
Tensor Contractions with Extended BLAS Kernels on CPU and GPU
Yang Shi, U.N. Niranjan, Animashree Anandkumar1 Cris Cecka2

1UCIrvine 2NVIDIA Research

Abstract

•Existing tensor contractions approaches
involve explicit copy and transpose operations.

•We focus on single-index contractions
involving all the possible configurations of
second-order and third-order tensors and
discuss extensions to more general cases.

•Our approach achieve 10x speedup on a K40c
GPU and 2x speedup on dual-socket
Haswell-EP CPUs, using MKL and CUBLAS
respectively.

•Our kernels yields atleast an order of
magnitude speedup as compared to
state-of-the-art libraries for Tucker
decomposition.

Conventional Tensor Contraction

The conventional approach for tensor contraction
is to matricize the tensors via transpositions and
copies. Libraries such as Basic Tensor Algebra Sub-
routines (BTAS), MATLAB Tensor Toolbox, and
Cyclops Tensor Framework all perform some ver-
sion of matricization, which is typically performed
in four steps:
•Consider a general tensor contraction of the form
CC = αAABB + βCC. Define the index sets K, I,
J as
K = A ∩ B, I = A \ (A ∩ B), J = B \ (A ∩ B)

•Permute tensors A, B, and C into the form
CIJ = αAIKBKJ + β CIJ (1)

•Evaluate (1) using one of four BLAS kernels:
DOT: if |K| = |A|and|K| = |B|
GER: if |K| = 0
GEMV: if |K| = |A|xor|K|= |B|
GEMM: if else

•Permute the result CIJ into the desired output
CC.

This approach works for any two tensors of arbitrary
order and any number of contraction indices. How-
ever, the cost of explicitly permutation outweigh the
cost of the computation to be performed.

Motivating Observations

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

n

M
em

or
y

fr
ac

tio
n

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

n

Figure 1: The fraction of time spent in copies/transpositions
when computing the contraction Cmnp = AmkBpkn using the
conventional approach. Lines are shown with 1, 2, 3, and 6
total transpositions performed on either the input or output.
(Left) CPU. (Right) GPU.

Strided Batched GEMM

C = alpha*opA(A)*opB(B) + beta*C

sb_gemm(op_type opA, op_type opB, int m, int
n, int k, T alpha, const T* A, int lda, int loa,
const T* B, int ldb, int lob, T beta, T* C, int
ldc, int loc, int batch_size)
{

for (int p = 0; p < batch_size; ++p)
gemm(opA, opB, m, n, k,alpha, A + p*loa,

lda, B + p*lob, ldb, beta, C + p*loc, ldc);
}

Single-mode Contractions Between a Second-order/Third-order Tensor

Case Contraction Kernel1 Kernel2 Kernel3 Case Contraction Kernel1 Kernel2
1.1 AmkBknp Cm(np) = AmkBk(np) Cmn[p] = AmkBkn[p] Cm[n]p = AmkBk[n]p 4.1 AknBkmp Cmn[p] = B>km[p]Akn

1.2 AmkBkpn Cmn[p] = AmkBk[p]n Cm[n]p = AmkBkp[n] 4.2 AknBkpm Cmn[p] = B>k[p]mAkn

1.3 AmkBnkp Cmn[p] = AmkB
>
nk[p] 4.3 AknBmkp Cmn[p] = Bmk[p]Akn

1.4 AmkBpkn Cm[n]p = AmkB
>
pk[n] 4.4 AknBpkm TRANS(A>knB>pk[m]) C[m][n]p = Bpk[m]Ak[n]

1.5 AmkBnpk Cm(np) = AmkB
>
(np)k Cmn[p] = AmkB

>
n[p]k 4.5 AknBmpk Cmn[p] = Bm[p]kAkn

1.6 AmkBpnk Cm[n]p = AmkB
>
p[n]k 4.6 AknBpmk TRANS(A>knB>p[m]k) C[m][n]p = Bp[m]kAk[n]

2.1 AkmBknp Cm(np) = A>kmBk(np) Cmn[p] = A>kmBkn[p] Cm[n]p = A>kmBk[n]p 5.1 ApkBkmn C(mn)p = B>k(mn)A
>
pk Cm[n]p = B>km[n]A

>
pk

2.2 AkmBkpn Cmn[p] = A>kmBk[p]n Cm[n]p = A>kmBkp[n] 5.2 ApkBknm Cm[n]p = B>k[n]mA
>
pk

2.3 AkmBnkp Cmn[p] = A>kmB
>
nk[p] 5.3 ApkBmkn Cm[n]p = Bmk[n]A

>
pk

2.4 AkmBpkn Cm[n]p = A>kmB
>
pk[n] 5.4 ApkBnkm TRANS(Bnk[m]A

>
pk) C[m]n[p] = Bnk[m]A[p]k

2.5 AkmBnpk Cm(np) = A>kmB
>
(np)k Cmn[p] = A>kmB

>
n[p]k 5.5 ApkBmnk C(mn)p = B(mn)kA

>
pk Cm[n]p = Bm[n]kA

>
pk

2.6 AkmBpnk Cm[n]p = A>kmB
>
p[n]k 5.6 ApkBnmk TRANS(Bn[m]kA

>
pk) C[m]n[p] = Bn[m]kA[p]k

3.1 AnkBkmp Cmn[p] = B>km[p]A
>
nk 6.1 AkpBkmn C(mn)p = B>k(mn)Akp Cm[n]p = B>km[n]Akp

3.2 AnkBkpm Cmn[p] = B>k[p]mA
>
nk 6.2 AkpBknm Cm[n]p = B>k[n]mAkp

3.3 AnkBmkp Cmn[p] = Bmk[p]A
>
nk 6.3 AkpBmkn Cm[n]p = Bmk[n]Akp

3.4 AnkBpkm TRANS(AnkB
>
pk[m]) C[m][n]p = Bpk[m]A[n]k 6.4 AkpBnkm TRANS(Bnk[m]Akp) C[m]n[p] = Bnk[m]Ak[p]

3.5 AnkBmpk Cmn[p] = Bm[p]kA
>
nk 6.5 AkpBmnk C(mn)p = B(mn)kAkp Cm[n]p = Bm[n]kAkp

3.6 AnkBpmk TRANS(AnkB
>
p[m]k) C[m][n]p = Bp[m]kA[n]k 6.6 AkpBnmk TRANS(Bn[m]kAkp) C[m]n[p] = Bn[m]kAk[p]

Table 1: List of 36 possible single mode contraction operations between a second-order tensor and a third-order tensor and possible
mappings to Level-3 BLAS routines.

SBGEMM v.s. Flattened GEMM

0 100 200 300 400 500

1

2

3

n

Fl
at

te
ni

ng
Sp

ee
du

p
(B

at
ch

/
Fl

at
)

Case 1.1 [n]
Case 1.1 [p]
Case 1.5 [p]
Case 6.1 [n]

0 100 200 300 400 500

1

2

3

n

Figure 2: Performance ratio for a BATCHEDGEMM over a flat-
tened GEMM in evaluation of Cases 1.1, 1.5, and 6.1.(Left)
CPU. (Right) GPU.

Batching over different modes

0 100 200 300 400 500

0.9

1

1.1

1.2

n

L
as

t
M

od
e

Sp
ee

du
p

([
n
]

/
[p
])

0 100 200 300 400 500

0.9

1

1.1

1.2

n

Case 1.1
Case 2.1

Figure 3: Speedup obtained from batching in the last mode,[p],
rather than the middle mode, [n], for Cases 1.1 and 2.1.(Left)
CPU. (Right) GPU.

Performance on Tucker
Decomposition

In the Einstein notation, the factorization of a third-
order tensor T ∈ Rm×n×p is given by Tmnp =
GijkAmiBnjCpk, where G ∈ Ri×j×k is the core ten-
sor, A ∈ Rm×i, B ∈ Rn×j, C ∈ Rp×k.
A variety of problems in unsupervised learning
such as topic model estimation, Gaussian mixtures
model estimation, and social network learning can
be solved via the tensor decomposition techniques
under certain mild assumptions.

20 40 60 80 100 120
10−2

100

102

104

n

Ti
m

e
(s

ec
)

TensorToolbox
BTAS

Cyclops
CPU Batched
GPU Batched

Figure 4: Performance on Tucker decompostion.
Evaluation Properties

There are a number of heuristics that may be im-
portant in constructing the most efficient evaluation
strategy.
•Flatten modes whenever possible. A single large
GEMM is more efficient.

• In the interest of performing the highest intensity
computation within a SBGEMM, we recommend
performing the largest GEMMs possible within a
SBGEMM and batching in the mode with largest
dimension.

•Preferring to batch in the last mode versus earlier
modes can depend on the input parameters and
machine.
Conclusion and Future Work

Our improvement is most significant on small and
moderate sized tensors. This is important because
in many applications, e.g. deep learning for training
a recursive tensor network, we require evaluating a
large number of tensor contractions of small sizes.
Although we focused on single-node performance,
these evaluations may be used as a building blocks
for distributed memory implementations, which we
intent to pursue as part of our future work.

