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Abstract

Community detection in graphs has been extensively studied both in theory and in applications.
However, detecting communities in hypergraphs is more challenging. In this paper, we propose a ten-
sor decomposition approach for guaranteed learning of communities in a special class of hypergraphs
modeling social tagging systems or folksonomies. A folksonomy is a tripartite 3-uniform hypergraph
consisting of (user, tag, resource) hyperedges. We posit a probabilistic mixed membership community
model, and prove that the tensor method consistently learns the communities under efficient sample
complexity and separation requirements.

Keywords: Community models, social tagging systems/folksonomies, mixed membership models, tensor
decomposition methods.

1 Introduction

Folksonomies or social tagging systems (Chakraborty et al., 2012) have been hugely popular in recent years.
These are tripartite networks consisting of users, resources and tags. The resources can vary according to
the system. For instance, in Delicious, the URLs are the resources, in Flickr, they are the images, in LastFm,
they are the music files, in MovieLens, they are the reviews, and so on. The collaborative annotation of these
resources by users with descriptive keywords, enables faster search and retrieval (Chakraborty and Ghosh,
2013).

The role of community detection in folksonomies cannot be overstated. Online social tagging systems
are growing rapidly and it is important to group the nodes (i.e. users, resources and tags) for scalable
operations in a number of applications such as personalized search (Xu et al., 2008), resource and friend
recommendations (Konstas et al., 2009), and so on. Moreover, learning communities can provide an under-
standing of community formation behavior of humans, and the role of communities in human interaction
and collaboration in online systems.

Folksonomies are special instances of hypergraphs. A folksonomy is a tripartite 3-uniform hypergraph
consisting of hyperedges between users, resources and tags. Scalable community detection in hypergraphs
is in general challenging, and most previous works are limited to pure membership models, where a node
belongs to at most one group. This is highly unrealistic since users have multiple interests, and the tags
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and resources have multiple contexts or topics. A few works which do consider overlapping communities
in folksonomies are heuristic without any guarantees and do not incorporate any statistical modeling (see
Section 1.2 for details).

In this paper, we propose a novel probabilistic approach for modeling folksonomies, and propose a
guaranteed approach for detecting overlapping communities in them. A naive model for folksnomies would
result in a large number of model parameters, and make learning intractable. Here we present a more
scalable approach where realistic conditional independence constraints are imposed, leading to scalable
modeling and tractable learning.

Our model is a hypergraph extension of the popular mixed membership stochastic blockmodel (MMSB),
introduced by Airoldi et. al (Airoldi et al., 2008). We impose additional conditional independence con-
straints, which are natural for social tagging systems. We term our model as mixed membership stochastic
folksonomy (MMSF). When hypergraphs are generated from such a class of MMSFs, we show that the
hyper-edges can be much more informative about the underlying communities, than in the graph setting. In-
tuitively, this is because the hyper-edges represent multiple views of the hidden communities. In this paper,
we show that these properties can be exploited for learning via spectral approaches.

1.1 Summary of Results

We develop a practically relevant mixed membership hypergraph model and propose novel methods to
learn them with guarantees. We posit a probabilistic model for generation of hyper-edges {r, u,t} between
resources 7, users u and tags t. We impose natural conditional independence assumptions that conditioned on
the community memberships of individual nodes, the hyperedge generations are independent. In addition,
we assume that the users select tags for a given resource, based on the context in which the resource is
accessed. For instance, consider the resource as a paper that falls both in theoretical and applied machine
learning, as shown in Figure 1. If a user accesses the resource under the context of theory, he/she uses
tags that are indicative of theory. Note that we allow the users and tags to be in multiple communities;
however, the actual realization of an hyper-edge depends only on the context in which the resource was
accessed. Depending on what kind of user is tagging the paper, the likelihood of choosing various tags such
as application, latent variable model etc changes. The conditional independence assumption states that once
a user accesses the paper in certain context (e.g. looking for applications), the probability of using tags in a
category (e.g. applications, experiments) only depends on that context. There are many other such examples.
For example, a movie can be a drama about a political figure. A person who is mostly into politics will watch
this movie in the context of politics and use political tags (for example name of the person, specific political
events that where illustrated in the movie), while a person who is more into drama genre will use drama to
tag the movie.

While community models on general hypergraphs is NP hard, our setting is geared towards the setting
of folksonomies with users, resources and tags, and the assumptions we make naturally hold in this set-
ting. Importantly, we allow for general distributions for mixed community memberships. The earlier work
by Anandkumar et al. (2014a) on MMSB models on graphs is limited to the Dirichlet distribution. Note
that the Dirichlet assumption for community memberships can be limiting and cannot model general cor-
relations in memberships. Without the Dirichlet assumption, the earlier techniques, when applied directly,
would yield tensors in the Tucker form, which do not possess a unique decomposition and thus, the com-
munities cannot be learnt from the tensor forms. In addition, our moment forms are different since it is the
hypergraph setting and conditional independence assumptions are different. Thus, earlier work on MMSB
cannot be directly applied here.

In addition, we impose weak assumptions on the distribution of the community memberships. This is



required since the memberships are in general not identifiable when they are mixed. While the original
MMSB model (Airoldi et al., 2008) assumes that the communities are drawn from a Dirichlet distribution,
here, we do not require such a strong parametric assumption. Here, we impose a weak assumption that a
certain fraction of resource nodes are “pure” and belong to a single community. This is reasonable to expect
in practice. We establish that the communities are identifiable under these natural assumptions, and can be
learnt efficiently using spectral approaches.

Here, we propose a novel algorithm to detect pure nodes belonging to a single community. The presence
of pure nodes is natural to expect in practice and does not require the Dirichlet assumption. Our method
consists of two main routines. First, we design a simple rank test to identify pure resource nodes. The
algorithm involves first projecting hyperedges to subspace of top-k eigenvectors. It then involves performing
rank test on the matricization of connectivity vectors of each resource node, where rows correspond to users
and columns correspond to tags. We can then exploit these detected pure nodes to form tensors that can be
decomposed efficiently to yield the communities for all the nodes (and not just the pure nodes). We prove
that our proposed method correctly recovers the parameters of the MMSF model when exact moments are
input. This two stage algorithm is expected to have much wider applicability than the MMSB model which
is limited to the Dirichlet distribution. For this general model, we show a tight sample complexity that
n > k3 can recover the communities.

For the first step, we construct a matrix for each resource node, consisting of its edges to users and
tags. We show that this matrix is rank-1 in expectation (over the hyperedges) for a pure resource node. This
property enables us to identify such pure nodes. We then construct a 3-star count tensor using these estimated
pure resource nodes. We count the pure resource nodes, which are common to triplets of (user,tag) tuples
to form the tensor. We show that in expectation this tensor has a CP decomposition form, and requiring this
decomposition yields the community memberships after some simple post-processing steps.

We then carefully analyze the perturbation bounds under empirical moments, and show that the commu-
nities can be accurately recovered under some natural assumptions. The perturbation analysis for this step is
novel since it requires analyzing the effect of standard spectral perturbations on matricization and the subse-
quent rank test. We use subexponential Hanson Wright inequalities to obtain tight guarantees for this step.
These assumptions determine how the number of nodes n is related to the number of communities &, and a
lower bound on the separation p — ¢, where p denotes the connectivity within the same community, while ¢
denotes the connectivity across different communities. Such requirements have been imposed before in the
graph setting, for stochastic block models (Yudong et al., 2012) and mixed membership models (Anandku-
mar et al., 2014a). Here, we show that for MMSEF, the requirement is stronger, since intuitively, we require
concentration on a hypergraph instead of a graph. We employ sub-exponential forms of Hanson Wright’s
inequality to get tight bounds in the sparse regime, where the connectivity probabilities p, g are small. Thus,
we obtain efficient guarantees for recovering mixed membership communities from social tagging networks.

We establish that for the success of rank test, if p ~ ¢, we need the network size to scale as n =
Q (k3) (when the correlation matrix of community membership distribution is well-conditioned). For the
case where ¢ < p/k, we require n = Q (k‘z) This is intuitive as the role of g is to make the different
community components non-orthogonal for the rank test, i.e., ¢ acts as noise. Therefore, a smaller ¢ results
in better guarantees. For the success of tensor decomposition method, we require n = Q (k:g), when p, q
are constants, in the well-conditioned setting. Note that in comparison, for learning mixed membership
stochastic block model graphs, we require n = Q (k:2), from Anandkumar et al. (2014a), which is lower
sample complexity. This is because we need to learn more number of parameters in the hypergraph setting.
Moreover, for sparse graphs, the parameters p, ¢ decay with n, and we also handle this setting, and provide
the precise bounds in Section 4.



1.2 Related Work

There is an extensive body of work for community detection in graphs. Popular methods with guarantees
include spectral clustering (McSherry, 2001) and convex optimization (Yudong et al., 2012). For a detailed
survey, see (Anandkumar et al., 2014a). However, these methods cannot handle mixed membership models,
where a node can belong to more than one community.

Our algorithm is based on the tensor decomposition approach of (Anandkumar et al., 2013) for pair-
wise MMSB model in graphs. The method has been implemented for many real-world datasets and has
shown significant improvement in running times and accuracy over the state of art stochastic variational
techniques (Huang et al., 2013). The tensor consists of third order moments in the form of counts of 3-star
subgraphs, i.e., a star subgraph consisting of three leaves, for each triplet of leaves. The MMSB model as-
sumes a Dirichlet distribution for community memberships, and in this case, a modified 3-star count tensor
is used. It is shown that this tensor has a CP-decomposition form, and the components of the decomposition
can be used to learn the parameters of the MMSB model. However, this method cannot be extended easily
to general distributions, beyond the Dirichlet assumption, since for general distributions, the 3-star count
tensor only has a Tucker decomposition form, and not a CP form. In general, the model parameters are not
identifiable from a Tucker form. Thus, in graphs, mixed membership models cannot be easily learnt when
general distributions (beyond the Dirichlet distribution) for mixed memberships are assumed. In this paper,
we show that in the hypergraph setting, more general distributions of community memberships can be learnt,
when certain conditional independence relationships are assumed for hyper-edge generation.

Another limitation of the MMSB model is that due to the Dirichlet assumption, only normalized com-
munity memberships can be incorporated. However, in this case, the mixed nodes (i.e. those belonging to
more than one community) are less densely connected than the pure nodes, as pointed out by (Yang and
Leskovec, 2013). In contrast, in our paper, we can handle un-normalized community memberships vectors
(in a weighted graph), since we do not make the Dirichlet assumption, and thus, this limitation is not present.
However, for simplicity, we present the results in the normalized setting.

Scalable community detection in hypergraphs is in general challenging and most previous works are
limited to pure membership models, where a node belongs to at most one group (Brinkmeier et al., 2007;
Lin et al., 2009; Murata, 2010; Neubauer and Obermayer, 2009; Vazquez, 2009). Clustering in multipartite
hypergraphs can be seen as extensions of the co-clustering of matrices, where rows and columns are simul-
taneously clustered. In (Jegelka et al., 2009), extensions of co-clustering to the tensor setting is considered.
However, this setting can only handle pure communities, where a node belongs to at most one community.
A few works which do consider mixed communities in hypergraphs are heuristic without any guarantees,
and do not incorporate any statistical modeling (Wang et al., 2010; Chakraborty et al., 2012; Papadopoulos
et al., 2010). They mostly use modularity based scores without providing any guarantees. In this paper, we
present the first guaranteed method for learning communities in mixed membership hypergraphs.

2 Mixed Membership Model for Folksonomies

Setup:  We consider folksonomies modeled as tripartite 3-uniform hypergraphs over three sets of nodes,
viz., set of users U, set of tags T and set of resources R. An hyperedge {u,t,r} occurs when user u tags
resource r with tag ¢. For convenience, we will consider a matricized version of the {0, 1} hyper-adjacency
tensor, denoted by G e {0, 1}|U“|T|X 121, which indicates the presence of hyper-edges. The reason behind
considering matricization along the resource mode will soon become clear. We use the notation G ({u,t},r)
to denote the entry corresponding to the hyper-edge {u, ¢, 7}, and G({U, T}, r) to denote the column vector
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Figure 1: Overview of MMSF model for an example of machine learning articles (resources) tagged by
users. One article (resource) and the corresponding tags by two users are shown. Two communites of The-
oretical machine learning and Applied machine learning are assumed. The mixed community membership
of resources, users and tags are also shown.

corresponding to the set of hyper-edges {U, T',r}.

We consider models with & underlying (hidden) communities and let [k] := {1,2,...,k}. For node 4,
let m; € R* denote its community membership vector, i.e., the vector is supported on the communities to
which the node belongs. Let ITyy := [r; : i € U] € RF*IUl denote the set of column vectors denoting the
community memberships of users in U, and similarly define I1; and I1g. Let IT := [m; : i € U UT U R].

We now provide a statistical model to explain the presence of hyper-edges {u, t,r} among users, tags
and resources through the community memberships. We consider a mixed memberships model, where
there are multiple communities for users, tags and resources. Intuitively, users belonging to certain groups
(i.e. interested in certain topics) will tend to select resources mainly comprised of those topics. The tags
employed by the users are dependent on the contextual category of the resource selected by the user. This
intuition is formalized under our proposed statistical model below.

Let z, (1) € R” be a coordinate basis vector which denotes the community membership of user u
when posting tag ¢ and resource r, and similarly let 2, 1, 11, 2 {4} denote the memberships of resource
r and tag ¢ when participating in the hyperedge {u,t,7}.

Let P € R¥** be the community connectivity matrix, where P; ;j denotes the probability that a user in
community ¢ selects a resource in community j. Similarly, let P € R¥*k denote a matrix such that each
entry ]51 ;j denotes the probability that a tag in community 7 is associated with resource in community j.

The proposed mixed membership stochastic folksonomy (MMSF) is as follows:

e For each node ini € U UT U R, draw its community membership vector m; € R¥, i.i.d. from some
distribution f;.

e For each triplet {u,,r}, draw coordinate basis vectors 2, 3 ~ Multinomial(7y,), 2z {u,} ~
Multinomial(7¢) and 2,_, ¢, ;) ~ Multinomial(7,) in a conditionally independent manner, given II.



e Draw random variables

Br—)u;t ~ Bernouni(ZIﬁ{t,r}PZT—){“ﬂf})

Byt ~ Bernoulli(z,', {M}PzH{u,t} ). (D)
The presence of hyper-edge G ({u,t},r) is given by the product

@({u, t}a 7“) = Er—m;t : Br—)t;u- 2)

The use of variables 2, (4 11, 2¢—s{ur} a0d 2., () allows for context-dependent selection of group
memberships as in the MMSB model. Given a resource and its context, a user may choose to access the
resource, and probability of using a tag on a resource depends on context of the tag and the resource. Given
the context of user, tag and the resource, these two events are independent. In order to have a hyper-edge,
we need both events to happen and this explains Eqn. (2).

Ours is a resource centric model, where a resource can be regarded as comprising of many fopics or
communities. Which tags get associated with the resource is dependent on the context of the resource
Zr_s{u,t} and the tag z;_,r, 1 and similarly, which user selects a resource is dependent on the context of the
user z,,_, (¢ -} and the resource z,_, . The hyper-edges are drawn according to (2) and thus, matricization
along the resource mode is convenient for analysis. Our model is resource centric and not user centric. The
intuition is that the tags associated with a resource are dependent on the context that the resource is being
accessed and the likelihood of the user accessing a resource is dependent on his/her current group and the
context of the resource. Figure 1 provides an instance of a hypergraph where the resource is a paper and
communities consist of theoretical and applied machine learning.

Unlike the pairwise MMSB model (Airoldi et al., 2008), where the edges are conditionally independent
given the community memberships, in the proposed MMSF model, the edges R«_mu and Rq_m;t contained
in the hyperedge {u,t,r} are not conditionally independent given the community memberships, since they
are selected based on the common context z,._, 1, ;1 of the resource r. Thus, the MMSF model is capturing
dependencies beyond the pairwise MMSB model. At the same time, the MMSF model has conditionally
independent hyperedges given the community memberships, which leads to tractable learning.

We do not take the approach of modeling hyperedges directly, i.e., through a community connectivity
tensor in P € RF*FXk where Isa,b,c would give the probability that a user in community a would have
an hyperedge with resource b and tag c. This would lead to k3 unknown parameters, while our model has
only k% unknown parameters. Moreover, if the user at a certain point is interested in some topic (i.e. draws
Zy—{t,;} IN SOmMe community), then he looks for resources and tags having significant membership in that
topic (modeled through draws of z;_, ¢, ;3 and z,_,,+}) and this will generate the hyper-edge u — {t,7}.

We assume that the community vectors are drawn i.i.d. from a general unknown distribution: for i € [n],

Wii.k“d. f(-), supported on the (k — 1)-dimensional simplex A*~1

A= {7 e R w(4) € [0,1),) (i) = 1},

%

The performance of our learning algorithms will depend on the distribution of 7. In particular, we assume
that with probability p, a realization of 7 is a coordinate basis vector, and thus, about p fraction of the nodes
in the network are pure, i.e. they belong mostly to a single community. In this paper, we investigate how the
tractability of learning the communities depends on p.
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Figure 2: Our moment-based learning algorithm uses 3-star count tensor from set X to sets A, B, C'.

3 Proposed Method

Notation:  For a matrix M, where M = U DV'T is the SVD of M, let k-svd(M) := UDV " denote the
k-rank SVD of M, where D is limited to top-k singular values of M. A matrix A € RP*9 is stacked as a
vector a € RPY by the vec(-) operator,

a=vec(A) & a(ir — 1)g +i2)) = A(iy, i2).

The reverse matricization operation is denoted by mat(-), i.e. above A = mat(a). Let A * B denote
the Hadamard or entry-wise product. Let k-svd(M) of a matrix M denote its restriction to top-k singular
values, i.e. if M = UAV ", k-svd(M) = UkAkaT, which denote the restriction of the subspaces and the
singular values to the top-k ones.

In this paper, we consider the problem of learning the community vectors m;, for i € [n], given a
realization of the (matricized) hyper-adjacency matrix G € RIEXIVITI We will employ a clustering-based
approach on the hyper-adjacency matrix, but employ a different clustering criterion than the usual distance
based clustering. our method is shown in Algorithm 1.

Our method relies on finding pure resource nodes and using them to find communities for the resource,
tag and users. A pure resource node is a node that is mainly corresponding to one hidden community.
Therefore, finding that node paves the way for finding resource communities. In addition, since this is a
resource-centric model, looking at the subset of hyper graph with pure resources, all tags and all users,
suffices to find the communities for users and tags as well. Since we assume knowledge of community
connectivity matrices, we can learn community memberships for mixed resource nodes as well. We now
provide the details of our proposed method.

Projection matrix:  We partition the resource set R into two parts X and Y to avoid dependency issues
between the projection matrix and the projected vectors, and this is standard for analysis of spectral cluster-
ing. Now let k-svd(G({U, T},Y)) = MyAV," and we employ Proj := MM, as the projection matrix.
We project the vectors G ({U, T}, x) for x € X using this projection matrix.

Rank test on projected vectors: In the usual spectral clustering method, once we have projected vectors
Pr/o\j G ({U,T},z) € RIVHTI any distance based clustering can be employed to classify the vectors into
different (pure) communities. However, when mixed membership nodes are present, this method fails. We
propose an alternative method which considers a rank test on the (matricized form of) the projected vectors.
Specifically consider the matricized form mat(Pr/o\j G ({U,T},z) € RIVIXITl and check whether

o1(mat(Proj G({U, T}, z))) > 71 and o9(mat(Proj G({U, T}, z))) < 72



and if so, declare the node * € X as a pure node. Interchange roles of X and Y and similarly find pure
nodesin Y.

Learning using estimated pure nodes:  Once the pure nodes in resource set R are found, we can employ
the tensor decomposition method, proposed in (Anandkumar et al., 2014a), for learning the mixed member-
ship communities of all the nodes. The pure nodes are employed to obtain averaged 3-star subgraph counts.
Partition {U, T'} into three sets A, B, C' as shown in Figure 2. The 3-star subgraph count is defined as
~ 1 ~ ~ ~
Thoane = 15 > G, AT ©C(rB) ©Gr0)T, (3)

reR

where R denotes the set of pure resource nodes. The method is explained in Appendix B.

Reconstruction after power method: Since we do not have access to the exact moments we need to do
additional processing: the estimated community membership vectors are then subject to thresholding so that
the weak values are set to zero. This modification makes our reconstruction strong as we are considering
sparse community memberships. Also note that assuming knowledge of community connectivity matrices,
we can learn community memberships for mixed resource nodes as well. This is shown in Algorithm 3 in
the Appendix.

Algorithm 1 {IT} + LearnMixedMembership(G, k, 71, 7)

Input: Hyper-adjacency matrix G € RIVHTIXIRI [ i the number of communities, and Ty, T2 are thresholds
for rank test.
Output: Estimates of the community membership vectors II.
1: Partition the resource set R randomly into two parts X, Y.
2: R =Pure Resource Nodes Detection(X, Y, U, T).
3 11 TensorDecomp(@({U, T},-), R)
4: Return II.

Procedure 2 Pure Resource Nodes Detection
Input: X,Y,U,T. . R
1: Construct Projection matrix Proj = My, M, , where k-svd(G({U,T},Y)) = MpALV,'.
. Set of pure nodes R < 0.
: forz € X do R R
if o1 (mat(Proj G({U, T}, z))) > 1 and oz (mat(Proj G({U, T},))) < 7 then
R+ RU {z}. {Note mat(Proj G({U, T}, z)) € RIUIXITI is matricization}
end if
end for
: Interchange roles of X and Y and find pure nodes in Y.
. Return R.




4 Analysis of the Learning Algorithm

Notation: Let O(-) denote O(-) up to poly-log factors. We use the term high probability to mean with
probability 1 — n~° for any constant ¢ > 0.

4.1 Assumptions

For simplicity, we assume that the community memberships of resources, tags and users are drawn from the
same distribution. Further, we consider equal expected community sizes, i.e. E[r] = 1/k-17. Additionally,
we assume that the community connectivity matrices P, P are homogeneous' and equal

P=P=(p—ql+ql’, 4)

p,q € R. These simplifications are merely for convenience, and can be easily removed.

Requirement for success of rank test: ~We require that?

o 2
n=0 <ak(E[mT])3 k(E[rrT]) 2 < (}(f’_ ch’;/jgiqq) ) , 5

where k(-) denotes the condition number and o (+) denotes the k™ largest singular value.
We assume that max;e( 7:(i) = 1 — €,¢ = O(1) and hence there exists no node such that their 7 is
between 1 and mp.x.

Requirement for success of tensor decomposition:  Recall that the tensor method uses only pure re-
source nodes. Let p be the fraction of such pure resource nodes. Let w; := P[r.(i) = 1|r € R]. For
simplicity, we assume that w; = 1/k. Again, this can be easily extended.

We require the separation in edge connectivity p — ¢ to satisfy

(P—a)? _ vk
o (m-om[mn) | ©

Intuitively this implies that there should be enough separation between connectivity within a community
and connectivity across communities.

Dependence on p, ¢:  Note that for the rank test, (5), in the well-conditioned setting we have o, (E[r7]) =
O(1/k). Then if p ~ g, we need n = Q (k%). For the case where ¢ < p/k, we will require n = Q (k?).
This is intuitive as the role of g is to make the components non-orthogonal, i.e., g acts as noise. Therefore,
smaller ¢ results in better guarantees. 55 For the tensor decomposition method to be successful,i.e., Equa-
tion (6), in the well-conditioned setting, if we have n = Q (k:3), this means p, g are constants. Alternatively,
for sparse graphs, we want p, g to decay. According to the constraints, we need a larger n. This is intuitive as
in case of sparse graphs our observations convey less information about unknown community memberships.
Therefore, we need more samples.

Note that Anandkumar et al. (2014a) require n = O(k?) while we need n = O(k3). The reason is
that we are estimating a hypergraph (they estimate a graph) and we are estimating more parameters in this
model. Therefore, we need more samples.

'Our results can be easily extended to the case when P and P are full rank.
202, O represent 2, O up to poly-log factors.



4.2 Guarantees

We now establish main results on recovery at the end of our algorithm. We first show that under the assump-
tions in the previous section, we obtain an ¢ guarantee for recovery of the membership weights of source
nodes in each community. We should note that this result can be extended to recovery of membership for
tag and user nodes as well. In this case, there will be additional perturbation terms.

Let II be the reconstruction of communities (of resources, users and tags) using the tensor method in
Algorithm 3 in the Appendix, but before thresholding. For a matrix M, let (M)’ denote the " row. Recall
that (IT)? denotes the memberships of all the nodes in the i community, since TT € RUEIFIVIHTDxE e
have the following result:

Theorem 1 (Reconstruction of communities (before thresholding)) We have w.h.p.

— max I(IT) — i A \/E'p"‘f(E[WWT])
ex = max ()" — (1) ||—0< o= aP ) @

Remark: Note that the /2 norm above is taken over all the nodes of the network and we expect this to be
O(4y/n) if error at each node is O(1). Assuming E[r7 "] is well conditioned and when p, p,q = Q(1), we
get a better guarantee that ¢, = O(Vk).

Now we further show that when the distribution of 7 is “mostly” sparse, i.e. each node’s membership
vector does not have too many large entries, we can improve the above ¢» guarantees into ¢; guarantees via
thresholding.

Specifically, assuming that the distribution of 7 satisfies

Pir(i) > 7] < %log(l/T), vi < [k]

for T = O(e - %) we have the following result. This is equivalent to the case that the tail 7 is exponentially
small in £, i.e., sparsity.

Remark: Dirichlet distribution satisfies this assumption when ) . o; < 1, where «; represent the Dirich-
let concentration parameters.

Theorem 2 (¢, guarantee for reconstruction after thresholding) We have

oo D)o (SRS

where I is the result of thresholding with T = O(er - %)

Remark: Note that the /; norm above is taken over all the nodes of the network and we expect this to be

O(n) if error at each node is O(1). Assuming E[r7 '] is well-conditioned and when p, p, ¢ = Q(1), we get

a better guarantee of O(/n). Hence, we obtain good error guarantees in both cases on ¢; and ¢ norms.
For proof of the Theorems, see Appendix C.
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5 Overview of Proof

5.1 Analysis of Graph Moments under MMSF
5.1.1 Overview of Kronecker and Khatri-Rao products:
We require the notions of Kronecker A ® B and Khatri-Rao products A ® B between two matrices A and
B. First we define the Kronecker product A ® B between matrices A € R"**1 and B € R"2**2 Its (i, j)*
entry is given by
(A® B)ij = Ay ji Bigjo, 1= {ir,i2} € [m] x [n2],j = {j1,j2} € [ka] X [k2].
Thus, for two vectors a and b, we have
(a®b)i = ai by, i={i1,iz} € [m] x [na].
For the Khatri-Rao product A ® B between matrices A € R"** and B € R"2** we have its (i, j)" as
A©B(,j) = AiyjBisj, 1={i1,i2} € [n1] x [n2], j € [K].
In other words, we have
A@B::[a1®b1 as ® by ...ak®bk],

where a;, b; are the i™ columns of A and B. Note the difference between the Kronecker and the Khatri-Rao
products. While the Kronecker product expands both the number of rows and columns, the Khatri-Rao
product preserves the original number of columns. We will also use another simple fact that

(A® B)(C® D) = AC ® BD. )

5.1.2 Result on Correctness of the Algorithm

Recall that P € [0, 1]*** denotes the connectivity matrix between communities of users and resources and
Pe [0, 1]*** denotes the corresponding connectivity matrix between communities of resources and tags.
Define

F:=1I,P, F:=II.P. (10)

Let F,, = 7, P be the row vector corresponding to user « and similarly F, corresponds to tag t. Similarly,
let )4 = IT P be the sub-matrix of F.

We now provide a simple result on the average hyper-edge connectivity and the form of the 3-star counts,
given the community memberships.

Proposition 1 (Form of Graph Moments) Under the MMSF model proposed in Section 2, we have that
the generated hyper-graph G € {0, l}lU"|T|X‘R| satisfies

G :=E[G] = (F © F)lI, (11)

where © denotes the Khatri-Rao product. Moreover, for a given resource r € R, the column vector
G({U,T},r) has conditionally independent entries given the community membership vector m,. If R C R
is the set of (exactly) pure nodes, then the 3-star count defined in (3) satisfies

Tranc =ElTi apclll = wi(Ha® Hp ® He), (12)
1€[k]
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where w; is .
w; = Plm,(i) = 1|r € R],

and Hp := Fy4) © FT(A), and similarly, Hp and H¢.

The above results follow from modeling assumptions in Section 2, and in particular, the conditional inde-
pendence relationships among the different variables. For details, see Appendix A.

In (11), note that if a column of G({U, T}, X') corresponds to a pure node x € X, then the matrix
has rank of one, since 7, corresponds to a coordinate basis vector. On the other hand, for the case where
columns correspond to mixed nodes, the matrix has rank bigger than one. Thus, the rank criterion succeeds
in identifying the pure nodes in X under exact moments.

Lemma 3 (Correctness of the method under exact moments) Assume F @ F has full column rank, and
11y has full row rank, where Y C R is used for constructing the projection matrix, then the proposed method
LearnMixedMembership in Algorithm [ correctly learns the community membership matrix 11

Proof:  Using the form of the moments in Proposition 1, we have that if » € R is a pure node, then
G({U,T},r) = (F ® F)m, is rank one since it selects only one column of F' ® F'. Thus, the rank test in
Algorithm 1 succeeds in recovering the pure nodes. The correctness of tensor method follows from (Anand-
kumar et al., 2014a). (]

Since we only have sampled graph G and not the exact moments, we need to carry out perturbation
analysis, which is outlined below.

5.2 Perturbation Analysis

Recall that Proj = MM . is the projection matrix corresponding to k—svd(@ ({U,T},Y)) = MpALV,.
In the similar manner Proj is the projection matrix corresponding to k-svd(G({U,T'},Y)). Define the
perturbation between empirical and exact moments upon projection as

my = | Proj G{U, T}, z) — G{U,T},2)||, V2 € X, erank := max |[mg|. (13)
The above perturbation can be divided into two parts
Ima|| < || Proji(G{U, T}, @) — G({U, T}, )| + [|(Proj — Prof) G{U, T}, )]

The first term is commonly referred to as distance perturbation and the second term is the subspace pertur-
bation. We establish these perturbation bounds below.
We begin our perturbation analysis by bounding m, as defined in Eqn. (13).

Lemma 4 (Distance perturbation) Under the assumptions of Section 4.1, with probability 1 — 0, we have
forallx € X,

!

~ o~ C 1/2
| PRI, T}, ) — GUU.T}, 2) ] < vVhp <1 + <1og<n/6>>4> ,

for some constant C' > 0.

See Appendix C.1 and Appendix C.2 for details. Notice that the subspace perturbation dominates.

12



Lemma 5 (Subspace perturbation) We have the subspace perturbation as

I(Proj —Proj)G{U, T}, )| < 205 (Iy )/ | F © Fl1.

Under the assumptions of Section 4.1, w.h.p. this reduces as

r/o\'— roj T v (P4
|(Proj —Proj)G({U, T'}, )||§0< or(ElrrT]) ( k +q>>'

See Appendix C.2.

5.3 Analysis of Rank Test

Recall that from the perturbation analysis, we have bound R,k on the error vector m,, defined in (13). We
assume there exist no node such that max;e;) 7. (i) is between the threshold given in (14) and 1. We have
the following result on the rank test.

Lemma 6 (Conditions for Success of Rank Test) When the thresholds in Algorithm 1 are chosen
0<7 < miin I(F)ill - |(Fr)ill — €Ranks T2 > €Ranks

then all the pure nodes pass the rank test. Moreover, any node x € X passing the rank test satisfies

=2

> n ) (14)
ic[k] max; ||(Fu )il - |(Fr)l|

Proof: See Appendix C.3. U

The above result states that we can correctly detect pure nodes using the rank test. The conditions stem
from the fact that we require the top eigen-value to pass the test and the second top eigen-value to not
pass the test. For a pure node, al(mat(Pr/o\j G({U1, T1}, z))) is min, ||(Fur, )il - I|(Fr, )s]|. To account for
empirical error, we consider erank. In addition, the second-top eigen-value can be as small as 0. We also
note the error in empirical estimation. This result allows us to control the perturbation in the 3-star tensor
constructed using the nodes which passed the rank test.

6 Conclusion

In this paper, we propose a novel probabilistic approach for modeling folksonomies, and propose a guaran-
teed approach for detecting overlapping communities in them. We present a more scalable approach where
realistic conditional independence constraints are imposed. These constraints are natural for social tagging
systems, and they lead to scalable modeling and tractable learning. While the original MMSB model as-
sumes that the communities are drawn from a Dirichlet distribution, here, we do not require such a strong
parametric assumption. Note that the Dirichlet assumption for community memberships can be limiting
and cannot model general correlations in memberships. Here, we impose a weak assumption that a certain
fraction of resource nodes are “pure” and belong to a single community. This is reasonable to expect in prac-
tice. We establish that the communities are identifiable under these natural assumptions, and can be learnt
efficiently using spectral approaches. Considering future directions, we note that social tagging assumes a
specific structure. Therefore, it is of interest to extend this model to more general hypergraphs.
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Appendix

A Moments under MMSF model and Algorithm Correctness

Proof of Proposition 1: We have

E[G ({u, £}, 7) |, 71, 7] @ EIEIG ({11, £, 7) |20 ) Tt T ol

~

() 5
= E[E[Br—m;t : Br—>t;u‘zr—>{u,t}7 T, 7Tu] ‘Wr]

(i_) E[Fuzr%{u,t} ’ th?"*{uvt}hn]’ (15

where (a) and (b) are from the assumption (2) that
a({uv t}a 7") = Er—m;t : B\r—>t;u7

where Er_m;t and Er_mu are Bernoulli draws, which only depend on the contextual variables z,. ¢, 1}, Zu—s {7}
and 2;_, ), and therefore G ({u,t},7) — 2, quy — 7 form a Markov chain. This also establishes that

G ({u,t},7) and G({«/, '}, r) are conditionally independent given the community membership vector .,
foru # u and t # .
For (c), we have that

~ ~

E[Br—ust2r 5 futys Tul = BIE[Brout]2r 5 futys Zus {r}] 17l
= Elzy, (10y P2ros fut} 20— futy Tl
=Ty P2y uny
= Fuzr gy

from (1) and the fact that
E[zu%{t,r}hru] = Ty-
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Thus, we have

~ (a) -
E[G({Uv T}’ 7“)‘71}, Lr, HU} = E[Fzrﬁ{u,t} ® FZT—>{u,t}|7rT]

b ~
ORI(F© F) (2 ue) @ 2 usy) 0]

DN @) (F e F)eoe)

1€[k]

—
=

:(F@F)T('T,

where (a) follows from (15) and (b) follows from the fact (9). (c) follows from the fact that z,_,,, ;) takes
value e; with probability 7, (i), where e; € R is the basis vector in the i coordinate. (d) follows from the
definition of Khatri-Rao product.
The form of the 3-star moment is from the lines of (Anandkumar et al., 2014a, Prop 2.1), and relies on
the assumption that R consists of pure nodes.
O

B Learning using Tensor Decomposition

We now recap the tensor decomposition approach proposed in (Anandkumar et al., 2014a) here. This is
shown in Algorithm 3 with modifications specific to our framework.

We partition U, T into three sets for the different tasks explained in the Algorithm 3. Also note that with
knowledge of community connectivity matrices, we can learn community memberships for mixed resource
nodes as well.

Procedure 3 (II) + TensorDecomp(G, R)

Let P € R¥** be the community connectivity matrix from user communities to resource communities
and similarly P is connectivity from tag communities to resource communities. R are estimated pure
resource nodes. Partition {U, T'} into {U;, T;} fori = 1,2, 3.

Compute whitened and symmetrized tensor 7 < G- R {A,B,C} (WA7 WBS AB, WCS Ac) where A, B,C
form a partition of {Us, T»}. Use {Us, T3} for computing the whitening matrices.

{X, ®} «TensorEigen(T), {WX @ZT Atiga, N). A ® is a k x k matrix with each columns being an estimated
eigenvector and \ is the vector of estimated eigenvalues. }

Il < Thres(Diag(X)~ 1(I>TWZGRA, 7).

return (ﬁ)

C Perturbation Analysis: Proof of Theorems 1, 2

Notation:  For a vector v, let ||v|| denote its 2-norm. Let Diag(v) denote a diagonal matrix with diagonal
entries given by a vector v. For a matrix M, let (M); and (M) denote its i column and row respectively.
Let || M||; denote column absolute sum and || M|, denote row absolute sum of M. Let M denote the
MoorePenrose pseudo-inverse of M.

15



Procedure 4 {\, ®} <+ TensorEigen(T’, {v;};c|], V) (Anandkumar et al., 2014a)

Input: Tensor T € R¥**¥F [, initialization vectors {v; };cr,, number of iterations V.
Output: the estimated eigenvalue/eigenvector pairs {\, ®}, where \ is the vector of eigenvalues and P is
the matrix of eigenvectors.
fori=1to k do
forr=1to L do
90 — VUr.
fort =1to N do
T+ T.
for j =1toi— 1 (when? > 1) do
if |\;0{", ;)| > € then
T — T — )\j ¢;®3
end if
end for . 1o o)
: ; T) . Yi—17t—1
Compute power iteration update 0, ’ := TR0 8]
end for
end for
Let 7* := arg maXTeL{T(GE\;), 0](\;), 6?](\;))}.
Do N power iteration updates starting from 9%*) to obtain eigenvector estimate ¢;, and set \; :=
T(¢i, ¢is $i)-
end for
return the estimated eigenvalue/eigenvectors (\, ®).

C.1 Distance Concentration: Proof of Lemma 4

The proof is along the lines of (McSherry, 2001, Theorem 13) but we apply Hanson-Wright bound in Propo-
sition 5 to get a better perturbation guarantee without the need for constructing the so-called combinatorial
projection, as in (McSherry, 2001).

We have h, := G(x; {U, T}) — G(x; {U,T}) and let 02 = max; E[h,(i)%|r,]. Note the simple fact

— ) —
| Proj he||* = b} Proj” hy = h, Projhy,

since Pr/o\j is a projection matrix. From Proposition 1, we have that the entries of h, are conditionally
independent given m,.. Thus, the Hanson-Wright inequality in Proposition 5 is applicable, and we have with
probability 1 — 4, forall z € X,

hT Pro} hy < E[h] Pro} halm] + C'o?|| Proj ||r (log(n/6))* (16)
Now || Proj ||r < vk Proj || = V. The expectation is
E[h, Proj hg|ms] < tr(Proj)o? = ko2,
using the property that Pr/(;j is idempotent. Thus, we have from (16), with probability 1 — ¢, for all x € X,

h Proj hy < ko? 4+ C'Vko? (log(n/8))*,

16



and we see that the mean term dominates and the bound is O~(k02).
Draw random variables

Er_m;t ~ Bernoulli(zqfﬁ{w}PZT_>{u,t})

Bt ~ Bernoulli(z;{um}?zr%{u,t}).
The presence of hyper-edge G({u,t},r) is given by the product
@({u, t}, T) = Er—)u;t : Br—n‘;u-

The variance is on lines of proof of Lemma 10 and we repeat it here.

max E[h, (i)%|7.] = max E[Bysu:tBootu — (F O F)my)ui)?
% ueUweV

< FOF
<, (P o Py

< . i . .
< Gax ) FPug)P(tj)m()
JElk]

< max > P(i,5)P(i, j)ma())
JE(K]

< P2

max

C.2 Proof of Lemma 5

From Davis-Kahan in Proposition 6, we have
I(Proj —1G({U, T}, Y)|| < 2|G{U, T}, Y) - GHU, T}, Y)].
and thus
|(Proj —I)G({U, T}, 2)|| < 2lG{U, T}, Y) — GHU. T}, Y)| - |GHU, T}, V)T - GHU, T}, )|

Now,
G({U7 T}; Y)T = <(F ®© F)Hy)T = HL(F ® F)T’

since the assumption is that F' © F has full column rank and IIy has full row rank. Thus, we have
GUU, T}, Y) - G{U, T}, 2) =T (F © F)|(F © F)m, =TT, -,

since (F © F)Y(F ® F) = I due to full column rank, when |U| and |T'| are sufficiently large, due to
concentration result from Lemma 11. Note that under assumption A3, the variance terms in Lemma 11 are
decaying and we have that ' ® F" has full column rank w.h.p. From Lemma 10, we have the result.

C.3 Analysis of Rank Test: Lemma 6

Consider the test under expected moments G := E[CA} ITT]. For every node € X (R is randomly partitioned
into X, Y’), which passes the rank test in Algorithm 1, by definition,

| mat(G({U, T},z))|| > 71, and oo(mat(G({U,T},z))) < To.

17



We use the following approximation.

1Bl = /(0 — )2 T2 + ng? + 2(p — )a| T
Recall the form of GG from Proposition 1
mat(G({U,T},z)) = Fy Diag(m, )7 .

First we consider the case, p ~ q. Following lines of Anandkumar et al. (2014b), we have that

o1 — Tonax(E2 + )2] < ||| + eRank

k
where
p—q E[r7]|l¢? Elr7']llq?
11 < VErsman(® +q)an[_q e {p B + VECT |
(B2 +q) (%! +49)

Hence, we have that

pb—q -
o9 > 7r2,maxn( L + Q)2 - ||E|| — €Rank _(1/M) €Rank _7T3,maxnp2HE[7r7TT] H7
h > (1 d = Hpu—pr—pE — IF — (23]
where we assume Tmax > (1 + ()72 max and fi : T LR = ) BB (BT

We note that e, dominates || E|| and the last term. Therefore,

pP—4q

A + Q)2 - (1 + 1//1) €Rank>

T9 — €Rank = ag(mat(G({U, T}7 IL'))) > 772,maxn(

and

T1 + €Rank < ||FU Dlag(wx)FjTH
< e 0 [ (Fu )il - B )il + om0 + )7

< WmameaXH(FU)lH : H(FT)ZH + 10 + 1/,&6Rank-

Combining we have that any vector which passes the rank test satisfies

71 — T2 + (1 = 1/[1) €Rank
max; || (Fu)ill - [|(Fr)ill

Tmax =

Now, for the case where g < p/k, the bound on || E'|| is almost 0, ur ~ 1 and ur = 0. Hence Eqn. (C.3)
always holds. This is intuitive as the role of ¢ is to make the components non-orthogonal, i.e., ¢ acts as

noise. Therefore, smaller g results in better guarantees.

With |U| = |T'| = ©(n), and using the concentration bounds in Lemma 11, we have that with probability

1-4,

IFu)ill - | (Fr)ill = O (VIUT-TTElam "] - (b = g + Vha) )

assuming homegenous setting.
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For erank, the subspace perturbation dominates. From Lemma 11, we have

2
HF@FH1=O<TL2 (pkq+q> )

Thus, we have the subspace perturbation from Lemma 5 as

€Rank = O ( Uk(é?;WT}) . <p;q +Q>> .

Substituting for the condition that 71 = Q(€Rank ), we obtain assumption (5). Thus, the rank test succeeds in
this setting.

C.4 Perturbation Analysis for the Tensor Method

This is along the lines of analysis in (Anandkumar et al., 2014a). However, notice here due to hypergraph
setting, we need to redo the individual perturbations. Recall that w; := P[i = arg max; 7(j)| is pure| and
p = P[r is pure]. The size of recovered set of pure nodes R = ©(np), assuming np > 1.

We provide the perturbation of the whitened tensor. Let @ := WXH A Diag(n)l/ 2 be the eigenvectors
of the whitened tensor under exact moments and A := Diag(n)_l/ 2 be the eigenvalues. S, S respectively
denote the exact and empirical symmetrization matrix for different cases based on their subscript.

Lemma 7 (Perturbation of whitened tensor) We have w.h.p.

€T = ?RH{A,B,C}(WAaWBS\ABv WC§AC) - Z Ai‘b®3
1€[k]

_ p
=0 </7prmin “(p—q)?- Uk(E[mTT])) (17)

Proof: Let7 := E[?\HA,B,C].
€1 1= H'?\-(WA, WB§A37 WCS\AC) — T(WA, WB§A37 WCS’\AC)H
€9 1= HT(WA, WBgAB, WO§AC) - T(WA, WgSag, WCSAC)H
For €71, the dominant term in the perturbation bound is

Z (WZ(GAJ — HA7T2‘)> H)

1 .
€Y

R

Z <WX(GAJ — HAM)) H>

The second term is




since due to whitening property.
Now imposing the requirement that
€ <O ()\minTQ) ,
from Theorem 11 (Anandkumar et al., 2014a), Ayin = 1//Wmax, and we have » = ©(1) by initialization
using whitened neighborhood vectors (from lemma 25 (Anandkumar et al., 2014a)). €; is not the dominant
error, on lines of (Anandkumar et al., 2014a). Now for €2, we require

Wmin

ew < = 17
Wmax
and using Lemma 8, we have
(p=9)° _ VWmax 1
P Wmin  1p - ox(ElnmT])

Lemma 8 (Whitening Perturbation) We have the perturbation of the whitening matrix W4 as w.h. p.

ew = || Ding(@)/2H} (W — W) = O (m oo ak@[wﬂ)) |

Proof: From (Anandkumar et al., 2014a, Lemma 17), the whitening perturbation under the tensor method
is given by

. T 6
ew := || Diag(w)"/2H } (W4 — Wa)|| = O <O.(Z)> -
min R,A

Using the bounds from Section C.5, we have

e += |GUU.T), ) ~ 6qU.T), )l = 04/ IF 0 Fll) = 0 (n (P2 +4) ).

omin(Gp 4) = Q <\/ | R|wimin - O'min(HA)>

= Q (/N pWmin - Omin(Ha)) -

and

From Lemma 12, we have
Omin(HA) = omin(Fa © FA) =0 <n(p — q)2 Z11]1;2 (E[ﬂ'?] — E[ﬂﬂg])) .
Finally note that oy (E[r7 "]) = © (min; j; (E[r?] — E[m;7;])). Substituting we have the result. O

7
Let IIz be the reconstruction after the tensor method (before thresholding) on resource subset Z C R—R

(we do not incorporate R to avoid dependency issues), i.e.
My := Diag()\)_1<I>TWXG;’A.

Lemma 9 (Reconstruction of communities (before thresholding)) We have w.h.p.

NG i €T €T T
= II7) — (IIz)"| = —=||IIz]| = —_— E . 18
er = max (12)" ~ (1)) = Tzl = 0 (.- valgea"1)) a9
Proof: This is on lines of (Anandkumar et al., 2014a, Lemma 13). ]
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C.5 Concentration of Graph Moments

Lemma 10 (Concentration of hyper-edges) With probability 1 — 0, given community membership vectors
H)

ec = |GUU,T},Y) - GH{U, T}, Y)| = O(max(\/HF © Fl, \/II(P * P)ly ||oc))

Remark: When number of nodes 7 is large enough, the first term, viz., 1/ ||F ® F'||; dominates.

Proof:  The proof is on the lines of (Anandkumar et al., 2013, Lemma 22) but adapted to the setting of
hyper-adjacency rather than adjacency matrices. Let m,, := G {U,T},y)-GH{U,T},y)and M, := myeg
and thus

GU{U.T}.Y) - G{U,T},Y) Z M,

Note that the random matrices M, are conditionally independent for y € Y since m,, are conditionally inde-
pendent given 7y, and in each vector m,, the entries are independent as well. We apply matrix Bernstein’s
inequality. We have E[M,|TI] = 0. We compute the variances Y, oy E[M, M, |TI] and 3, E[M, M, |TI].
We have that } JE[MyMy—r |IT] only the diagonal terms are non-zero due to independence, and

E[M,M, |11} < Diag((F ® F)m,) (19)
entry-wise, assuming Bernoulli random variables. Thus,

T . ~ . .
| 2 EM, M| < max Z F(u, j)E(t, j)my(5)
yey yeY,jE(K]

= uenlljé,ii}e(T Z F(u,j)F(t,])HY(J’y)
yeY,jEK]

< rrelf[j;j]( Z P(Z,])p(lvj)HY(Jv y)
= yevijek)
= [|(P  P)TTy | oo, (20)

where * indicates Hadamard or entry-wise product. Similarly Zer [MyT Myl =3 ey Dlag(]E[m my)) <

|(P % P)Iy||s. From Lemma 11, we have a bound ||(P % P)IIy||so. R
We now bound ||M,|| = ||m,|| through vector Bernstein’s inequality. We have for Bernoulli G,

uer%iéT\G({u,t},y) - G({u,t},y)] <2

and

ST EGHu,thy) - GHuth )P < Y (FOF)ry)u < ||F© FJi.

ueUteT welU,teT

Thus with probability 1 — §, we have

1My ]| < (1+ v/8log(1/0)\/ | F © Fl1- +8/31log(1/5).

Thus, we have the bound that || >0, M, || = O(max(\/HF o Fl|;, \/H(P « Py ||s0)). O
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For a given 6 € (0, 1), we assume that the sets U, T"and Y C R are large enough to satisfy

8 Ul-|T
T2 Siog 210

1)
8. Y]
Y| > - log—.
VIY| 2 S log —
Lemma 11 (Concentration bounds) With probability 1 — 4,
|FoF|; < . . M
1 < |U] - |7 max(P - E[x]); max(P - E[x !U\ Phax 5

I1(F © F)il| < max ||Tyl| - |[Tz]| - [7]] - || 2]

—0<\/7|THE7T7T (p— q+fQ))

for the homogeneous setting. Similarly for subset Y C R, we have

8 Y]
Ty Iy || < Y] [[Efrm "] + \/35’! ||E[xm T2 - log ==

8 Y
AT II) > V] ou(Blrn) =/ 311 BT 2 dog

. Y
(P P 7Tyl < [V (Bl - (P P+ /1Y P o
(2

Remark: Note that 0(P) = O(p — ¢) and || P|| = ©(p + ¢) for homogeneous P. Under Assumption A3,
the variance terms are small and the above quantities are close to their expectation.

Proof:  To bound on ||F ® F|l1, we note that |[E[F ® Fl||; < |U] - |T|max;(P" - E[x]);(P" - E[x]);.
Using Bernstein’s inequality, for each column of F' ® F, we have, with probability 1 — 4,

8 Ul-|T
< /301171 Py -10g TLITL

max 5

‘ I(F ® F)illy = U - IT|(E[x), (P):){Elx], (P)s)

by applying Bernstein’s inequality, since (7, (P);)(m, (P);) < max;(Pn);(PTn); < P2

max,

and

max | Y |E[(P); mury (P)i]-E(P)] mem (Pl Y |Elmy (P)i(P) ma] - Elm| (P)i(P)] me]
uelUteT uelU,teT
<|Ul-|T]- P,

max*

The other results follow similarly. O

The lowest singular value for the Khatri-Rao product is a bit more involved and we provide the bound
below.

Lemma 12 (Spectral Bound for KR-product)

- 8 - Ul-|T
AE @ F) 2 U1 Tlon® 1)~ 301 71 112 1212 - B2 1o LT

where T := P E[nn | P and * denotes Hadamard product.
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Proof:  The result in the Lemma follows directly from the concentration result. For the homogeneous
setting, we have for a matrix I,

op(D+T) = © (minf(i,i)2 - m;xf(i»J)2> :
v}

7

Substituting we have the result. (Il

Remark:  For the homogeneous setting, with P = P having p on the diagonal and ¢ on the off-diagonal,
we have

I'=|(p-ql+ qllT} Efrm'] [(p -9l + qllq
=(p—@)’Elrr']+2(p — Q)qul’ + @|E[rm ]| sum11 ",

where v is a vector where v; = ||E[r7"]®||;, where M) denotes the i row of M. Thus, we have the
following bound

op(D+T) = (min ((i,) — F(i,j)z))

i,j7#

=0 <(p —q)* {f}iﬁ (E(m}) — E[ij])z) ;

assuming that E[n?] — E[m;7;] = O(E[r?]) for all i # j, and the other terms which are dropped are positive.
Thus, we have w.h.p.

on(FOF)=Q <n(10—q)2 min (E[n?) —E[Fz‘ﬂj])> 2D

D Standard Matrix Concentration and Perturbation Bounds

D.1 Bernstein’s Inequalities
One of the key tools we use is the standard matrix Bernstein inequality (Tropp, 2012, thm. 6.1, 6.2).

Proposition 2 (Matrix Bernstein Inequality) Suppose Z = j W; where

1. W; are independent random matrices with dimension dy x da,
2. E[W;] = 0 for all j,
3. || W; < R almost surely.

Let d = dy + do, and 0% = max{” > E[WjW]T], 122, }E[W]Tﬂfj]}, then we have

Pr(| Z > 1] <d matk:
I' . A —
=N =P\ PR3
2

—3t
gd.exp{ 832 } t < o%/R,
g

—3t
Sd-ewp{SZ}, t>o?/R
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Proposition 3 (Vector Bernstein Inequality) Let z = (21, 22, ..., 2,) € R"™ be a random vector with in-
dependent entries, E[z;] = 0, E[2?] = 02, and Pr[|z;] < 1] = 1. Let A = [a1]az]| - - - |an] € R™*" be a
matrix, then

V
—
|
)
L

Pr[|| Az < (14 v/8t) Z | ai?0

—|— (4/3) maxH a;t] >

D.2 Hanson-Wright Inequalities
We require the Hanson-Wright inequality (Rudelson and Vershynin, 2013).

Proposition 4 (Hanson-Wright Inequality: sub-Gaussian bound) Let z = (21, 22,...,2,) € R" be a
random vector with independent entries, E[z;] = 0 and Pr[|z;| < 1] = 1 and let M € R™*™ be any matrix.
There exists a constant ¢ > 0 s.t.

t? t
Pr||z"Mz—E(z"Mz)| > t| <2exp [—cmin ( , >]
[ } MG 1]l

Unfortunately the sub-Gaussian bound is not strong enough when z has small variance o2. In this case,
we get the perturbation as O (|| M ||g) instead of O(c || M||g), which is desired. This is because for a bounded
random variable, the sub-Gaussian parameter only depends on the bound and not on the variance.

We will consider an extension of the Hanson-Wright inequality to sub-exponential random variables (Erdés
etal., 2012; Vu and Wang, 2013) and employ the sub-exponential formulation for bounded random variables.
We first define sub-exponential random variable (Vershynin, 2010, Definition 5.13).

Definition 1 (Sub-exponential Random Variable) A zero-mean random variable X is said to be sub-
exponential if there exists a parameter K such that E[eX/ K <e.

Remark: There are other equivalent notions for sub-exponential random variables (Vershynin, 2010, Def-
inition 5.13), but this will be the convenient one for proving sub-exponential bound for Bernoulli random
variables. Itis easy to see that the centered Bernoulli random variables are sub-exponential for some constant
K.

We will employ the following version of Hanson-Wright’s inequality for sub-exponential random vari-
ables (Erdés et al., 2012, Lemma B.2).

Proposition 5 (Hanson-Wright Inequality: sub-exponential bound) Let z = (21, 22,...,2,) € R” be
a random vector with independent entries, E[z;] = 0, E[2?] < o2 and z; are sub-exponential and let
M € R™ "™ be any matrix. There exists constants ¢, C' > 0 s.t.

Pr||z'Mz—E(z'Mz)| > tJQHMHF} < Cexp [—ctl/ﬂ .

Remark: The result in the form above appears in (Vu and Wang, 2013, (13)) and we set a = 1 in (Vu and
Wang, 2013, (13)). The parameter C above differs from the sub-exponential parameter K by only a constant
factor.

Comparing sub-exponential formulation in Proposition 5 with sub-Gaussian formulation in Proposi-
tion 4, we see that in the former, the deviation is O(||M||go), while in the latter it is only O (|| M ||).

Thus, for centered Bernoulli random variables and we can employ Proposition 5, and we will use it for
distance concentration bounds.
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D.3 Davis-Kahan Inequality

We also use the standard Davis and Kahan bound for subspace perturbation.

Proposition 6 (Davis and Kahan) For a matrix A, let Proj be the projection matrix on to its top-k left
singular vectors. For any rank-k matrix A, we have

I(Proj —I)A|l < 2||A - A]
Proof:  This is directly from (McSherry, 2001, Lemma 12). By writing A = A— (fl — A), we have
I(Proj —I)A|| < [[(Proj —I)Al| + || (Proj —I)(A — A)]],

and each of the terms is less than |A — A||. For the first term, it is because P1:/o\j A is the best rank-k
approximation of A and since A is also rank k, the residual H(PrOJ IA|l < ||A — A||. For the second
term, ||(Proj —I)(A — A)|| < ||A — A|| since (Proj —I) cannot increase norm. O
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