC dimension then permits the embedding of
an NP-hard problem (see Section 3.3). In order to show
a lower-bound on the VC dimension, we use Sauer’s
Lemma:

Lemma 3.3. (Sauer’s Lemma) Let S be a subset of

[2]ℓ with |S| >
∑k−1

i=0

(

ℓ
i

)

. The VC dimension of S is
at least k.

We will make use of the following corollary:

Corollary 3.1. Let T be a subset of [2]ℓ. For any
constant δ > 1/2 and any ǫ > 0, the following holds for

all sufficiently large ℓ: if |T | > (1+ ǫ)ǫℓδ

then T has VC
dimension at least ℓ1/2.

Proof. Since for sufficiently large ℓ, ℓ1/2 < ℓ/2,

ℓ1/2−1
∑

i=0

(

ℓ

i

)

≤
ℓ1/2−1
∑

i=0

(

ℓ

ℓ1/2

)

≤ ℓ1/2

(

eℓ

ℓ1/2

)ℓ1/2

= ℓ1/2
(

eℓ1/2
)ℓ1/2

= (1 + ǫ)1/2 log1+ǫ ℓ+ℓ1/2 log1+ǫ(eℓ1/2)

= (1 + ǫ)ℓ1/2((1/2) log1+ǫ ℓ+log1+ǫ e+o(1))

= (1 + ǫ)ℓ1/2+o(1)

which is less than |T | = (1 + ǫ)ǫℓδ

for sufficiently large
ℓ, since δ > 1/2.

Let φi : n → {0, 1} be defined by

φi(j) =

{

1 i = j
0 i 6= j

.

For any vector v, take φi(v) to mean the application of
φi to each component of v. Similarly, if φi is applied to
a set of vectors, the result is that of applying φi to each
vector in that set.

The next lemma is the main lemma in this section;
it refers to the range R and the subsets TS defined in
Section 3.1.

Lemma 3.4. Let M be a maximal-in-range mechanism
for auctions with n bidders and m items, with n =
n(m) ≤ mη for positive constant η < 1/2. For all
sufficiently large m, if there exists a subset S ⊆ [m]
with |S| = ǫm/n such that |TS| ≥ (1+ǫ)ǫm/n, then there
exists a bidder i∗ such that φi∗(R) has VC dimension at
least

√
ǫ · m1/2−η.

Proof. Define vectors ej = (0, . . . , 0, 1, 0, . . . , 0), where
the single 1 is in position j, and the number of coordi-
nates of ej is n. We define f : [n]ǫm/n → [2]nǫm/n =
[2]ǫm by f(x) = ex1ex2 · · · exǫm/n

. We write f(T ) for a
subset T to mean the set {f(t) : t ∈ T }.

The function f is injective, so

|f(TS)| = |TS | ≥ (1 + ǫ)ǫm/n.

Note that (1 + ǫ)ǫm/n ≥ (1 + ǫ)ǫm1−η ≥ (1 + ǫ)ǫ(ǫm)1−η

.
We are assuming that m is sufficiently large, so we can
apply Corollary 3.1 (with δ = 1−η > 1/2 and ℓ = ǫm) to
conclude that f(TS) has VC dimension at least (ǫm)1/2.

Let Q be a size (ǫm)1/2 subset of [ǫm] that is
shattered by f(TS). Recall that each member of f(TS)
is the concatenation of vectors of length n, where a 1 in
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the ith position of the jth such vector corresponds to
the ith bidder getting item j. In this way each element
in Q corresponds to one of the n bidders. Partition
Q into sets Qi, where Qi contains those coordinates
that correspond to bidder i. There are n parts in the
partition, so there is some i∗ ∈ [n] for which Qi∗ has
size at least (ǫm)1/2/n.

Since Q is shattered by f(TS), so is the subset Qi∗ .
This means exactly that φi∗(TS) has VC dimension at
least |Qi∗ | ≥ (ǫm)1/2/n. Since the members of TS are
projections of members of R onto the coordinates in S,
this implies that φi∗(R) also has VC dimension at least
(ǫm)1/2/n ≥ √

ǫ · m1/2−η.

For a more intuitive understanding of Lemma 3.4,
consider viewing all bidders other than i∗ as a single
meta-bidder. Lemma 3.4 states that there is a poly-
nomially large set of items which are fully allocated in
every possible way under this 2-bidder view.

3.3 Embedding Subset Sum We now show that
if φi∗(R) has VC dimension at least mγ for constant
γ > 0, we can embed a subset sum instance into the
auction in such a way that it is solved by M. We use
a reduction similar to one used in [27] to show that
exactly maximizing the social welfare of these auctions
is NP-hard.

Lemma 3.5. Let M be a polynomial-time maximal-in-
range mechanism for auctions with n bidders and m
items. Suppose there exists a constant γ > 0 such that
for all sufficiently large m, there exists a bidder i∗ such
that φi∗(R) has VC dimension at least mγ (where R is
the range). Then NP ⊆ P/poly.

Proof. We take as advice the set L ⊆ [m] of size mγ

that is shattered by φi∗(R). For ease of exposition we
re-order the items so that L is the set of the first mγ

items. Let a1, . . . , amγ be a subset sum instance with
target sum K. For all bidders i 6= i∗, we set

vi,j =

{

aj , j ≤ mγ

0, j > mγ

bi =
∑

j

aj

and for bidder i∗, we set

vi∗,j =

{

2aj, j ≤ mγ

0, j > mγ

bi∗ = 2K.

If there is a subset V of {a1, . . . , amγ} summing to
K, there is an assignment in R with social welfare

of
∑

j aj + K. This can be any assignment where
bidder i∗ gets the items in V , and the other items are
distributed among the other bidders. R must contain
such an assignment because φi∗(R) shatters L. Since
M is maximal-in-range with range R, it will output an
assignment with at least this social welfare.

If there is no subset of {a1, . . . , amγ} summing to
K, M will assign bidder i∗ a subset V ⊆ M such that
∑

j∈V aj 6= K. If
∑

j∈V aj < K, the total value is at
most

∑

j /∈V

aj +
∑

j∈V

2aj =
∑

j

aj +
∑

j∈V

aj

<
∑

j

aj + K.

If
∑

j∈V aj > K, bidder i∗ gets value 2K. So the total
value is at most

∑

j /∈V

aj + 2K =
∑

j

aj −
∑

j∈V

aj + 2K

<
∑

j

aj − K + 2K

=
∑

j

aj + K.

So every assignment has social welfare less than
∑

j aj +
K. So taking L as advice, we can solve a subset
sum instance with k integers in polynomial time (in
m = k1/γ and the size of the binary representations
of the integers). Therefore, subset sum is in P/poly, so
NP ⊆ P/poly.

3.4 Final Proof We can now prove Theorem 3.1. We
have a polynomial-time maximal-in-range mechanism
M for auctions with n bidders and m items, with
n = n(m) ≤ mη for positive constant η < 1/2. By
Lemma 3.2, for each m there exists a subset S ⊆ [m]
of size (ǫ/2)m/n such that |TS | ≥ (1 + ǫ/2)(ǫ/2)m/n. By
Lemma 3.4, this implies that for sufficiently large m, the
range of M has VC dimension at least

√

ǫ/2 · m1/2−η.

Since η < 1/2, we have
√

ǫ/2 · m1/2−η ≥ mγ for some
fixed positive constant γ and sufficiently large m. By
Lemma 3.5, we thus have that NP ⊆ P/poly.

3.5 Super-polynomially many bidders In this
section, we observe that our results can be extended to
handle the case of n super-polynomial in m, at the ex-
pense of a stronger complexity assumption. For n larger
than m, our technique shows a limit of m1/2−ǫ on the ap-
proximation ratio of any mechanism which runs in time
polynomial in m. However, by our definition an efficient
mechanism need only run in time polynomial in n and
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m, which is greater than poly(m) for super-polynomial
n. By strengthening the complexity assumption, we can
still prove limits on the achievable social welfare.

For instance, if n is sub-exponential in m, we
can begin by assuming that NP does not have sub-
exponential size circuits. Then applying the same
reduction leads to a circuit family of size poly(n, m)
(or sub-exponential in m), which solves subset sum
instances of size mγ for constant γ > 0, and this implies
that NP has subexponential size circuits.

If n is sufficiently large as a function of m, it can
even become possible to maximize the social welfare
exactly in polynomial time.

Theorem 3.3. There exists a maximal-in-range mech-
anism M for auctions with n bidders and m items,
which maximizes the social welfare and runs in poly-
nomial time when Bm ∈ O(poly(n)), where Bm is the
mth Bell number, the number of partitions of [m] into
any number of disjoint subsets with union [m].

Proof. If Bm ∈ O(poly(n)), it is possible to enumerate
all of the partitions of [m] into any number of disjoint
subsets in polynomial time. For each such partition into
sets S1, . . . , Sk, form a bipartite graph where one side
has nodes representing the sets S1, . . . , Sk and the other
has nodes representing the bidders. The edge between
bidder i and partition Sj has weight vi(Sj).

After finding a maximum weighted matching on
each such bipartite graph, we can choose the maxi-
mum matching over all partitions. This matching rep-
resents the assignment which maximizes the social wel-
fare. This can be easily seen because every assignment
corresponds to a matching in the bipartite graph for
some partition.

4 Hardness for Randomized MIWR
Mechanisms

We find the proof in this section easier to follow when
the approximation ratio is expressed by a number less
than 1, and we will follow this practice henceforth.
Thus, when we say that a randomized mechanism
achieves an approximation ratio of β < 1, it means that
for every input n, m and v1, . . . , vn:

E[v(A(m, v1, . . . , vn))] ≥ β ·
[

max
S∈X ([m],[n])

v(S)

]

.

In this section, we prove the following result.

Theorem 4.1. Fix a regular valuation class C for
which 2-player social welfare maximization is APX-
hard. Fix a constant n ≥ 1. For any constant ǫ > 0,
no polynomial-time randomized MIWR algorithm for n-
player combinatorial auctions achieves an approxima-
tion ratio of 1/n + ǫ, unless NP ⊆ P/Poly.

It is worth noting that this impossibility result
applies to all universally-truthful randomized maximal-
in-range algorithms. First,we prove the analogous result
for MIWR mechanisms that take polynomial advice.

Theorem 4.2. Fix a regular valuation class C for
which 2-player social welfare maximization is APX-
hard. Fix a constant n ≥ 1. For any constant ǫ > 0,
no non-uniform polynomial-time MIWR algorithm for
n-player combinatorial auctions achieves an approxima-
tion ratio of 1/n + ǫ, unless NP ⊆ P/Poly.

We then complete the proof by showing that any
randomized MIWR mechanism can be “de-randomized”
to one that takes polynomial advice.

Our proof strategy for Theorem 4.2 is as follows.
In Section 4.2 we define a “perfect valuation profile”
on n players as a set of valuations where exactly one
player is interested in each item. We then show that any
range of allocations that gives a good approximation
on a randomly drawn perfect valuation profile must
“shatter” a constant fraction of the items, meaning that
the range contains all allocations of that subset of the
items to q of the players, where the value of q depends
on the quality of the approximation.

In Section 4.3, we prove Theorem 4.2 by induction
on the number of players n. Roughly speaking, we
show that for any MIWR mechanism A for n players,
the allocations with weight much larger than 1/n + ǫ
are useless. Namely, the inductive hypothesis implies
that the allocations with weight sufficiently larger than
1/n+ǫ cannot yield a good approximation to a randomly
drawn perfect valuation; otherwise, one could use the
resulting shattered set of items to design a strictly better
MIWR mechanism for n′ players for some n′ < n. This
allows us to conclude that all “useful” allocations have
very similar weight to one another — the weights are
close within 1−η for arbitrarily small η and a sufficiently
large set of items. Now that the mechanism maximizes
over a large set of allocations that are almost “pure”,
in the sense that the weights are almost identical, this
yields a PTAS, contradicting the APX-hardness of the
problem.

4.1 Some complexity theory. Before presenting
the main body of the proof, we first develop some com-
plexity theory tools to address a subtlety in the argu-
ment. Broadly speaking, our proof involves constructing
a reduction that transforms every instance of a n-player
mechanism design problem into an instance of one of n
other problems P1, . . . ,Pn, each of which individually
is presumed to be computationally hard. The reduc-
tion has the property that input instances with a given
number of items, m, are all transformed into inputs of
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the same problem Pi, but instances with a different
number of items may map to a different one of the n
problems. This raises difficulties because the complex-
ity of P1, · · · ,Pn may be “wild”: for each of them, there
may be some input sizes (perhaps even infinitely many)
that can be solved by a polynomial-sized Boolean cir-
cuit. In this section we develop the relevant complexity-
theoretic tools to surmount this obstacle. We relegate
the proofs of these results to Appendix B.

Definition 4.1. A set S ⊆ N is said to be complexity-
defying (CD) if there exists a family of polynomial-sized
Boolean circuits {Cn}n∈N such that for all n ∈ S, the
circuit Cn correctly decides 3sat on all instances of size
n.

A set T ⊆ N is said to be polynomially complexity-
defying (PCD) if there exists a complexity-defying set S
and a polynomial function p(n) such that T is contained
in
⋃

n∈S [n, p(n)]. Here [a, b] denotes the set of all natural
numbers x such that a ≤ x ≤ b. If a set U ⊆ N is not
PCD, we say it is non-PCD.

Lemma 4.1. A finite union of CD sets is CD, and a
finite union of PCD sets is PCD.

Definition 4.2. A decision problem or promise prob-
lem is said to have the padding property if for all n < m
there is a reduction that transforms instances of size n
to instances of size m, running in time poly(m) and
mapping “yes” instances to “yes” instances and “no”
instances to “no” instances. Similarly, an optimization
problem is said to have the padding property if for all
n < m there is a reduction that transforms instances of
size n to instances of size m, running in time poly(m)
and preserving the optimum value of the objective func-
tion.

Lemma 4.2. Suppose that L is a decision problem or
promise problem that has the padding property and is
NP-hard under polynomial-time many-one reductions.
Let T be any subset of N. If there is a polynomial-
sized circuit family that decides L correctly whenever
the input size belongs to T , then T is PCD.

Lemma 4.3. If N is PCD, then NP ⊆ P/ poly .

4.2 Perfect Valuations and a strong shattering
lemma We define a perfect valuation profile as one
where each item is desired by exactly one player. Perfect
valuation profiles will prove useful in our proof, due to
the fact that no “small” range can well-approximate
social welfare for a randomly-drawn perfect valuation
profile.

Definition 4.3. Let N and M be a set of players and
items, respectively. Let vi : 2M → R

+ be the valuation

of player i ∈ N . We say the valuation profile {vi}i∈N is
a perfect valuation profile on N and M if there exists
a total allocation S of M to N such that vi(j) = 1 if
j ∈ Si, and vi(j) = 0 otherwise. In this case, we say
that {vi}i∈N is the perfect valuation profile generated
by S.

To use perfect valuations in the proof of Theo-
rem 4.1, they must belong to the class of valuations con-
sidered in the theorem. Indeed, it follows immediately
from definition 2.2 that any regular class of valuations
contains all perfect valuations.

The key property of perfect valuations is that, if a
range R of allocations achieves a “good” approximation
for many perfect valuations, then R must include all al-
locations of a constant fraction of the items to some set
of q players. The value of q depends on the approxi-
mation guaranteed by R, with a better approximation
yielding a larger q. This is formalized by the following
Lemma.

Lemma 4.4. Let U and V be finite sets with |U | =
m, |V | = n, and R a set of functions from U to V ∪{∗}.
Suppose that for a random f : U → V , with probability
at least γ there is a g ∈ R such that g(x) differs from
f(x) on at most

(

1 − q−1
n − ǫ

)

m elements x ∈ U . Then
there is a subset S ⊆ U of cardinality at least δm (where
δ > 0 may depend on γ, ǫ, q, n) and a subset T ⊆ V
of cardinality q, such that every function from S to T
occurs as the restriction of some g ∈ R.

We note that this shattering lemma is more gen-
eral than the Sauer-Shelah lemma, which can only be
applied directly to two players. The notion of “shat-
tering” among multiple players is key to the proof in
Section 4.3.

If we interpret U as the set of items, V the set of
players, f a perfect valuation profile, and R a range
of allocations, then the implication of the lemma to
our problem is immediate. The proof of the lemma is
nontrivial, and we relegate it to Appendix A.

4.3 Hardness for Non-Uniform MIWR Mech-
anisms In this section we prove Theorem 4.2. We fix
the valuation class C as in the statement of the theorem.
Moreover, we fix η > 0 such that the 2-player social wel-
fare maximization problem is NP-hard to approximate
within a factor of 1 − η. The proof proceeds by induc-
tion on n, the number of players. We need the following
strong inductive hypothesis:
IH(n): For any constant α > 1/n and set T ⊆ N,
if a non-uniform polynomial-time MIWR algorithm for
the n-player problem achieves an α-approximation for
m items whenever m ∈ T , then T is PCD.
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In other words, the set of input lengths for which
any particular such algorithm may achieve an α-
approximation is PCD. (See Section 4.1 for the defi-
nition of PCD.) If we can establish IH(n) for all n ≥ 1,
then Theorem 4.2 follows, since N is not PCD. The base
case of n = 1 is trivial. We now fix n, and assume IH(q)
for all q < n.

Assume for a contradiction that IH(n) is violated
for some α. Let α > 1/n be the supremum over
all values of α violating it. Note that IH(n − 1)

implies that α ∈
(

1
n , 1

n−1

]

. To simplify the exposition,

we assume the supremum is attained, and fix the
algorithm A (and corresponding family of polynomial
advice strings) achieving an α-approximation for all
m ∈ F where F is not PCD. Our arguments can all
be easily modified to hold when the supremum is not
attained, by instantiating A to achieve (α− ζ) instead,
where ζ > 0 is as small as needed for the forthcoming
proof. The proof then proceeds as follows. We assign
every m ∈ F to one or more subsets Tq (2 ≤ q ≤ n + 1)
in a way that is to be explained. We will prove that Tq

is PCD for all q, and hence by Lemma 4.1 their union F

is PCD. This, however, contradicts our assumption that
F is not PCD and completes the proof.

To prove that Tq is PCD, we distinguish three cases
depending on the value of q:

1. If 2 ≤ q ≤ n − 1, then we prove that m ∈ Tq

implies that there is a non-uniform polynomial-
time MIWR mechanism for the q-player problem
that achieves an approximation ratio strictly better
than 1/q when the number of items is ⌈σm⌉, for
some constant σ > 0. By our induction hypothesis,
the set of all such ⌈σm⌉ must be a PCD set. By
definition of PCD sets, this entails that Tq is PCD.

2. If q = n, then we prove that for the n-player prob-
lem, whenever m ∈ Tq, there is an efficient nonuni-
form MIWR mechanism that achieves approxima-
tion ratio strictly better than α for ⌈σm⌉ items.
Once again this implies that the set of all such ⌈σm⌉
is a PCD set, by our hypothesis on α, which in turn
implies that Tn is PCD.

3. If q = n + 1 then we prove that when m ∈ Tq there
is a non-uniform polynomial-time algorithm achiev-
ing approximation ratio 1−η for the two-player m-
item social welfare maximization problem. (Recall
that η was chosen so that this problem is NP-hard
to approximate within 1 − η.) By Lemma 4.2, this
implies Tq is PCD.

We now implement this plan of proof in more detail.

Defining the partition of the range. Recall
that an MIWR mechanism fixes a range of weighted
allocations for each m. Let Dm denote the range of
A when the number of items is m. Let Rm = {S ∈
X ([m], [n]) : (w, S) ∈ Dm for some w} be the corre-
sponding set of pure allocations. For each allocation
S ∈ Rm, we use w(S) to denote the weight of S in
Dm. (We assume without loss of generality that there
is a unique choice of w(S), since allocations with greater
weight are always preferred.) When m ∈ F, we may as-
sume without loss of generality that w(S) ≥ α for every
S ∈ Rm, since A achieves an α-approximation for m.
We fix ǫ > 0 such that α > 1/n+ ǫ, and ξ > 0 such that
1/n + ǫ/2 = (1 − ξ)−1 · (1/n), and let δ = ǫη/5n. We
partition Rm into weight classes as follows:

• Rm
q = {S ∈ Rm : 1

(1−ξ2)q ≤ w(S) < 1
(1−ξ2)(q−1)},

for 2 ≤ q ≤ n − 1.

• Rm
n = {S ∈ Rm : α

1−δ ≤ w(S) < 1
(1−ξ2)(n−1)}

• Rm
n+1 = {S ∈ Rm : α ≤ w(S) < α

1−δ}
We partition Dm similarly: Dm

q = {(w(S), S) : S ∈ Rq}
for 2 ≤ q ≤ n + 1.

We are now ready to define Tq’s. Roughly speaking,
m ∈ Tq if the output of A, when applied to a random
perfect valuation profile, has probability at least 1/n of
being in Dm

q .
Consider first the set Vm of perfect valuation pro-

files on [n] and [m′] = {1, . . . , m/2}, extended to [m] by
zero-extension. Given v ∈ Vm and 2 ≤ q ≤ n, let us say
that v ∈ Vm

q if the set Rm
q contains an allocation S that

achieves at least a (1+ξ)(q−1)/n approximation to the
social welfare maximizer, and we say that v ∈ Vm

n+1 if v
does not belong to Vm

q for any q < n + 1. Notice, first,
that Vm

n+1 ∩Vm
q = ∅ for every 2 ≤ q ≤ n; second, that if

v 6∈ Vm
q , (2 ≤ q ≤ n + 1), then the best approximation

ratio achievable using an allocation in Dm
q is at most

(4.4)
(1 + ξ)(q − 1)

n
· 1

(1 − ξ2)(q − 1)
=

1

(1 − ξ)n
=

1

n
+

ǫ

2
< α.

However, by our assumption that A achieves an α-
approximation for all valuation profiles with m ∈ F,
the range Dm must contain an α-approximation to the
social welfare maximizer. If m ∈ F and v ∈ Vm

n+1,
therefore, it follows that Dm

n+1 must contain an α-
approximation to the social welfare maximizer.

By the pigeonhole principle, at least one q satisfies

(4.5) |Vm
q | ≥ 1

n
· nm′

.

Finally, we define Tq to be the set of all m ∈ F such
that (4.5) holds. By the preceding discussion, we have
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F = ∪n+1
q=2 Tq. We now proceed to prove that Tq is a PCD

set for all q, completing the proof.

Claim 4.1. Tq is a PCD set for all q ∈ {2, . . . , n + 1}.
Cases 1 and 2: Large weight classes (q ≤ n).

To each allocation S of m items to n players, we may
associate a function fS : [m′] → [n]∪{∗}, that maps each
item x ∈ [m′] to the player who receives that item in S,
or ∗ if the item is unallocated. Similarly, to each perfect
valuation profile v on [n] and [m′] we may associate a
function fv : [m′] → [n] that maps each item to the
unique player who assigns a nonzero valuation to that
item. Note that S achieves a c-approximation to the
social-welfare-maximizing allocation for v if and only if
the functions fS and fv differ on (1 − c)m′ or fewer
elements of [m′].

Assume now that q ≤ n. If m ∈ Tq then at least
1/n fraction of all perfect valuation profiles in Vm

q have
an allocation S ∈ Rm

q that achieves a (1 + ξ)(q − 1)/n-
approximation to the maximum social welfare. Thus,
for at least 1/n fraction of all perfect valuation profiles
v ∈ Vm

q , there is some S ∈ Rm
q such that fS and

fv differ on
(

1 − q−1
n − (q−1)ξ

n

)

m′ or fewer elements of

[m′]. Applying Lemma 4.4, there is a set W of at least
⌈σm⌉ elements of [m′], and a set N ′ of q players in [n],
such that all allocations of W to N ′ occur as restrictions
of allocations in Rm

q . We refer to W as a “shattered”
subset of [m′].

When q < n (Case 1 of our argument) we may
now construct, via a non-uniform polynomial-time re-
duction, an MIWR allocation rule for the q-player prob-
lem that achieves a [(1−ξ2)q]−1 approximation for ⌈σm⌉
items when m ∈ Tq. Using W and N ′ – as defined above
– as advice, embed the instance into an input for A by
using players N ′ and items W in the obvious way: give
player in [n]\N ′ an all-zero valuation. Moreover, extend
the valuation of a player i ∈ N ′ to the entire set of items
[m], assigning zero marginal value to every element of
[m]\W . Now, run A on the embedded instance. Notice
that, since W is shattered by Rm

q with respect to N ′,
every possible allocation of W to N ′ appears as the re-
striction of some allocation in Rm

q , and is therefore in
the range of A with weight at least [(1− ξ2)q]−1. Thus,
A must output a weighted allocation with expected wel-
fare at least [(1− ξ2)q]−1 of the optimal. The result is a
non-uniform poly-time MIWR mechanism for q players
with approximation ratio bounded away from 1/q for all
integers m̂ = ⌈σm⌉ such that m ∈ Tq. By our induction
hypothesis IH(q), this implies that the set of all such m̂
is PCD. The fact that Tq itself is a PCD set now follows
as an easy application of the definition of PCD.

When q = n (Case 2 of our argument) using the
same embedding yields an algorithm for n players that

achieves an α/(1 − δ) approximation for all m̂ = ⌈σm⌉
such that m ∈ Tq. By our definition of α, this implies
that the set of all such m̂ is a PCD set, which again
implies that Tq is a PCD set.

Case 3: The smallest weight class. The re-
maining case is q = n + 1. When m ∈ Tn+1, by our def-
inition of Vm

n+1, at least 1/n fraction of all (extended)
perfect valuation profiles v ∈ Vm have a weighted al-
location (w(S), S) ∈ Dm

n+1 that is an α-approximation
to the social welfare maximizing allocation for v. Since
α ≤ w(S) < α/(1 − δ), the pure allocation S must be a
(1 − δ)-approximation to the social welfare maximizer.
On the other hand, our assumption is that maximizing
social welfare is APX-hard, even for two players; specif-
ically, recall that η > 0 was chosen such that it is NP-
hard to approximate the maximum social welfare within
a factor of 1 − η. We complete the proof by exhibiting
a randomized, non-uniform polynomial time algorithm
that achieves a (1 − η)-approximation for the n-player
problem with m/2 items, for all m ∈ Tn+1. Notice that
the de-randomization argument of Adleman [1] for prov-
ing BPP ⊆ P/Poly can be used to de-randomize this to
a non-uniform deterministic (1 − η)-approximation for
the n-player problem with m/2 items, for all m ∈ Tn+1.
The reader unfamiliar with Adleman’s argument may
refer to Section 4.4, where we use the argument to es-
tablish Theorem 4.1.

We will now use A to get a (1 − η)-approximate
solution for an instance with n players and m′ = m/2
items for all m ∈ Tn+1 . We embed the instance
on n players and m′ items into A in the following
way. Let M1 be [m] \ [m′] and vi : 2M1 → R the
valuation function of player i. We assume without loss
of generality that maxi vi(M1) = 1. Next, we modify
each player’s valuation function by “mixing in” a perfect
valuation profile on the remaining set of items M2 =
[m′]. We draw a perfect valuation profile (v′1, . . . , v

′
n)

on N and M2 uniformly at random. Now, we “mix”
the original valuations v with v′, in proportions 1 and
γ = 4n

ǫm′
, to yield the following hybrid valuation profile

v∗ : 2M → R
+.

v∗i = vi ⊕ γv′i

We abuse notation and use vi [v′i] to refer also to the
zero-extension of vi [v′i] to M . Let OPT , OPT ′, and
OPT ∗ be the optimal social welfare for the valuation
profiles {vi}, {v′} and {v∗}, respectively. Then 1 ≤
OPT ≤ n, and OPT ′ = m′, by construction. Since v
and v′ are defined on two disjoint sets of items, it is easy
to see that OPT ∗ = OPT + γOPT ′. The scalar γ was
carefully chosen so that the following facts hold:

1. The random valuation profile v′ accounts for a ma-
jority share of v∗ in any optimal solution. Specif-
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ically, γOPT ′ ≥ 4
ǫ OPT . This implies that an al-

location that gives a good approximation to OPT ∗

gives a similar approximation to OPT ′. To be more
precise, it can be shown by a simple calculation
that:

Claim 4.2. For any S ∈ X and any β ≥ 0, if
v∗(S) ≥ βOPT ∗ then v′(S) ≥ (β − ǫ/2)OPT ′.

2. The original valuation profile v accounts for a
constant-factor share of v∗ in any optimal solution.
Specifially OPT ≥ ǫ

4n (γOPT ′). This implies that
an allocation that gives (1 − δ)-approximation to
OPT ∗ gives a (1 − O(δ))-approximation to OPT .
To be more precise, it can be shown by a simple
calculation that:

Claim 4.3. For any S ∈ X , if v∗(S) ≥ (1 −
δ)OPT ∗ then v(S) ≥ (1− 5n

ǫ δ)OPT = (1−η)OPT .
(Recall that δ = ǫη/5n.)

We are now ready to show that running A on
the valuations v∗ will yield, with constant probabil-
ity, an allocation that is a (1 − η)-approximation to
the optimal welfare for the original valuations v, when
m ∈ Tn+1. Let (w(S), S) be the weighted alloca-
tion output by A; note that S is a random vari-
able over draws of v′. Since A is an α approxi-
mation algorithm, the welfare w(S)v∗(S) is at least
αOPT ∗ ≥ (1/n + ǫ)OPT ∗ with probability 1. This

implies that v∗(S) ≥
(

1
w(S)·n + ǫ

w(S)

)

OPT ∗. By Claim

4.2, we see that v′(S) is not too far behind: v′(S) ≥
(

1
w(S)·n + ǫ

w(S) − ǫ
2

)

OPT ′. Moreover, this gives:

(4.6) w(S)v′(S) ≥
(

1

n
+

ǫ

2

)

OPT ′

Recall from equation (4.4) that if v′ ∈ Vm
n+1 then for

2 ≤ q ≤ n, there is no S ∈ Rm
q that satisfies (4.6), and

any such S satisfying (4.6) must belong to Dm
n+1. Also,

by our assumption that m ∈ Tn+1, the probability that
v′ ∈ V m

n+1 is at least 1/n.
We have thus established that running A on the

random input v∗ yields, with probability at least 1/n,
an outcome (w(S), S) in Dm

n+1. Using the fact that
w ≤ α/(1 − δ) and w(S)v∗(S) ≥ αOPT , we conclude
that S is (1−δ)-approximate for v∗ also with probability
1/2:

v∗(S) ≥ (1 − δ)OPT ∗

Invoking Claim 4.3, we conclude that v(S) ≥ (1 −
η)OPT with constant probability over draws of v′.
Since w(S) is at least 1/n, S is output by A with
constant probability. This completes the proof.

4.4 De-Randomizing Theorem 4.1 In this sec-
tion, we complete the proof of Theorem 4.1. First, we
make the observation that running a randomized MIWR
algorithm multiple times independently and returning
the best allocation output by any of the runs results in
another randomized MIWR algorithm.

Lemma 4.5. Fix a randomized MIWR algorithm A and
a positive integer r. Let Ar be the algorithm that runs r
independent executions of A on its input, and of the
r allocations returned, outputs the one with greatest
welfare. Ar is also randomized MIWR.

Proof. Condition on D1, . . . ,Dr, the ranges of A on
the r independent executions. A maximizes expected
welfare over Di on execution i. Therefore Ar maximizes
over D1 ∪ · · · ∪ Dr.

Now, we derive Theorem 4.1 from Theorem 4.2,
using a de-randomization argument similar to that of
Adleman [1]. Assume for a contradiction that A is a
randomized MIWR algorithm that runs in polynomial
time and achieves an approximation ratio 1/n + ǫ for
each input m and v1, . . . , vn. Let ℓ denote the number of
bits in the input, and let s(ℓ) be a polynomial bounding
the length of the random string drawn by A. We
will describe a polynomial-time with polynomial-advice
MIWR algorithm that achieves an approximation ratio
of 1/n + ǫ/2, which contradicts Theorem 4.2.

Let r(ℓ) = 2ℓ/ǫ2 and let A′ = Ar(ℓ). By Lemma
4.5, A′ is randomized MIWR, runs in polynomial time,
and draws at most s(ℓ)r(ℓ) random bits. Let Xi be the
fraction of the optimal social welfare achieved by the
allocation output on the i’th run of A. The random
variables X1, . . . , Xr(ℓ) are independent, 0 ≤ Xi ≤ 1,
and E[Xi] ≥ 1/n + ǫ. For each input of length ℓ, the
probability that none of the r(ℓ) runs of A return an
allocation with welfare better than 1/n + ǫ/2 of the
optimal can be bounded from above using Hoeffding’s
inequality:

Pr

[

max
i

Xi ≤
1

n
+

ǫ

2

]

≤ Pr

[

E

(

∑

i

Xi

)

−
∑

i

Xi
ǫr(ℓ)

2

]

≤ e−ǫ2r(ℓ)/2 = e−ℓ.

The number of different inputs of length ℓ is 2ℓ.
Thus, using the union bound and the above inequal-
ity, the probability that A outputs a (1/n + ǫ/2)-
approximate allocation on all inputs of length ℓ is non-
zero. Therefore, for each ℓ there is choice of at most
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s(ℓ)r(ℓ) random bits such that A′ achieves a 1/n + ǫ/2
approximation for all inputs. Using this as the ad-
vice string, this contradicts Theorem 4.2, completing
the proof of Theorem 4.1.

5 Conclusions

We have shown that no polynomial-time maximal-in-
range auction mechanism can approximate the social
welfare to a ratio better than min(n, m1/2−ǫ) by a
constant factor. This essentially resolves the maxi-
mum social welfare achievable by efficient maximal-in-
range auction mechanisms for any class of valuations
including the valuation functions we considered, as a
min(n, 2m1/2) ratio is achievable.

There is an asymmetry as to the strength of the n
and m1/2−ǫ bounds, however, as the n bound eliminates
the possibility of a ratio of n/(1 + ǫ) being achieved,
but the m1/2−ǫ bound leaves open the possibility of
achieving an m1/2−o(1) approximation.

For super-polynomial n, we have demonstrated
similar limits under stronger complexity assumptions,
up to n being sub-exponential in m. We also showed
that for sufficiently large n, a polynomial-time maximal-
in-range auction mechanism exists.

Generalizing to randomized maximal-in-weighted-
range mechanisms, we showed that it is impossible
to achieve an approximation ratio better than n for
any fixed n. In order to achieve these results, we
developed new machinery for the study of the VC
dimension of partitions. This new machinery allows for
the application of a useful generalization of the standard
VC dimension, and is therefore of independent interest.

While this largely resolves the performance
of maximal-in-range and maximal-in-weighted-range
mechanisms, it leaves open the performance of maximal-
in-distributional-range mechanisms, as well as the larger
question of how well truthful mechanisms perform.
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APPROX-RANDOM, volume 4627 of Lecture Notes in
Computer Science, pages 89–103. Springer, 2007.

[15] Shahar Dobzinski and Shaddin Dughmi. On the power
of randomization in algorithmic mechanism design. In
FOCS ’09: Proceedings of the 50th Annual IEEE Sym-
posium on Foundations of Computer Science, Atlanta,
GA, USA, 2009. To appear.

[16] Shahar Dobzinski and Noam Nisan. Limitations of
vcg-based mechanisms. In STOC ’07: Proceedings of
the thirty-ninth annual ACM symposium on Theory of
computing, pages 338–344, New York, NY, USA, 2007.
ACM.

[17] Shahar Dobzinski, Noam Nisan, and Michael Schapira.
Approximation algorithms for combinatorial auctions
with complement-free bidders. In STOC ’05: Proceed-
ings of the thirty-seventh annual ACM symposium on
Theory of computing, pages 610–618, New York, NY,
USA, 2005. ACM.

[18] Shahar Dobzinski, Noam Nisan, and Michael Schapira.
Truthful randomized mechanisms for combinatorial
auctions. In STOC ’06: Proceedings of the thirty-

532 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



eighth annual ACM symposium on Theory of comput-
ing, pages 644–652, New York, NY, USA, 2006. ACM.

[19] Shahar Dobzinski and Michael Schapira. An improved
approximation algorithm for combinatorial auctions
with submodular bidders. In SODA ’06: Proceedings
of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pages 1064–1073, New York, NY,
USA, 2006. ACM.

[20] Shahar Dobzinski and Mukund Sundararajan. On
characterizations of truthful mechanisms for combina-
torial auctions and scheduling. In EC ’08: Proceedings
of the 9th ACM conference on Electronic commerce,
pages 38–47, New York, NY, USA, 2008. ACM.

[21] Uriel Feige. On maximizing welfare when utility
functions are subadditive. In STOC ’06: Proceedings
of the thirty-eighth annual ACM symposium on Theory
of computing, pages 41–50, New York, NY, USA, 2006.
ACM.

[22] Uriel Feige and Jan Vondrak. Approximation algo-
rithms for allocation problems: Improving the factor
of 1 - 1/e. In FOCS ’06: Proceedings of the 47th An-
nual IEEE Symposium on Foundations of Computer
Science, pages 667–676, Washington, DC, USA, 2006.
IEEE Computer Society.

[23] T. Groves. Incentives in teams. Econometrica, pages
617–631, 1973.

[24] Ron Holzman, Noa Kfir-Dahav, Dov Monderer, and
Moshe Tennenholtz. Bundling equilibrium in combina-
trial auctions. Games and Economic Behavior, 47:104–
123, 2004.

[25] Eyal Kushilevitz and Noam Nisan. Communication
Complexity. Cambridge University Press, 1997.

[26] Ron Lavi, Ahuva Mu’alem, and Noam Nisan. Towards
a characterization of truthful combinatorial auctions.
In FOCS ’03: Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, page
574, Washington, DC, USA, 2003. IEEE Computer
Society.

[27] Benny Lehmann, Daniel Lehmann, and Noam Nisan.
Combinatorial auctions with decreasing marginal utili-
ties. Games and Economic Behaviour. (A preliminary
version appeared in EC’01), 55(2):270–296, 2006.

[28] Daniel Lehmann, Liadan Ita O’Callaghan, and Yoav
Shoham. Truth revelation in approximately efficient
combinatorial auctions. In JACM 49(5), pages 577–
602, Sept. 2002.

[29] Shahar Mendelson and Roman Vershynin. Entropy,
combinatorial dimensions and random averages. In
Jyrki Kivinen and Robert H. Sloan, editors, COLT,
volume 2375 of Lecture Notes in Computer Science,
pages 14–28. Springer, 2002.

[30] Noam Nisan and Amir Ronen. Computationally fea-
sible vcg-based mechanisms. In ACM Conference on
Electronic Commerce, 2000.

[31] Noam Nisan and Amir Ronen. Algorithmic mechanism
design. Games and Economic Behaviour, 35:166 – 196,
2001. A preliminary version appeared in STOC 1999.

[32] Noam Nisan and Amir Ronen. Computationally feasi-

ble VCG-based mechanisms. Journal of Artificial In-
telligence Research, 29:19–47, 2007. A preliminary ver-
sion appeared in EC 2000.

[33] Noam Nisan and Ilya Segal. The communication
requirements of e? cient allocations and supporting
prices. Journal of Economic Theory, 129:192–224,
2006.

[34] Christos Papadimitriou, Michael Schapira, and Yaron
Singer. On the hardness of being truthful. In FOCS
’08: Proceedings of the 49th Annual IEEE Symposium
on Foundations of Computer Science, Philadelphia,
PA, USA, 2008. IEEE Computer Society.

[35] Kevin Roberts. The characterization of implementable
choice rules. In Jean-Jacques Laffont, editor, Aggrega-
tion and Revelation of Preferences. Papers presented at
the 1st European Summer Workshop of the Economet-
ric Society, pages 321–349. North-Holland, 1979.

[36] Tim Roughgarden. An algorithmic game theory
primer. In Proceedings of the 5th IFIP International
Conference on Theoretical Computer Science (TCS).
An invited survey., 2008.

[37] Norbert Sauer. On the density of families of sets. J.
Comb. Theory, Ser. A, 13(1):145–147, 1972.

[38] Michael Schapira and Yaron Singer. Inapproximability
of combinatorial public projects. In WINE, 2008.

[39] Saharon Shelah. A combinatorial problem; stability
and order for models and theories in infinitary lan-
guages. Pacific J Math, 41:247–261, 1972.

[40] W. Vickrey. Counterspeculation, auctions and compet-
itive sealed tenders. Journal of Finance, pages 8–37,
1961.
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A Shattering Results

We first formally define the notion of “shattering” in a
more general setting.

Definition A.1. For any sets U, V we interpret the
notation V U to mean the set of functions from U to V .
If R ⊆ V U , S ⊆ U, L ⊆ V , we say that S is (L, q)-
shattered by R, for an integer q, 2 ≤ q ≤ |L|, if there
exist q functions c1, c2, . . . , cq : S → L that satisfy:

1. ∀x ∈ S ∀i 6= j ci(x) 6= cj(x)

2. ∀h ∈ [q]S ∃f ∈ R ∀x ∈ S f(x) = ch(x)(x)

Intuitively, we associate with each element in S a
range in L of size exactly q, and we say that S is (L, q)-
shattered by R if every function that maps each element
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in S to its associated range is a restriction of an element
in R. In the context of combinatorial auctions, we see
U as the set of items, and V as the set of bidders,
plus a dummy bidder representing not allocating the
item. Then set of functions V U is the set of all possible
allocations.

The following observation bridges this notion of
shattering to its application to the combinatorial auc-
tions in the paper.

Observation A.1. If a subset S of size δm is (L, q)-
shattered by R ⊆ V U , then there exists a subset L′ ⊆ L
and S′ ⊆ S, such that |L′| = q, |S′| ≥ |S|/

(

|L|
q

)

and S′

is (L′, q)-shattered by R.

The observation is easily seen by the pigeon-
hole principle. Note that by the definition of (L, q)-
shattering, if |L′| = q, then we have that every function
from S′ to L′ is a restriction of an element in R. In the
context of combinatorial auctions, this means that all
possible allocations of items in S′ to the q bidders in L′

are in the range R under restriction. It is this form of
“strong” shattering that is in use in the main body of
the paper. In the following lemmas, we will show the
existence of large (L, q)-shattered sets, being aware that
an application of the above observation implies a sub-
set being “strongly” shattered, of size only a constant
factor smaller.

Lemma A.1. For all integers n ≥ q ≥ 2, and every real
number ǫ > 0, there is a δ > 0 such that the following
holds. For every pair of finite sets M, N with |N | = n
and every set R of more than (q − 1 + ǫ)|M| elements
of NM , there is a set S of at least δ|M | elements of M
such that S is (V, q)-shattered by R.

Proof. Let Fq(m, n, d) denote the maximum cardinality
of a set R ⊆ AB such that |A| = n, |B| = m, and R
does not (A, q)-shatter any (d+1)-element subset of B.

Fix an element b ∈ B. For each element f ∈ R, let
f−b denote the restriction of f to the set B\{b}. Take
the set of all functions g : B\{b} → A and partition
it into sets Q0, Q1, · · · , Q(n

q)
as follows. First, given an

ordered pair (g, a) consisting of a function g from B\{b}
to A and an element a ∈ A, let g ∗ a denote the unique
function f from B to A that maps b to a and restricts
to g on B\{b}. Now define S(g) to be the set of all
a ∈ A such that g ∗ a is in R. Number all the q-element
subsets of A from 1 to

(

n
q

)

, call them P1, P2, · · · , P(n
q)

,

and let Qi (1 ≤ i ≤
(

n
q

)

) consist of all g such that S(g)
has at least q elements, and the q smallest elements of
S(g) constitute Pi. Finally let Q0 consist of all g such
that S(g) has fewer than q elements.

By our assumption that R does not (A, q)-shatter
any set of size greater than d, we have the following
facts:

1. Q0 does not (A, q)-shatter any (d + 1)-element
subset of B \ {b}. Consequently,

|Q0| ≤ F (m − 1, n, d).

2. For all i ≤
(

n
q

)

, Qi does not (A, q)-shatter any d-

element subset of B \ {b}. Consequently,

|Qi| ≤ Fq(m − 1, n, d − 1).

Let Ri denote the set of all f ∈ R such that f−b is
in Qi, for 0 ≤ i ≤

(

n
q

)

, then by definition of Qi, we have

|R0| ≤ (q − 1)|Q0|, and |Ri| ≤ n|Qi| for i ≤ 1. Since
Ri’s are disjoint, we have

|R| =

(n
q)
∑

i=0

|Ri| ≤ (q − 1)|Q0| +
(n

q)
∑

i=1

n|Qi|,

(A.1) Fq(m, n, d) ≤

(q − 1)Fq(m − 1, n, d) + n

(

n

q

)

Fq(m − 1, n, d − 1)

The recurrence (A.1), together with the initial
condition Fq(m, n, 0) = (q − 1)m for all m, n, implies
the upper bound

Fq(m, n, d) ≤
d
∑

i=0

ni

(

n

q

)i(
m

i

)

(q − 1)m

Thus, if Fq(m, n, d) > (q − 1 + ǫ)m then, by using
Stirling’s approximation, we see that d > δm for some
δ depending only on ǫ and n.

In Section 4 of the paper, we made use of the
fact that a range of allocations shatters a large subset
if they generate good social welfare for many perfect
valuations. The condition is captured by the following
definition:

Definition A.2. For two functions f, g ∈ NM , their
normalized Hamming distance Ham(f, g) is equal to

1
|M| times the number of distinct x ∈ M such that

f(x) 6= g(x). If f ∈ NM and R ⊆ NM , the Hamming
distance Ham(f, R) is the minimum of Ham(f, g) for all
g ∈ R.
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As each perfect valuation can be seen as a function f
in NM , and each allocation can be viewed as a g ∈ NM ,
Ham(f, g) is how much social welfare is lost by g on
the perfect valuation f . In the same way, R can be
viewed as a range of allocations, and Ham(f, R) is the
minimum social welfare lost by any of the allocation
in R on valuation f . If Ham(f, R) is small for a large
fraction of f ∈ NM , it means the range achieves a good
approximation of social welfare for a significant portion
of the perfect valuations.

We also note that since N can represent the set of
bidders plus a dummy bidder representing not allocating
an item, NM can express all allocations including those
not allocating all items. On the other hand, if we
restrict the functions so that they can take values only
in a subset L representing the real bidders, then they
represent allocations that do not discard items. This
explains the role played by the set L in the next lemma.

Lemma A.2. For every real number ǫ > 0, every
function γ(n) bounded below by 1/ poly(n), and all
integers n ≥ q ≥ 2, there is a δ > 0 such that the
following holds. For all finite sets M, N and all subsets
L ⊆ N with |L| = n, if R ⊆ NM and at least γ(n)n|U|

points f ∈ LU satisfy Ham(f, R) < 1 − (q − 1)/n − ǫ,
then there is a set S ⊆ M such that |S| > δ|M | and S
is (L, q)-shattered by R.

Proof. The proof parallels the counting argument in
Section 3.1. Let m = |M |, r = 1−(q−1)/n−ǫ. Let A be
the set of all f ∈ LM such that Ham(f, R) < r. Let G be
a function from A to R such that Ham(f, G(f)) < r for
all f ∈ A. Let I(f) denote the set of all x ∈ M such that
f(x) = G(f)(x). Our assumption that Ham(f, G(f)) <
r implies that |I(f)| ≥ ( q−1

n + ǫ)m. The number of
pairs (f, J) such that f ∈ A, |J | = ǫm/2, J ⊆ I(f) is

bounded below by γ(n)nm ·
(

(1/n+ǫ)m
ǫm/2

)

. Henceforth we

abbreviate γ(n) as γ for convenience. By the pigeonhole
principle, there is at least one set J of ǫm/2 elements
such that the number of f ∈ LU satisfying J ⊆ I(f) is
at least

γnm ·
(

( q−1
n + ǫ)m

ǫm/2

)/(

m

ǫm/2

)

= γnm (( q−1
n + ǫ)m)! ((1 − ǫ/2)m)!

(( q−1
n + ǫ/2)m)! m!

> γnm · ( q−1
n + ǫ)m

m
· ( q−1

n + ǫ)m − 1

m − 1
· · · ( q−1

n + ǫ/2)m

(1 − ǫ/2)m

> γnm

(

q−1
n + ǫ/2

1 − ǫ/2

)ǫm/2

.

Fix such a set J . For every f ∈ LM satisfying J ⊆ I(f),
the restriction of f to J is an element g ∈ LJ ; note that

g is also the restriction of G(f) to J . For any single
g ∈ LJ , the number of f ∈ LM that restrict to g is
bounded above by nm−ǫm/2. Applying the pigeonhole
principle again, we see that the number of distinct
g ∈ LJ that occur as the restriction of some f ∈ A
satisfying J ⊆ I(f) must be at least

γnm

(

q−1
n + ǫ/2

1 − ǫ/2

)ǫm/2/

nm−ǫm/2

= γ

(

q − 1 + ǫn/2

1 − ǫ/2

)ǫm/2

.

We now have the following situation. There is a set J of
ǫm/2 elements, and at least γ ·(q−1+ǫn/2)|J| elements
of LJ occur as the restriction of an element of R to J .
It follows from Lemma A.1 that J has a subset of S of
at least δm elements such that S is (L, q)-shattered by
R.

Proof of Lemma 4.4: Combining Lemma A.1,
Lemma A.2 and Observation A.1, we immediately get
Lemma 4.4. �

B Omitted Proofs from Section 4.1

Proof of Lemma 4.1:
Suppose S1, . . . , Sk are CD sets, with circuit fami-

lies {C(i)
n } (1 ≤ i ≤ k) such that C(i)

n has size bounded
by a polynomial qi(n) and decides 3sat correctly on
all instances of size n ∈ Si. Let q(n) be a polynomial
satisfying q(n) ≥ max1≤i≤k qi(n) for all n ∈ N. We can
obtain a family of circuits {Cn} of size bounded by q(n),

by defining Cn to be equal to C(i)
n if n belongs to Si but

not to S1, . . . , Si−1, and defining Cn to be arbitrary if
n 6∈ S1 ∪ · · · ∪Sk. Then Cn decides 3sat correctly on all
instances of size n ∈ S1 ∪ · · · ∪ Sk, as desired.

If S1, . . . , Sk are CD sets, p1, . . . , pk are polyno-
mials, and for 1 ≤ i ≤ k we have a PCD set Ti ⊆
⋃

n∈Si
[n, pi(n)], then we may take p(n) to be any poly-

nomial satisfying p(n) ≥ max1≤i≤k pi(n) for all n ∈ N,
and we may take S to be the set S1 ∪ · · · ∪ Sk. Then
we find that the set T = T1 ∪ · · · ∪ Tk is contained in
⋃

n∈S [n, p(n)]. This implies that T is PCD, because S
is CD. �

Proof of Lemma 4.2: By our assumption that L is NP-
hard under polynomial-time many-one reductions, there
is such a reduction from 3sat to L. Since the running
time of the reduction is bounded by a polynomial p(n),
we know that it transforms a 3sat instance of size n into
an L instance of size at most p(n). Assume without loss
of generality that p(n) is an increasing function of n.

Let S be the set of all n such that {p(n)+ 1, p(n)+
2, . . . , p(n + 1)} intersects T . The set S is complexity-
defying, because for any n ∈ S we can construct
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a polynomial-sized circuit that correctly decides 3sat
instances of size n, as follows. First, we take the
given 3sat instance and apply the reduction from the
preceding paragraph to transform it into an L instance
of size at most p(n). Then, letting m be any element
of T ∩ {p(n) + 1, . . . , p(n + 1)}, we apply the padding
reduction to transform this L instance into another L
instance of size m. Finally, we solve this instance using
a circuit of size poly(m) that correctly decides L on
all instances of size m; such a circuit exists by our
assumption on T .

For every m ∈ T there is an n ∈ N such that
p(n) < m ≤ p(n + 1), and this n belongs to S. Thus,
T ⊆ ⋃n∈S [n, p(n+1)], and this confirms that T is PCD.
�

Proof of Lemma 4.3: Suppose that

(B.2) N ⊆
⋃

n∈S

[n, p(n)]

for some complexity-defying set S and polynomial func-
tion p(n). We may assume without loss of general-
ity that p(n) is an increasing function of n and that
p(n) ≥ n for all n.

Suppose that {Cn} is a polynomial-sized circuit
family that correctly decides 3sat whenever the input
size is in S. We will construct a polynomial-sized
circuit family that correctly decides 3sat on all inputs.
The construction is as follows: given an input size m,
using (B.2) we may find a natural number n such that
n ≤ p(m) ≤ p(n). Since p is an increasing function, we
know that n ≥ m. Given an instance of 3sat of size
m, we first adjoin irrelevant clauses that don’t affect
its satisfiability — e.g. the clause (x ∨ x) — until the
input size is increased to n. This transformation can
be done by a circuit of size poly(m), since n ≤ p(m).
Then we solve the new 3sat instance using the circuit
Cn. By our assumption on S, this correctly decides the
original 3sat instance of size m. As m was arbitrary,
this establishes that NP ⊆ P/ poly, as desired. �
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