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Learning is �nding needle in a haystack

High dimensional regime: as data grows, more variables!

Useful information: low-dimensional structures.

Learning with big data: ill-posed problem.

Learning with big data: statistically and computationally challenging!



Optimization for Learning

Most learning problems can be cast as optimization.

Unsupervised Learning

Clustering
k-means, hierarchical : : :

Maximum Likelihood Estimator
Probabilistic latent variable models

Supervised Learning

Optimizing a neural network with
respect to a loss function Input

Neuron

Output
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Convex vs. Nonconvex Optimization

Unique optimum: global/local. Multiple local optima

In high dimensions possibly
exponential local optima

How to deal with non-convexity?
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Training Neural Networks

Tremendous practical impact
with deep learning.

Algorithm: backpropagation.

Highly non-convex optimization
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