Connecting Automatic Generation Control and Economic Dispatch from an Optimization View
Na Li, Changhong Zhao and Lijun Chen

Abstract—Automatic generation control (AGC) regulates mechanical power generation in response to load changes through local measurements. Its main objective is to maintain system frequency and keep energy balanced within each control area so as to maintain the scheduled net interchanges between control areas. The scheduled interchanges as well as some other factors of AGC are determined at a slower time scale by considering a centralized economic dispatch (ED) problem among different generators. However, how to make AGC more economically efficient is less studied. In this paper, we study the connections between AGC and ED by reverse engineering AGC from an optimization view, and then we propose a distributed approach to slightly modify the conventional AGC to improve its economic efficiency by incorporating ED into the AGC automatically and dynamically.

I. INTRODUCTION

An interconnected electricity system can be described as a collection of subsystems, each of which is called a control area. Within each control area the mechanical power input to the synchronous generators is automatically regulated by automatic generation control (AGC). AGC uses the local control signals, deviations in frequency and net power interchanges between the neighboring areas, to invoke appropriate valve actions of generators in response to load changes. The main objectives of the conventional AGC is to (i) maintain system nominal frequency, and (ii) let each area absorbs its own load changes so as to maintain the scheduled net interchanges between control areas [2], [3]. The scheduled interchanges between control areas, as well as the participation factors of each generator unit within each control area, are determined at a much slower time scale than the AGC by generating companies considering a centralized economic dispatch (ED) problem among different generators.

Since the traditional loads (which are mainly passive) change slowly and are predictable with high accuracy, the conventional AGC does not incur much efficiency loss by following the schedule made by the slower time scale ED after the load changes. However due to the proliferation of renewable energy resources as well as demand response in the future power grid, the aggregate net loads, e.g., traditional passive loads plus electric vehicle loads minus renewable generations, can fluctuate fast and by a large amount. Therefore the conventional AGC can become much less economically efficient. We thus propose a novel modification of the conventional AGC to automatically (i) maintain nominal frequency and (ii) reach optimal power dispatch between generator units among all the control areas while balancing supply and demand within the whole interconnected electricity system to achieve economic efficiency. We call this modified AGC the economic AGC. We further develop a hybrid of the conventional AGC and the economic AGC where the power interchanges among certain control areas are maintained at the nominal value but the power is dispatched optimally to different generator units within each control area. The purpose of this hybrid AGC is to prevent disturbance propagating between control areas which might lead to a system-wide blackout. Note that in the hybrid AGC we allow flexibility of choosing where the power interchanges should be maintained.

In order to keep the modification minimal and also to keep the decentralized structure of AGC, we take a reverse and forward engineering approach to develop the economic AGC.1 We first reverse-engineer the conventional AGC by showing that the power system dynamics with the conventional AGC can be interpreted as a partial primal-dual gradient algorithm to solve a certain optimization problem. We then engineer the optimization problem to include general generation costs and general power flow balance (which will guarantee supply-demand balance within the whole interconnected electricity system), and propose a distributed generation control scheme that is integrated into the AGC. The engineered optimization problem shares the same optima as the ED problem, and thus the resulting distributed control scheme incorporates ED into AGC automatically. Combined with [4] on distributed load control, this work lends the promise to develop a modeling framework and solution approach for systematic design of distributed, low-complexity generation and load control to achieve system-wide efficiency and robustness.

A. Literature Review

There has been a large amount of work on AGC in the last few decades, including, e.g., stability and optimum parameter setting [5], optimal or adaptive controller design [6]–[8], decentralized control [9], [10], and multilevel or multi timescale control [11], [12]; see also [3] and the references

1A similar approach has been used to design a decentralized optimal load control in our previous work [4].
therein for a thorough and up-to-date review on AGC. Most of these work focuses on improving the control performance of AGC, such as stability and transient dynamics, but not on improving the economic efficiency. References [13], [14] introduce approaches for AGC that also support an ED feature which operates at a slower time scale and interacts with AGC frequency stabilization function. For instance, reference [14] brings in the notion of minimal regulation which reschedules the entire system generation and minimizes generation cost with respect to system-wide performance. Our work aims to improve the economic efficiency of AGC in response to the load changes as well; the difference is that instead of using different hierarchical control to improve AGC, we incorporate ED automatically and dynamically into AGC. Moreover, our controller is a decentralized and closed-loop one, where each control area updates its generation based only on measurements of local physical variables that are easy to measure and information of local auxiliary variables that are easy to compute and communicate with neighboring areas. This means that the controller does not need any information of the system disturbance which is the change of the net loads in this paper.

Recently, there is a increasing interest to study frequency control from the same perspective of this work, i.e., to bridge the gap between different layers of hierarchical control, especially the dynamical control and optimal dispatch. An incomplete list includes [15]–[23]. One main difference between our work and the others is that we focus on AGC and model the built-in control mechanisms explicitly, i.e., the turbine-governor control and ACE-based control. Our objective is not only to design distributed algorithms to improve the economic efficiency of AGC, but also to keep the modification as minor as possible in order to facilitate the implementation of the new control algorithms. The reverse and forward engineering approach adopted in this paper allows us to maximally take into account the existing system dynamics and built-in control mechanisms. As a result, the economic (or hybrid) AGC only requires minor modifications that are implementable via introducing new local auxiliary variables which are easy to compute.

The paper is organized as follows. Section II introduces a dynamic power network model with AGC, the ED problem, and the objective of the economic AGC. Section III reverse-engineers the conventional AGC, Section IV provides an economic AGC scheme based on the insight obtained by the reverse engineering, and Section V provide a hybrid of the conventional AGC and economic AGC. Lastly, Section VI simulates and compares the conventional AGC, the economic AGC, and the hybrid AGC.

II. SYSTEM MODEL

A. Dynamic network model with AGC

Consider a power transmission network, denoted by a graph \((N,E)\), with a set \(N = \{1, \cdots, n\}\) of buses and a set \(E \subset N \times N\) of transmission lines connecting the buses. Here each bus may denote an aggregated bus or a control area. We make the following assumptions:

- The lines \((i,j) \in E\) are lossless and characterized by their reactance \(x_{ij}\);
- The voltage magnitudes \(|V_i|\) of buses \(i \in N\) are constants;
- Reactive power injections at the buses and reactive power flows on the lines are ignored.

We assume that \((N,E)\) is connected and directed, with an arbitrary orientation such that if \((i,j) \in E\), then \((j,i) \notin E\). We use \(i : i \rightarrow j\) and \(k : j \rightarrow k\) respectively to denote the set of buses \(i\) such that \((i,j) \in E\) and the set of buses \(j\) such that \((j,k) \in E\). We study generation control when there is a step change in net loads from their nominal (operating) points, which may result from a change in demand or in non-dispatchable renewable generation. To simplify notation, all the variables in this paper represent deviations from their nominal (operating) values. Note that in practice those nominal values are usually determined by the last ED problem, which will be introduced later.

Frequency Dynamics: For each bus \(j\), let \(\omega_j\) denote the frequency, \(P_j^M\) the mechanical power input, and \(P_j^L\) the total load. For a link \((i,j)\), let \(P_{ij}\) denote the transmitted power form bus \(i\) to bus \(j\). The frequency dynamics at bus \(j\) is given by the swing equation:

\[
\dot{\omega}_j = -\frac{1}{M_j} \left(D_j \omega_j - P_j^M - P_j^L + \sum_{k:j \rightarrow k} P_{jk} - \sum_{i:j \rightarrow i} P_{ij} \right),
\]

where \(M_j\) is the generator inertia and \(D_j\) is the damping constant at bus \(j\).

Branch Flow Dynamics: Assume that the frequency deviation \(\omega_j\) is small for each bus \(j \in N\). Then the deviations \(P_{ij}\) from the nominal branch flows follow the dynamics:

\[
\dot{P}_{ij} = B_{ij}(\omega_i - \omega_j),
\]

where

\[
B_{ij} := \frac{|V_i||V_j|}{x_{ij}} \cos(\theta_i^0 - \theta_j^0)
\]

is a constant determined by the nominal bus voltages and the line reactance. Here \(\theta_i^0\) is the nominal voltage phase angle of bus \(i \in N\). The detailed derivation is given in [4].

Turbine-Governor Control: For each generator, we consider a governor-turbine control model, where a speed governor senses a speed deviation and/or a power change command and converts it into appropriate valve action, and then a turbine converts the change in the valve position into the change in mechanical power output. The governor-turbine control is usually modeled as a two-state dynamic system. One state corresponds to the speed governor and the other state corresponds to the turbine. Since the time constant of the governor is much smaller than the turbine for most systems, we simplify the governor-turbine control model from two states to a single state \(P_j^M\):

\[
\dot{P}_j^M = -\frac{1}{T_j} \left(P_j^M - P_j^C + \frac{1}{R_j} \omega_j \right),
\]
where \(P_C^j \) is the power change command and \(T_j \) and \(R_j \) are constant parameters. See [2] for a detailed introduction of governor-turbine control.

ACE-based control: In the conventional AGC, power change command \(P_C^j \) is adjusted automatically by the tie-line bias control which drives the area control errors (ACEs) to zero. For a bus \(j \), the ACE is defined as:

\[
ACE_j = B_j \omega_j + \sum_{k:j \rightarrow k} P_{jk} - \sum_{i:i \rightarrow j} P_{ij}.
\]

The adjustment of power change command is given as follows:

\[
\dot{P}_C^j = -K_j \left(B_j \omega_j + \sum_{k:j \rightarrow k} P_{jk} - \sum_{i:i \rightarrow j} P_{ij} \right), \tag{4}
\]

where both \(B_j \) and \(K_j \) are positive constant parameters. In this paper, we also call this AGC the ACE-based AGC.

In summary, the dynamic model with power control over a transmission network is given by equations (1)-(4). If the system is stable given certain load changes, then by simple analysis we can show that the ACE-based AGC drives the system to a new steady state where the load change in each control area is absorbed within each area, i.e., \(P_{jM}^j = P_{jI}^j \) for all \(j \in \mathcal{N} \), and the frequency is returned to the nominal value, i.e., \(\omega_j = 0 \) for all \(j \in \mathcal{N} \); as shown in Proposition 1 in Section III. Notice that the ACE-based AGC has a decentralized structure, namely that it only uses local control signals, i.e., deviations in frequency and the net power interchanges with the neighboring buses.

B. Economic dispatch (ED)

Due to the proliferation of renewable energy resources such as solar and wind in the future power grid, the aggregate net loads will fluctuate much faster and by large amounts. The ACE-based AGC that requires each control area to absorb its own load changes may be economically inefficient. Therefore, we proposed to modify the ACE-based AGC to (i) maintain the nominal frequency and (ii) drive the mechanical power output \(P_j^M, j \in \mathcal{N} \) to the optimum of the following ED problem:

\[
\begin{align*}
\min & \sum_{j \in \mathcal{N}} C_j(P_j^M) \tag{5a} \\
\text{s.t.} & \sum_{j \in \mathcal{N}} P_j^M = \sum_{j \in \mathcal{N}} P_j^L \tag{5b} \\
\text{over} & P_j^M, j \in \mathcal{N}
\end{align*}
\]

where each generator at \(j \) incurs certain cost \(C_j(P_j^M) \) when its power generation is \(P_j^M \). Equation (5b) imposes power balanced within the global system. The cost function \(C_j(\cdot) \) is assumed to be continuous, differentiable and convex. In the rest of this paper, we call this modified AGC as the economic AGC and we will show how to reverse and forward engineer the ACE-based AGC to design an economic AGC scheme.

Remark In the conventional ACE-based AGC, if a control area \(j \) has multiple generator units, the generation change \(P_j^C \) in (4) is allocated by a central regulator (e.g., the ISO) to individual generator units via participation factors. The participation factors are inversely proportional to the units’ incremental cost of production which are determined by the last ED performed. See [24] for detailed description. Thus if the net loads fluctuate fast and dramatically due to the large penetration of renewable energy, this centralized allocation plan by using constant participation factors also becomes economically inefficient. The results developed in this paper can also be applied to improve the economic efficiency of the generation control for each unit within one area and the allocation is done in a distributed way as shown in Section V of the hybrid AGC. In fact, a system operator can apply our results to the generation control at different levels of the power system, e.g., different control areas, different generators within one area, etc, according to the practical requirements of the system. For the simplicity of illustration, at the beginning we do not specify the level of the generation control that we study. We will focus on the abstract model in (1)-(4) and treat each bus \(j \) as a generator bus.

III. REVERSE ENGINEERING OF ACE-BASED AGC

In this section, we reverse-engineer the dynamic model with the ACE-based AGC (1)-(4). We show that the equilibrium points of (1)-(4) are the optima of a properly defined optimization problem and furthermore the dynamics (1)-(4) can be interpreted as a partial primal-dual gradient algorithm to solve this optimization problem. The reverse-engineering suggests a way to modify the ACE-based AGC to incorporate ED into the AGC scheme.

We first characterize the equilibrium points of the power system dynamics with AGC (1)-(4). Let \(\omega = \{\omega_j, j \in \mathcal{N}\} \), \(P^M = \{P_{jM}^j, j \in \mathcal{N}\} \), \(P^C = \{P_{jC}^j, j \in \mathcal{N}\} \), and \(P = \{P_{ij}, (i,j) \in \mathcal{E}\} \).

Proposition 1. \((\omega, P^M, P^C, P)\) is an equilibrium point of the system (1)-(4) if and only if \(\omega_j = 0 \), \(P^C = P_j^M = P_j^L \), and \(\sum_{i:i \rightarrow j} P_{ij} = \sum_{k:j \rightarrow k} P_{jk} \) for all \(j \in \mathcal{N} \).

Proof. At a fixed point,

\[
\dot{P}_{ij} = B_{ij}(\omega_i - \omega_j) = 0.
\]

Therefore \(\omega_i = \omega_j \) for all \(i,j \in \mathcal{N} \), given that the transmission network is connected. Moreover,

\[
ACE_j = B_j \omega_j + \sum_{k:j \rightarrow k} P_{jk} - \sum_{i:i \rightarrow j} P_{ij} = 0.
\]

Thus \(\sum_{j \in \mathcal{N}} ACE_j = \sum_{j \in \mathcal{N}} B_j \omega_j = \omega_j \sum_{j \in \mathcal{N}} B_j = 0 \), so \(\omega_j = 0 \) for all \(j \in \mathcal{N} \). The rest of the proof is straightforward. We omit it due to space limit.

Consider the following optimization problem:

\[
\text{OGC-1}
\]
\begin{align}
\min \sum_{j \in \mathcal{N}} C_j(P_j^M) + \sum_{j \in \mathcal{N}} \frac{D_j}{2} |\omega_j|^2 & \quad (6a) \\
\text{s.t. } P_j^M &= P_j^L + D_j \omega_j + \sum_{k:j \to k} P_{jk} - \sum_{i:i \to j} P_{ij} & \quad (6b) \\
P_j^L &= P_j^L & \quad (6c)
\end{align}

where (6c) requires that each control area absorbs its own load changes. The following result is straightforward.

Lemma 2. \((\omega^*, P_j^M, P_j^M)\) is an optimum of OGC-1 if and only if \(\omega_j^* = 0\), \(P_j^M = P_j^L\), and \(\sum_{k:j \to k} P_{jk}^* = \sum_{i:i \to j} P_{ij}^*\) for all \(j \in \mathcal{N}\).

Proof. First, the constraints (6b,6c) imply that \(D_j \omega_j + \sum_{k:j \to k} P_{jk}^* = \sum_{i:i \to j} P_{ij}^*\) for all \(j \in \mathcal{N}\). Then we can use contradiction to prove that \(\omega_j^* = 0\) for all \((i,j) \in \mathcal{E}\). By following similar arguments in Proposition 1, we can prove the statement in the lemma.

Note that problem OGC-1 appears simple, as we can easily identify its optima if we know all the information on the objective function and the constraints. However, in practice these information is unknown. Moreover, even if we know an optimum, we cannot just set the system to the optimum. As the power network is a physical system, we have to find a way that respects the power system dynamics to steer the system to the optimum. Though the cost function \(C_j(P_j^M)\) does not play any role in determining the optimum of OGC-1, it will become clear later that the choice of the cost function does have important implication to the algorithm design and the system dynamics.

We now show that the dynamic system (1)-(4) is actually a partial primal-dual gradient algorithm for solving OGC-1 with \(C_j(P_j^M) = \frac{\beta_j}{2} (P_j^M)^2\) where \(\beta_j > 0\):

Introducing Lagrangian multipliers \(\lambda_j\) and \(\mu_j\) for the constraints in OGC-1, we obtain the following Lagrangian function:

\begin{align}
L &= \sum_{j \in \mathcal{N}} \frac{\beta_j}{2} (P_j^M)^2 + \sum_{j \in \mathcal{N}} \frac{D_j}{2} |\omega_j|^2 \\
+ & \sum_{j \in \mathcal{N}} \lambda_j \left(P_j^M - P_j^L - D_j \omega_j - \sum_{k:j \to k} P_{jk} + \sum_{i:i \to j} P_{ij} \right) \\
+ & \sum_{j \in \mathcal{N}} \mu_j \left(P_j^M - P_j^L \right).
\end{align}

(7)

Based on the above Lagrangian function, we can write down a partial primal-dual subgradient algorithm of OGC-1 as follows:

\begin{align}
\omega_j &= \lambda_j & \quad (8a) \\
\dot{\lambda}_j &= \epsilon_{\lambda_j} (P_j^M - P_j^L) & \quad (8b) \\
\dot{\lambda}_j &= \epsilon_{\lambda_j} (\beta_j P_j^M + \lambda_j + \mu_j) & \quad (8c) \\
\dot{\lambda}_j &= \epsilon_{\lambda_j} \left(P_j^M - P_j^L - D_j \omega_j - \sum_{k:j \to k} P_{jk} + \sum_{i:i \to j} P_{ij} \right) & \quad (8d)
\end{align}

\(\epsilon_{\lambda_j}, \epsilon_{\lambda_j}, \epsilon_{\lambda_j}\) and \(\epsilon_{\lambda_j}\) are positive stepsizes. Note that equation (8a) solves \(\max_{\omega_j} \frac{D_j}{2} \omega_j^2 - \lambda_j D_j \omega_j\) rather than follows the primal gradient algorithm with respect to \(\omega_j\); hence the algorithm (8) is called the “partial” primal-dual gradient algorithm. See the Appendix for a description of the general form of partial primal-dual gradient algorithm and its convergence.

Let \(\epsilon_{\lambda_j} = \frac{1}{\lambda_j}\) for all \(j \in \mathcal{N}\). By applying linear transformation from \((\lambda_j, \mu_j)\) to \((\omega_j, P_j^C)\):

\[\omega_j = \lambda_j, \quad P_j^C = K_j M_j \left(\lambda_j - \frac{1}{\epsilon_{\lambda_j} M_j} \mu_j \right),\]

the partial primal-dual gradient algorithm (8) becomes:

\begin{align}
\dot{\omega}_j &= -\frac{1}{M_j} \left(D_j \omega_j - P_j^C - P_j^L + \sum_{k:j \to k} P_{jk} - \sum_{i:i \to j} P_{ij} \right) & \quad (9a) \\
\dot{P}_j &= \epsilon_{P_j} (\omega_i - \omega_j) & \quad (9b) \\
\dot{P}_j &= -\epsilon_{P_j} \beta_j \left(P_j^M - \frac{\epsilon_{\lambda_j}}{K_j \beta_j} P_j^C + \frac{1 + \epsilon_{\lambda_j} M_j}{\beta_j} \omega_j \right) & \quad (9c) \\
\dot{P}_j &= -K_j \left(D_j \omega_j + \sum_{k:j \to k} P_{jk} - \sum_{i:i \to j} P_{ij} \right). & \quad (9d)
\end{align}

If we set \(\epsilon_{P_j} = B_j, \epsilon_{\lambda_j} = \frac{R_j K_j}{1 - R_j K_j M_j}, \beta_j = \frac{R_j}{1 - R_j K_j M_j}, \) and \(\epsilon_{\lambda_j} = \frac{1}{\beta_j B_j}\), then the partial primal-dual algorithm (9) is exactly the power system dynamics with AGC (1)-(4) if \(B_j = D_j, j \in \mathcal{N}\). Note that the assumption of \(B_j = D_j\) looks restrictive. But since \(B_j\) is a design parameter, we can set it to \(D_j\). However, in reality \(D_j\) is uncertain and/or hard to measure because it does not only account for damping of the generator but also contains a component due to the frequency dependent loads. In Section VI, the simulation results demonstrate that even if \(B_j \neq D_j\), the algorithm still converges to the same equilibrium point. It remains as one of our future work to characterize the range of \(B_j\) which guarantees the convergence of the algorithm. Nonetheless, the algorithm in (9) provides a tractable and easy way to choose parameters for the ACE-based AGC in order to guarantee its convergence.

Theorem 3. If \(1 > R_j K_j M_j\) for all \(j \in \mathcal{N}\), with the above chosen \(\epsilon_{\lambda_j}, \epsilon_{\mu_j}, \epsilon_{P_j}\), the partial primal-dual gradient algorithm (9) (i.e., the system dynamics (1)-(4)) converges to a fixed point \((\omega^*, P^*, P_j^M, P_j^C)\) where \((\omega^*, P^*, P_j^M)\) is an optimum of problem OGC-1 and \(P_j^C = P_j^M\).

Proof. The proof is deferred in the Appendix.

Remark We have made an equivalence transformation in the above: from algorithm (8) to algorithm (9). The reason for doing this transformation is to derive an algorithm that admits physical interpretation and can thus be implemented as the system dynamics. In particular, \(P_j^L\) is unknown and hence \(\mu_j\) can not be directly observed or estimated, while \(P_j^C\) can be estimated/calculated based on the observable variables \(\omega_j\) and
P_{ij}. As the control should be based on observable or estimable variables, the power system implements algorithm (9) instead of (8) for the ACE-based AGC.

The above reverse-engineering, i.e., the power system dynamics with AGC as the partial primal-dual gradient algorithm solving an optimization problem, provides a modeling framework and systematic approach to design new AGC mechanisms that achieve different (and potentially improved) objectives by engineering the associated optimization problem. The new AGC mechanisms would also have different dynamic properties (such as responsiveness) and incur different implementation complexity by choosing different optimizing algorithms to solve the optimization problem. In the next section, we will engineer problem OGC-1 to design an AGC scheme that achieves economic efficiency.

IV. ECONOMIC AGC BY FORWARD ENGINEERING

We have seen that the power system dynamics with the ACE-based AGC (1)-(4) is a partial primal-dual gradient algorithm solving a cost minimization problem OGC-1 with a “restrictive” constraint $P_{ij}^M = P_{ij}^L$ that requires supply-demand balance within each control area. As mentioned before, this constraint may render the system economically inefficient. Based on the insight obtained from the reverse-engineering of the conventional AGC, we relax this constraint and propose an AGC scheme that (i) keeps the frequency deviation to 0, i.e., $\omega_j = 0$ for all $j \in \mathcal{N}$, and (ii) achieves economic efficiency, i.e., the mechanical power generation solves the ED problem (5).

Consider the following optimization problem:

\[
\text{OGC-2} \quad \min_{j \in \mathcal{N}} \sum_{j \in \mathcal{N}} C_j (P_{ij}^M) + \sum_{j \in \mathcal{N}} \frac{D_j}{2} |\omega_j|^2 \tag{10a}
\]

s.t. \[P_{ij}^M = P_{ij}^L + D_j \omega_j + \sum_{k \rightarrow j} P_{jk} - \sum_{i \rightarrow j} P_{ij} \quad \tag{10b} \]

\[P_{ij}^M = P_{ij}^L + \sum_{k \rightarrow j} \gamma_{jk} - \sum_{i \rightarrow j} \gamma_{ij} \quad \tag{10c} \]

over $\omega_j, P_{ij}^M, P_{ij}, \gamma_{ij}, j \in \mathcal{N}, (i,j) \in \mathcal{E}$,

where γ_{ij} are auxiliary variables introduced to relax the restrictive constraint $P_{ij}^M = P_{ij}^L$, which allows different control areas to change their power flow interchanges so as to promote the global system economic efficiency. Though OGC-2 looks much more complicated than the simple ED problem (5), as shown in Lemma 4 the optimal solution P_{ij}^M of OGC-2 is equal to the optimal solution of ED (5) for which we call the AGC derived in this section as economic AGC. As shown later, the reason to focus on OGC-2 is to keep $\omega_j = 0$ for all $j \in \mathcal{N}$ and to derive an implementable control algorithm which requires minor modifications on the ACE-based AGC, equations (3)-(4).

Lemma 4. Let $(\omega^*, P_{ij}^{M*}, P^*, \gamma^*)$ be an optimum of OGC-2, then $\omega_j^* = 0$ for all $j \in \mathcal{N}$ and P_{ij}^{M*} is the optimal solution of the ED problem (5).

Proof. First, note that at the optimum, $\omega_j^* = \omega_j^*$ for all $(i, j) \in \mathcal{E}$. Second, combining (10b) and (10c) gives

\[D_j \omega_j + \sum_{k \rightarrow j} (P_{jk} - \gamma_{jk}) - \sum_{i \rightarrow j} (P_{ij} - \gamma_{ij}) = 0 \]

for all $j \in \mathcal{N}$. Following similar arguments as in Proposition 1, we have $\omega_j^* = 0$ for all $i \in \mathcal{N}$. Therefore the constraint (10c) is redundant and can be removed. So, problem OGC-2 reduces to the ED problem (5).

Following the same procedure as in Section III, we derive the following partial primal-dual algorithm to solve OGC-2:

\[
\begin{align*}
\omega_j &= \lambda_j \quad \tag{11a} \\
\dot{P}_{i,j} &= \epsilon_{P_{ij}} (\lambda_i - \lambda_j) \quad \tag{11b} \\
\dot{P}_{j}^M &= -\epsilon_{P_j} (C_j' (P_j^M) + \lambda_j + \mu_j) \quad \tag{11c} \\
\dot{\gamma}_{ij} &= \epsilon_{\gamma_{ij}} (\mu_i - \mu_j) \quad \tag{11d}
\end{align*}
\]

\[
\begin{align*}
\dot{\lambda}_j &= \epsilon_{\lambda_j} \left(P_j^M - P_j^L - D_j \omega_j - \sum_{k \rightarrow j} P_{jk} + \sum_{i \rightarrow j} P_{ij} \right) \quad \tag{11e} \\
\dot{\mu}_j &= \epsilon_{\mu_j} \left(P_j^M - P_j^L - \sum_{k \rightarrow j} \gamma_{jk} + \sum_{i \rightarrow j} \gamma_{ij} \right) \quad \tag{11f}
\end{align*}
\]

Let $\epsilon_{\lambda_j} = \frac{1}{M_j}$, $\epsilon_{P_{ij}} = B_{ij}$, $\epsilon_{\mu_j} = R_{ij}K_j$ and $\epsilon_{p_j} = \frac{1 - R_jK_jM_j}{R_j}$ as in Section III. By using linear transformation $\omega_j = \lambda_j$ and $P_j^C = K_jM_j \left(\lambda_j - \frac{1}{\epsilon_{\gamma_{ij}}M_j} \right)$, the partial primal-dual gradient algorithm (11) becomes:

\[
\begin{align*}
\omega_j &= -\frac{1}{M_j} \left(D_j \omega_j - P_j^L + P_j^M + \sum_{k \rightarrow j} P_{jk} - \sum_{i \rightarrow j} P_{ij} \right) \quad \tag{12a} \\
\dot{P}_{i,j} &= B_{ij} (\omega_i - \omega_j) \quad \tag{12b} \\
\dot{P}_{j}^M &= -\frac{1}{M_j} \left(\frac{R_jK_jM_j}{R_j} C_j' (P_j^M) - P_j^C + \frac{1}{R_j} \omega_j \right) \quad \tag{12c} \\
\dot{P}_{j}^C &= -K_j \left(D_j \omega_j + \sum_{k \rightarrow j} (P_{jk} - \gamma_{jk}) \right. \\
&\quad \left. - \sum_{i \rightarrow j} (P_{ij} - \gamma_{ij}) \right) \quad \tag{12d} \\
\dot{\gamma}_{ij} &= \epsilon_{\gamma_{ij}} \left(M_j \omega_j - \frac{P_j^C}{K_j} \right) \epsilon_{\mu_i} - \left(M_j \omega_j - \frac{P_j^C}{K_j} \right) \epsilon_{\mu_j}. \quad \tag{12e}
\end{align*}
\]

Compared with algorithm (9) (i.e., the power system dynamics with the ACE-based AGC), the difference in algorithm (12) is the new variables γ_{ij} and the marginal cost $C_j' (\cdot)$ in the generation control (12c). Note that γ_{ij} can be calculated based on the observable/measurable variables. So, the above algorithm is implementable. However, it might be not practical to add additional variable γ_{ij} for each branch $(i,j) \in \mathcal{E}$. To further facilitate the implementation, we can remove γ_{ij} by
introducing γ_j for each bus j and replace (12d, 12e) by the following dynamics:

$$\dot{P}_{Cj} = -K_j \left(D_j \omega_j + \sum_{k \in j-k} (P_{jk} - \gamma_j + \gamma_k) \right) - \sum_{i:i \rightarrow j} (P_{ij} - \gamma_i + \gamma_j) \right) \quad (16d)$$

which tells us that the power change command P_{Cj} can be controlled using local measurements ω_j, P_{jk}, γ_j, and local communications on γ_i, γ_k with the neighbors i, k where $(i, j), (j, k) \in E$. Here γ_j is a local auxiliary variable which is updated using local information at each bus $j \in N$.

Similarly, we have the following result.

Theorem 5. The algorithm (12a–12c, 13a–13b) converges to a fixed point $(\omega^*, P^*, P^{M*}, P^{C*}, \gamma^*)$ where $(\omega^*, P^*, P^{M*}, \gamma^*)$ is an optimum of problem OGC-2, which is also optimal to the ED problem in (5), and $P^{C*} = \frac{1}{M_j} \frac{M_j K_j M_j}{R_j} C_j' (P^{M*})'$.

Proof. Please see the Appendix for the convergence of the partial primal-dual algorithm.

With Lemma 4 and Theorem 5, we can implement algorithm (12a–12c, 13a–13b) as an economic AGC for the power system. By comparing with the ACE-based AGC in (1)–(4) and the economic AGC in (12a–12c, 13a–13b), we note that economic AGC has only a slight modification to the ACE-based AGC and keeps the decentralized structure of AGC. In other words, adding a local communication about the new local auxiliary variable γ_j based on (13a–13b) can improve the economic efficiency of AGC.

Remark We can actually derive a simpler and yet implementable algorithm without introducing variable $\gamma_{ij}, (i, j) \in E$ (or $\gamma_i, i \in N$). However, we choose to derive the algorithm (12) and (13) in order to have minimal modification to the existing conventional AGC and also keep the resulting control decentralized, where each control area update its generation based on measurements of local physical variables that are easy to measure and information of local auxiliary variables that are easy to compute and communicate with neighboring areas.

V. A HYBRID OF ACE-BASED AGC AND ECONOMIC AGC

In the ACE-based AGC, each control area absorbs its own energy fluctuation in order to prevent the disturbance propagation which might lead to a system-wide blackout. In the economic AGC, all the control areas share the energy fluctuations in order to improve the economic efficiency. The side effect is that this sharing could propagate the disturbance and might lead to a blackout due to the potential outage of some transmission lines. Therefore, in this section, we propose a hybrid of ACE-based AGC and economic AGC which takes account of both the safety and efficiency. We call this AGC as hybrid AGC.

Given an interconnected power network N which is divided/partitioned into different areas, denoted by $A = \{A_1, A_2, \ldots, A_m\}$. Here each $A_i \subseteq N$ is a control area. The objective of the hybrid AGC is to 1) maintain the nominal frequency; 2) each area A_i absorbs its own energy disturbance in an economically efficient way such that $\{P_{j}^{M}\}_{j \in A_i}$ is the optimum to the following optimization problem: for each $A_i \in A$,

$$\min_{P_{j}^{M} \in A_i} \sum_{j \in A_i} C_j(P_{j}^{M}) \quad \text{s.t.} \sum_{j \in A_i} P_{j}^{M} = \sum_{j \in A_i} P_{j}^{L}. \quad (14a)$$

Let E_m be the subset of links that connect buses within the same area. Now consider the following optimization problem: OGC-3

$$\min_{\omega_j, P_{j}^{M}, P_{ij}, \gamma_{ij}, j \in N, (i,j) \in E} \sum_{j \in N} C_j(P_{j}^{M}) + \sum_{j \in N} D_j \frac{1}{2} |\omega_j|^2 \quad (15a)$$

$$\text{s.t.} \sum_{j \in N} P_{j}^{M} = \sum_{j \in N} P_{j}^{L} + D_j \omega_j + \sum_{(j,k) \in E} P_{jk} - \sum_{(i,j) \in E} P_{ij} \quad (15b)$$

$$\omega_j, P_{j}^{M}, P_{ij}, \gamma_{ij}, j \in N, (i,j) \in E, \quad \gamma_{ij} \quad (15c)$$

We have the following Lemma regarding the optimal solution of OGC-3.

Lemma 6. Let $(\omega^*, P^{M*}, P^*, \gamma^*)$ be an optimum of OGC-3, then i) $\omega^*_j = 0$ for all $j \in N$ and ii) for each area A_i, $\{P_{j}^{M}\}_{j \in A_i}$ is the optimum solution to problem (14).

Proof. Note that $A = \{A_1, A_2, \ldots, A_m\}$ forms a partition N and the network (N, E) is connected. By using similar argument in the proof of Lemma 4, we can obtain the statement in this Lemma. We omit the details here.
\[\dot{\gamma}_i = \epsilon_\gamma \left(\left(M_i \omega_i - \frac{P_{C_i}}{K_i} \right) \epsilon \mu_i \right). \]

Similarly, we can guarantee the stability of the hybrid AGC.

Theorem 7. The algorithm (16) converges to a fixed point \((\omega^*, P^*, P^{M*}, P^{C*}, \gamma^*)\) where \((\omega^*, P^*, P^{M*}, \gamma^*)\) is an optimum of problem OGC-3, which is given in Lemma 6.

Proof. Please see the Appendix for the convergence of the partial primal-dual gradient algorithm.

Compared with the economic AGC in (12a–12c, 13a–13b), the only difference of the hybrid AGC is that if bus \(i\) and \(j\) are connected but not belonging to the same area, then they do not communicate the auxiliary variable \(\gamma_i\) and \(\gamma_j\) with each other. As a result, the hybrid AGC possesses all the nice properties of the economic AGC. It requires only local measurement, local computation and local communication. Moreover, the modification to the conventional ACE-based AGC is moderate.

VI. CASE STUDY

For illustrative purpose, we consider a simple interconnected system with 4 buses, as shown in Figure 1. The values of the generator and transmission line parameters are shown in Table I and II. Notice that though our theoretical results require that \(B_j = D_j\) for each \(j\), here we choose \(B_j\) differently from \(D_j\) since \(D_j\) is usually uncertain in reality. To make it easy to compare the simulation results, we choose a same cost function for each area, where \(C_i(P_{M_i}) = aP^2_{M_i}\). Therefore we know that the optimal dispatch is to equally share the load.

\[P_{ij} = \frac{|V_i||V_j|}{4\pi^2} (x_{ij}(\sin \theta_{ij} - \sin \theta_{ij}^0) - r_{ij}(\cos \theta_{ij} - \cos \theta_{ij}^0)) . \]

Fig. 1: A 4-area interconnected system

Fig. 2: The ACE-based AGC

Fig. 3: The economic AGC

Fig. 4: The hybrid AGC

At time \(t = 10s\), a step change of load occurs at bus 4 where \(P^L_4 = 1\ pu\). In the simulation, to be consistent with the real practice in the conventional AGC, the signal for the

Simulations results show that our proposed AGC scheme works well even in these non-ideal, practical systems.
AGC is only reset at every 15 seconds. Figure 2 shows the dynamics of the frequencies and mechanical power outputs for the 4 buses using ACE-based AGC (1)–(4), which tells that bus 4 absorbs all the disturbance eventually. Figure 3 shows the dynamics of the frequencies and mechanical power outputs for the 4 buses using the economic AGC (12a–12c, 13a–13b), which tells that all the buses share the disturbance equally and thus optimally. Figure 4 shows the dynamics of the frequencies and mechanical power outputs for the 4 buses using the hybrid AGC where bus 1 and 4 form one control area and bus 2 and 3 forms another control area. Gradually bus 1 and 4 share the disturbance equally and bus 2 and 3 are not effected by the disturbance. Figure 5 compares the total generation costs using the ACE-based AGC, the economic AGC, and the hybrid AGC with the minimal generation cost of the ED problem (5). We see that the economic AGC track the optimal value of the ED problem and the hybrid AGC dispatches the power generation optimally within each area. An interesting observation is that the frequency dynamics are very similar. One possible explanation is the fast frequency synchronization. Because the AGC control signal is reset every 15 seconds, before the AGC takes action, the frequency has been synchronized within the first 15 seconds, when the frequency has the most dramatic transient dynamics.

VII. CONCLUSION

We reverse-engineer the conventional AGC, and based on the insight obtained from the reverse engineering, we design a decentralized generation control scheme that integrates the ED into the AGC and achieves economic efficiency. Combined with the previous work [4] on distributed load control, this work lends the promise to develop a modeling framework and solution approach for systematic design of distributed, low-complexity generation and load control to achieve system-wide efficiency and robustness.

REFERENCES

APPENDIX

A. Interpretation of the ED in (5)

Here we provide two ways of constructing (interpreting) the cost functions of the mechanical power generation and ΔP_j^M denote the deviation from the nominal value. One type of cost $C_j(\Delta P_j^M)$ is the cost on the deviation, e.g., $|\Delta P_j^M|^2$. This means that as long as there is a deviation from the nominal value P_j^M, there is a cost incurred. The second one is more directly related to the generation cost which is used at the slow timescale ED problem. At the slow timescale ED problem, P_j^M is determined by minimizing the generation cost $\sum_j c_j(P_j^M)$ such that $\sum_j P_j^M = \sum_j P_j^D$. When there is a deviation ΔI_j^M, the new generation cost is $c_j(P_j^M + \Delta P_j^M)$. This gives a natural way to construct the cost function of $C_j(\Delta P_j^M)$, which is that $C_j(\Delta P_j^M) := c_j(P_j^M + \Delta P_j^M)$.

B. Proof of Convergence

Primal-dual gradient flow (also called as saddle point flow) method for optimization problem have been studied and applied in different literature, e.g., [25]–[29]. The proof techniques used in these literature can be applied to our problem with a minor modification via using the properties of the optimization problems. Instead of only proving Theorem 3, 5 and 7, we provide a partial primal-dual gradient algorithm for a general convex optimization problem and show that the algorithm converges to the optimal primal-dual point if the optimization problem satisfies certain conditions. Then we will prove Theorem 3, 5 and 7. Focusing on the general optimization problem first allows us to illustrate the main ideas behind the detailed algorithms used in the paper and the results have more general application than the AGC itself.

1) A partial primal-dual gradient algorithm: Consider the following optimization problem:

$$\min_{x,y} f(x) + g(y)$$

s.t. $Ax + By = C$,

where $f(x)$ is a strict convex and twice differentiable function of x, $g(y)$ is a convex and differentiable function of y. Notice that $g(y)$ can be a constant function.

The Lagrangian function of this optimization problem is given by:

$$L(x, y, \alpha) = f(x) + g(y) + \alpha^T(Ax + By - C).$$

Assume that the constraint is feasible and an optimal solution exists, then the strong duality holds. Moreover, the primal-dual optimal solution (x^*, y^*, α^*) is a saddle point of $L(x, y, \alpha)$ and vice versa.

The partial primal-dual gradient algorithm is given by,

Algorithm-1:

$$x(t) = \arg \min_x \{L(x, y, \alpha)\} = \arg \min_x \{f(x) + \alpha^T Ax\}$$

$$\dot{y} = -\Xi_y \left(\frac{\partial L(x, y, \alpha)}{\partial y} \right) = -\Xi_y \left(\frac{\partial g(y)}{\partial y} + B^T \alpha \right)$$

$$\dot{\alpha} = \Xi_\alpha \left(\frac{\partial L(x, y, \alpha)}{\partial \alpha} \right) = \Xi_\alpha (Ax + By - C)$$

where $\Xi_y = \text{diag}(\epsilon_y)$ and $\Xi_\alpha = \text{diag}(\epsilon_\alpha)$. In the following we will study the convergence of this algorithm.

Define

$$q(\alpha) \triangleq \min_x \{ f(x) + \alpha^T Ax \}$$

$$\hat{L}(y, \alpha) \triangleq q(\alpha) + g(y) + \alpha^T (By - C).$$

The following proposition demonstrate some properties of $q(\alpha)$ and $\hat{L}(y, \alpha)$.

Proposition 8. $q(\alpha)$ is a concave function and its gradient is given as $\frac{\partial q(\alpha)}{\partial \alpha} = Ax$. If ker$(A^T) = 0$, then $q(\alpha)$ is a strictly concave function. As a consequence, $\hat{L}(y, \alpha)$ is strictly concave on α.

Proof. Because $f(x)$ is a strictly convex function of x, we can directly apply Proposition 6.11 in [30] to conclude that $q(\alpha)$ is a concave function of α and $\frac{\partial q(\alpha)}{\partial \alpha} = Ax$. Let $H := \nabla^2 f(x)$, which is a positive definite matrix. From equation (6.9) in [30], we have $\nabla^2 q(\alpha) = -AH^{-T}A^T$. Therefore, we know that if ker$(A^T) = 0$, $\nabla^2 q$ is a negative definite matrix, implying that $q(\alpha)$ is a strictly concave function. The rest of the proposition follows directly.

Moreover, we have the following connections between $L(x, y, \alpha)$ and $\hat{L}(y, \alpha)$.

Proposition 9. If (x^*, y^*, α^*) is a saddle point of L, then (y^*, α^*) is a saddle point of \hat{L} and $x^* = \arg\min_x \{ f(x) + (\alpha^*)^T Ax \}$. Moreover, if (y^*, α^*) is a saddle point of \hat{L}, then (x^*, y^*, α^*) is a saddle point of L where x^* is a saddle point of L where x^* is a saddle point of L.

Proof. The proof is straightforward by comparing the first order conditions of saddles points for both L and \hat{L}. Note that convexity of f, g, and concavity of q implies that those first order conditions are necessary and sufficient conditions for saddle points.

We also have the following properties of the saddle points of \hat{L}.

Proposition 10. Assume ker$(A^T) = 0$. Given any two saddle points (y_1^*, α_1^*), (y_2^*, α_2^*) of \hat{L}, we have $\alpha_1^* = \alpha_2^*$ and $\hat{L}(y_1^*, \alpha_1^*) = \hat{L}(y_2^*, \alpha_2^*) = \hat{L}(y_1^*, \alpha_2^*) = \hat{L}(y_2^*, \alpha_1^*)$.

Proof. If (y_1^*, α_1^*), (y_2^*, α_2^*) are two saddle points, then

$$\hat{L}(y_1^*, \alpha_1^*) \leq \hat{L}(y_1^*, \alpha_2^*) \leq \hat{L}(y_1^*, \alpha_1^*),$$

$$\hat{L}(y_2^*, \alpha_2^*) \leq \hat{L}(y_2^*, \alpha_1^*) \leq \hat{L}(y_2^*, \alpha_2^*),$$

for any (y, α). Thus, we have $\hat{L}(y_1^*, \alpha_1^*) \leq \hat{L}(y_2^*, \alpha_1^*) \leq \hat{L}(y_2^*, \alpha_2^*) \leq \hat{L}(y_1^*, \alpha_2^*)$, which implies that $\hat{L}(y_1^*, \alpha_2^*) = \hat{L}(y_2^*, \alpha_1^*) = \hat{L}(y_2^*, \alpha_1^*) = \hat{L}(y_1^*, \alpha_2^*)$. Because \hat{L} is strictly concave in α, we have $\alpha_1^* = \alpha_2^*$.

Using the new Lagrangian function \hat{L}, Algorithm-1 can be written as follows:

$$\dot{y} = -\Xi_y \left(\frac{\partial \hat{L}(y, \alpha)}{\partial y} \right)$$

(18)
\[
\dot{\alpha} = \Xi_\alpha \left(\frac{\partial \hat{L}(y, \alpha)}{\partial \alpha} \right)
\] \hspace{1cm} (19)

Let \((y^*, \alpha^*)\) be a saddle point of \(\hat{L}(y, \alpha)\). Adopting the Lyapunov function,

\[
U(y, \alpha) = \sum_{i=1}^{n} \frac{1}{2\varepsilon_i} (y_i - y_i^*)^2 + \sum_{i=1}^{m} \frac{1}{2\alpha_i} (\alpha_i - \alpha_i^*)^2
\] \hspace{1cm} (20)

following the methods in \([25] - [29]\), and using the properties of \(\hat{L}\) introduced in Proposition 8 and 10, we know that algorithm (18,19) converges to the saddle point of \(\hat{L}\) if \(ker(A^T) = 0\). Consequently, we know that Algorithm 1 converges to the saddle point of \(L\), which is an optimal point of (17).

2) Proof of Theorem 3, Theorem 5 and Theorem 7: Though the previous analysis for general optimization problem could not be directly applied to prove Theorem 3, 5 and 7, the ideas used in the proof is easily extended to prove those theorems. Since the proofs of the three theorems are very similar, here we only provide the detailed proof for Theorem 3.

Denote the Lagrangian function in equation (7) as \(L(P^M, \omega, P, \lambda, \mu)\) where \(P^M := \{P^M_j\}_{j \in \mathbb{N}}, \omega := \{\omega_j\}_{j \in \mathbb{N}}, P := \{P_{ij}\}_{(i,j) \in \mathbb{E}}, \lambda := \{\lambda_j\}_{j \in \mathbb{N}}, \mu := \{\mu_j\}_{j \in \mathbb{N}}\). Algorithm in equation (8) can be written as:

\[
\omega(t) = \arg \min_{\omega} \left\{ L(P^M, \omega, P, \lambda, \mu) \right\} = \lambda \\
\hat{P} = -\Xi_P \frac{\partial L(P^M, \omega, P, \lambda, \mu)}{\partial P} \\
\hat{P}^M = -\Xi_{P^M} \frac{\partial L(P^M, \omega, P, \lambda, \mu)}{\partial P^M} \\
\hat{\lambda} = \Xi_\lambda \frac{\partial L(P^M, \omega, P, \lambda, \mu)}{\partial \lambda} \\
\hat{\mu} = \Xi_\mu \frac{\partial L(P^M, \omega, P, \lambda, \mu)}{\partial \mu}
\]

where \(\Xi_P, \Xi_{P^M}, \Xi_\lambda, \Xi_\mu\) are diagonal matrices standing for the stepsizes. Let \(\hat{L}(P^M, P, \lambda, \mu) := L(P^M, \omega = \lambda, \lambda, \mu)\). Given the structure of OGC-1, we can get the following proposition about \(\hat{L}\).

Proposition 11. \(\hat{L}\) is strictly convex on \(P^M\), strictly concave on \(\lambda\), linear on \(P\) and \(\mu\).

Moreover, we have the following Lemma about the saddle points of \(\hat{L}\).

Proposition 12. Let \((P^M*, \omega*)\) be the unique optimal point of OGC-1. Then \((P^M, P, \lambda, \mu)\) is a saddle point of \(\hat{L}\) if and only if \(P^M = P^M*\), \(\lambda = \omega*\), \(\mu_j = -\beta_j P^M* - \omega_j*\), and \(\sum_{k:j \to k} P_{jk} - \sum_{i:i \to j} P_{ij} = P^M_* - P^L_* - D_j\omega_j*\).

Proof. Because OGC-1 is strong convex on \((P^M, \omega)\), the optimal solution is unique. Then by using the strong duality of OGC-1, it is straightforward to show the statement of the lemma. We omit the details here.

\(4\)This is because the corresponding \(A\) in optimization problems OGC-1 (6), OGC-2 (10) and OGC-3 (15) do not satisfy \(ker(A^T) = 0\).

Now we are ready to prove Theorem 3. First, note that algorithm in (8) is equivalent to the following algorithm:

\[
\hat{P} = -\Xi_P \frac{\partial \hat{L}(z, \alpha)}{\partial \alpha} \\
\hat{P}^M = -\Xi_{P^M} \frac{\partial \hat{L}(z, \alpha)}{\partial \alpha} \\
\hat{\lambda} = \Xi_\lambda \frac{\partial \hat{L}(z, \alpha)}{\partial \lambda} \\
\hat{\mu} = \Xi_\mu \frac{\partial \hat{L}(z, \alpha)}{\partial \mu}
\]

Let \((P^{M*}, P^*, \lambda*, \mu*)\) be a saddle point of \(\hat{L}\). Define a nonnegative function as

\[
\hat{U}_{P^{M*}, P^*, \lambda*, \mu*}(P^M, P, \lambda, \mu) = \frac{1}{2}(P^M - P^{M*})^T \Xi_{P^M}^{-1}(P^M - P^{M*}) + \frac{1}{2}(P - P^*)^T \Xi_P^{-1}(P - P^*) + \frac{1}{2}(\lambda - \lambda^*)^T \Xi_\lambda^{-1}(\lambda - \lambda^*) + \frac{1}{2}(\mu - \mu^*)^T \Xi_\mu^{-1}(\mu - \mu^*)
\]

Taking the derivative along the dynamics (21), we can show

\[
\frac{\partial \hat{U}}{\partial t} \leq \hat{L}(P^{M*}, P^*, \lambda, \mu, P) - \hat{L}(P^{M*}, P^*, \lambda^*, \mu^*)
\]

For simplicity, we will denote \((P^M, P, \lambda, \mu)\) as \(z\).

Lemma 13. \(\frac{\partial \hat{U}(z)}{\partial t} \leq 0\) for all \(z\) and

\[
\{ z : \frac{\partial \hat{U}(z)}{\partial t} = 0 \} \subseteq \mathcal{Z} \triangleq \{ z : \hat{P}^M = P^{M*}, \hat{\lambda} = \lambda^*, \hat{L}(P^{M*}, P, \alpha^*, \mu^*) = \hat{L}(P^{M*}, P, \alpha^*, \mu^*) \}
\]

Proof. (23) has shown that \(\frac{\partial \hat{U}(z)}{\partial t} \leq 0\). To ensure \(\frac{\partial \hat{U}(z)}{\partial t} = 0\), we need that \(\hat{L}(P^{M*}, P^*, \lambda, \mu, P) = \hat{L}(P^{M*}, P^*, \lambda^*, \mu^*)\) and \(\hat{L}(P^{M*}, P^*, \lambda^*, \mu^*) = \hat{L}(P^{M*}, P, \lambda^*, \mu^*)\). Because of the strictly convexity of \(L\) on \(P^M\), strictly concavity of \(\hat{L}\) on \(\lambda\), and the separable structure of \(\hat{L}\) on \((P^M, P)\), and \((\lambda, \mu)\) respectively, \(P^M = P^{M*}\), \(\lambda = \lambda^*\). Then we can conclude the statement of this lemma.

Using Proposition 12, Lemma 13 and Lyapunov convergence theorem, we have the following convergence result:

Lemma 14. Any solution \((P^M(t), P(t), \lambda(t), \mu(t))\) of (21) for \(t \geq 0\) asymptotically approaches to a nonempty, compact subset of the set of saddle points.

Proof. (22) tells that \(U(z) \geq 0\) for any \(z\), and (23) tells that \(U(z(t))\) is decreasing with time \(t\) and \(U(z(t)) \leq U(z(0))\) for any \(t \geq 0\). Because of the structure of \(U(z)\) in (22), \(z(t)\) is bounded for \(t \geq 0\). By Lyapunov convergence theory [31], we know that \(z(t) = (P^M(t), P(t), \lambda(t), \mu(t))\) converges to a nonempty invariant compact subset of \(\mathcal{Z}\) (defined in Lemma 13). To ensure the subset is invariant, we have \(\hat{P}^M = -\Xi_{P^M} \frac{\partial \hat{L}(z, \alpha)}{\partial \alpha} = 0\) and \(\hat{\lambda} = \Xi_\lambda \frac{\partial \hat{L}(z, \alpha)}{\partial \lambda} = 0\), implying that \(\mu = -\beta_j P^M_* - \omega_j*\) and \(\sum_{k:j \to k} P_{jk} - \sum_{i:i \to j} P_{ij} = P^M_* - P^L_* - D_j\omega_j^*\). Therefore we know \(z\) is a saddle point of \(\hat{L}\) according to Proposition 12.
Now we are ready to conclude the convergence of the algorithm (21).

Theorem 15. Any solution \((P^M(t), P(t), \lambda(t), \mu(t))\) of (21) for \(t \geq 0\) asymptotically converges to a saddle point \((P^M, P^*, \lambda^*, \mu^*)\). The saddle point \((P^M, P^*, \lambda^*, \mu^*)\) may depend on the initial point \((P^M(0), P(0), \lambda(0), \mu(0))\).

Proof. The proof of Lemma 14 show that \(\{z(t)\}_{t \geq 0}\) is a bounded sequences, therefore, we know that there exists a subsequence \(\{z(t_j) = (P^M(t_j), P(t_j), \lambda(t_j), \mu(t_j))\}_{j \geq 0}\) converges to a point \(z^\infty = (P^\infty_m, P^\infty, \lambda^\infty, \mu^\infty)\). This implies that:

\[
\lim_{t_j \to \infty} U_{z^\infty} (z(t_j)) = 0 \quad (24)
\]

As shown in Lemma 14, \(z^\infty\) is a saddle point of \(\hat{L}\). Therefore Lemma 13, Lemma 14 and their proof tell that:

\[
\lim_{t \to \infty} U_{z^\infty} (z(t)) = u \quad (25)
\]

for some constant \(u\). Since \(\{z(t_j)\}\) is a subsequence of \(\{z(t)\}\), (24) tells that \(u = 0\). Therefore, we can conclude that \(z(t)\) converges to \(z^\infty\).

The rest of the proof follows the exactly same argument of the analysis for general optimization problem. Thus we omit the details here to avoid duplication.

Na Li (M ’09) is an assistant professor in the School of Engineering and Applied Sciences in Harvard University. She received her B.S. degree in mathematics and applied mathematics from Zhejiang University in China and PhD degree in Control and Dynamical systems from California Institute of Technology in 2013. She was a postdoctoral associate of the Laboratory for Information and Decision Systems at Massachusetts Institute of Technology. Her research lies in the design, analysis, optimization and control of distributed network systems, with particular applications to power networks and systems biology/physiology. She entered the Best Student Paper Award nalist in the 2011 IEEE Conference on Decision and Control.

Changhong Zhao (S ’12) is a PhD candidate in Electrical Engineering at California Institute of Technology. His research is on control and optimization of power systems, with particular focus on power system dynamics and stability, frequency and voltage regulation, and distributed load-side control. Before coming to Caltech, he received his B.Eng. degree in Automation from Tsinghua University, Beijing, China, in 2010.

Lijun Chen (M ’05) is an Assistant Professor of Computer Science and Telecommunications at University of Colorado at Boulder. He received a B.S. from University of Science and Technology of China, M.S. from Institute of Theoretical Physics, Chinese Academy of Sciences and from University of Maryland at College Park, and Ph.D. from California Institute of Technology. He was a co-recipient of the Best Paper Award at the IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS) in 2007. His current research interests are in optimization and control of networked systems, distributed optimization and control, convex relaxation and parsimonious solutions, and game theory and its engineering application.