Learning Tractable Graphical Models: Latent Trees and Tree Mixtures

Anima Anandkumar

U.C. Irvine

Joint work with Furong Huang, U.N. Niranjan, Daniel Hsu and Sham Kakade.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

High-Dimensional Graphical Modeling

Modeling Conditional Independencies through Graphs

- $X_u \perp X_v | X_S$.
- Learning and inference are NP-hard.

Tractable Models: Tree Models

• Efficient inference using belief propagation

< 日 > < 同 > < 回 > < 回 > < 回 > <

-

Walk-up: Learning Tree Models

Data processing inequality for Markov chains $I(X_1; X_3) \leq I(X_1; X_2), I(X_2; X_3).$

Tree Structure Estimation (Chow and Liu '68)

• MLE: Max-weight tree with estimated mutual information weights

Walk-up: Learning Tree Models

Data processing inequality for Markov chains $I(X_1; X_3) \leq I(X_1; X_2), I(X_2; X_3).$

Tree Structure Estimation (Chow and Liu '68)

- MLE: Max-weight tree with estimated mutual information weights
- Pairwise statistics suffice

Walk-up: Learning Tree Models

Data processing inequality for Markov chains $I(X_1; X_3) \leq I(X_1; X_2), I(X_2; X_3).$

Tree Structure Estimation (Chow and Liu '68)

- MLE: Max-weight tree with estimated mutual information weights
- Pairwise statistics suffice
- *n* samples and *p* nodes

Sample complexity: $\frac{\log p}{n} = O(1).$

Learning Tractable Graphical Models

Tractable Models: Tree Models

- Efficient inference using belief propagation
- MLE is easy to compute.
- Tree models are highly restrictive.

Learning Tractable Graphical Models

Tractable Models: Tree Models

- Efficient inference using belief propagation
- MLE is easy to compute.
- Tree models are highly restrictive.

Latent tree graphical models

- Tree models with hidden variables.
- Number and location of hidden variables unknown.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Application: Hierarchical Topic Modeling

- Data: Word co-occurrences.
- Graph: Topic-word structure.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Application of Latent Trees: Object Recognition

• Challenge: Succinct representation of large-scale data

- \blacktriangleright Input: \sim 100 object categories, \sim 4000 training images
- Goal: learn $\sim 2^{100}$ co-occurrence probabilities
- Solution: Latent tree graphical models

"Context Models and Out-of-context Objects," M. J. Choi, A. Torralba, and A. S. Willsky, Pattern Recognition Letters, 2012.

Application of Latent Trees: Object Recognition

• Challenge: Succinct representation of large-scale data

- \blacktriangleright Input: \sim 100 object categories, \sim 4000 training images
- Goal: learn $\sim 2^{100}$ co-occurrence probabilities
- Solution: Latent tree graphical models

"Context Models and Out-of-context Objects," M. J. Choi, A. Torralba, and A. S. Willsky, Pattern Recognition Letters, 2012.

Tree Mixture Models

- Multiple graphs: context specific dependencies
- Each component is a tree model
- Unsupervised learning: Class variable is latent or hidden

・ロト ・ 一下・ ・ ヨト ・ 日 ・

3

Tree Mixture Models

- Multiple graphs: context specific dependencies
- Each component is a tree model
- Unsupervised learning: Class variable is latent or hidden

Why use tree mixtures?

- Efficient Inference: BP on component trees and combining them.
- Similarly marginalization and sampling also efficient.

Tree Mixture Models

- Multiple graphs: context specific dependencies
- Each component is a tree model
- Unsupervised learning: Class variable is latent or hidden

Why use tree mixtures?

- Efficient Inference: BP on component trees and combining them.
- Similarly marginalization and sampling also efficient.

Learning: Alternatives to EM (Meila & Jordan)?

Tree Mixture Models

- Multiple graphs: context specific dependencies
- Each component is a tree model
- Unsupervised learning: Class variable is latent or hidden

Why use tree mixtures?

- Efficient Inference: BP on component trees and combining them.
- Similarly marginalization and sampling also efficient.

Learning: Alternatives to EM (Meila & Jordan)?

In this talk: learning latent tree models and tree mixtures.

▲日▼▲□▼▲□▼▲□▼ □ ○○○

Summary of Results

Latent Tree Models

- Number of hidden variables and location unknown
- Integrated structure and parameter estimation.
- Local learning with global consistency guarantees.

Summary of Results

Latent Tree Models

- Number of hidden variables and location unknown
- Integrated structure and parameter estimation.
- Local learning with global consistency guarantees.

Mixtures of Trees

- Structure and parameters under different contexts unknown
- Unsupervised setting: choice variable hidden.
- Efficient methods for consistent structure and parameter learning.

Previous Approaches

Algorithms for Structure Estimation

- Chow and Liu (68): Tree estimation
- Meinshausen and Bühlmann (06): Convex relaxation
- Ravikumar, Wainwright, Lafferty (10): Convex relaxation
- Bresler, Mossel and Sly (09): Bounded-degree graphs ...

Learning with Hidden Variables

- Erdös, et. al. (99): Latent trees
- Daskalakis, Mossel and Roch (06): Latent trees
- Choi, Tan, Anandkumar and Willsky (10): Latent trees
- Chandrasekaran, Parrilo and Willsky (11): Latent Gaussian models,

• Anandkumar et. al (12): Tensor decompositions ...

Outline

Introduction

- 2 Tests for Structure Learning
- 3 Parameter Learning through Tensor Methods
 - Integrating Structure and Parameter Learning
 - 5 Mixtures of Trees
 - 6 Conclusion

Learning Latent Tree Graphical Models

Linear Multivariate Models

- Conditional independence w.r.t tree
- Categorical k-state hidden variables.
- Multivariate *d*-dimensional observed variables. $k \leq d$.
- When y is nbr. of h, $\mathbb{E}[y|h] = Ah$.
- Includes discrete, Poisson and Gaussian models, Gaussian mixtures etc.

Information Distances $[d_{i,j}]$ for Tree Models

Information Distances $[d_{i,j}]$ for Tree Models Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

Information Distances $[d_{i,j}]$ for Tree Models Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

 $\text{Linear multivariate models: } d_{ij} := -\log \frac{\prod_{\sigma_i \neq 0} \sigma(\mathbb{E}[y_i y_j^\top])}{\sqrt{\det \mathbb{E}[y_i y_i^\top] \det \mathbb{E}[y_j y_j^\top]}}.$

Information Distances $[d_{i,j}]$ for Tree Models Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

Linear multivariate models: $d_{ij} := -\log \frac{\prod_{\sigma_i \neq 0} \sigma(\mathbb{E}[y_i y_j^{\top}])}{\sqrt{\det \mathbb{E}[y_i y_i^{\top}] \det \mathbb{E}[y_j y_j^{\top}]}}.$

 $[d_{i,j}]$ is an additive tree metric: $d_{k,l} = \sum_{(i,j)\in \operatorname{Path}(k,l;E)} d_{i,j}.$

Information Distances $[d_{i,j}]$ for Tree Models Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

Linear multivariate models: $d_{ij} := -\log \frac{\prod_{\sigma_i \neq 0} \sigma(\mathbb{E}[y_i y_j^{\top}])}{\sqrt{\det \mathbb{E}[y_i y_i^{\top}] \det \mathbb{E}[y_j y_j^{\top}]}}.$

 $[d_{i,j}]$ is an additive tree metric: $d_{k,l} = \sum_{(i,j)\in \operatorname{Path}(k,l;E)} d_{i,j}.$

Information Distances $[d_{i,j}]$ for Tree Models Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

Linear multivariate models: $d_{ij} := -\log \frac{\prod_{\sigma_i \neq 0} \sigma(\mathbb{E}[y_i y_j^{\top}])}{\sqrt{\det \mathbb{E}[y_i y_i^{\top}] \det \mathbb{E}[y_j y_j^{\top}]}}.$

 $[d_{i,j}]$ is an additive tree metric: $d_{k,l} = \sum_{(i,j)\in \operatorname{Path}(k,l;E)} d_{i,j}.$

Information Distances $[d_{i,j}]$ for Tree Models Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

Linear multivariate models: $d_{ij} := -\log \frac{\prod_{\sigma_i \neq 0} \sigma(\mathbb{E}[y_i y_j^{\top}])}{\sqrt{\det \mathbb{E}[y_i y_i^{\top}] \det \mathbb{E}[y_j y_j^{\top}]}}.$

 $[d_{i,j}]$ is an additive tree metric: $d_{k,l} = \sum_{(i,j)\in \operatorname{Path}(k,l;E)} d_{i,j}.$

Learning latent tree using $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

- Let $\Phi_{ijk} := d_{i,k} d_{j,k}$.
 - $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall k, k' \neq i, j, \iff i, j$ leaves with common parent
 - $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, $\iff i$ is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Use only short distances: $d_{i,k}, d_{j,k} < \tau$, Relax equality relationships

Exact Statistics: Distances $[d_{i,j}]$

- Let $\Phi_{ijk} := d_{i,k} d_{j,k}$.
 - $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall k, k' \neq i, j, \iff i, j$ leaves with common parent
 - $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, $\iff i$ is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Use only short distances: $d_{i,k}, d_{j,k} < \tau$, Relax equality relationships

Exact Statistics: Distances $[d_{i,j}]$

- Let $\Phi_{ijk} := d_{i,k} d_{j,k}$.
 - $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall k, k' \neq i, j, \iff i, j$ leaves with common parent
 - $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, $\iff i$ is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Use only short distances: $d_{i,k}, d_{j,k} < \tau$, Relax equality relationships

Exact Statistics: Distances $[d_{i,j}]$

- Let $\Phi_{ijk} := d_{i,k} d_{j,k}$.
 - $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall k, k' \neq i, j, \iff i, j$ leaves with common parent
 - $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, $\iff i$ is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Use only short distances: $d_{i,k}, d_{j,k} < \tau$, Relax equality relationships

Exact Statistics: Distances $[d_{i,j}]$

- Let $\Phi_{ijk} := d_{i,k} d_{j,k}$.
 - $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall k, k' \neq i, j, \iff i, j$ leaves with common parent
 - $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, $\iff i$ is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Use only short distances: $d_{i,k}, d_{j,k} < \tau$, Relax equality relationships

Exact Statistics: Distances $[d_{i,j}]$

- Let $\Phi_{ijk} := d_{i,k} d_{j,k}$.
 - $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall k, k' \neq i, j, \iff i, j$ leaves with common parent
 - $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, $\iff i$ is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Use only short distances: $d_{i,k}, d_{j,k} < \tau$, Relax equality relationships

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Recursive Grouping Algorithm (Choi, Tan, A., Willsky)

- Sibling test and remove leaves
- Build tree from bottom up

- Consistent structure estimation.
- Serial method, high computational complexity.

Recursive Grouping Algorithm (Choi, Tan, A., Willsky)

- Sibling test and remove leaves
- Build tree from bottom up

- Consistent structure estimation.
- Serial method, high computational complexity.

Recursive Grouping Algorithm (Choi, Tan, A., Willsky)

- Sibling test and remove leaves
- Build tree from bottom up

- Consistent structure estimation.
- Serial method, high computational complexity.

Recursive Grouping Algorithm (Choi, Tan, A., Willsky)

- Sibling test and remove leaves
- Build tree from bottom up

- Consistent structure estimation.
- Serial method, high computational complexity.
Recursive Grouping

Recursive Grouping Algorithm (Choi, Tan, A., Willsky)

- Sibling test and remove leaves
- Build tree from bottom up

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Consistent structure estimation.
- Serial method, high computational complexity.

Recursive Grouping

Recursive Grouping Algorithm (Choi, Tan, A., Willsky)

- Sibling test and remove leaves
- Build tree from bottom up

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Consistent structure estimation.
- Serial method, high computational complexity.

Outline

Introduction

2 Tests for Structure Learning

3 Parameter Learning through Tensor Methods

- Integrating Structure and Parameter Learning
- 5 Mixtures of Trees
- 6 Conclusion

Overview of Proposed Parameter Learning Method

Toy Model: 3-star

• Linear multivariate model.

•
$$A_{x_i|h}^r := \mathbb{E}(x_i|h = e_r)$$
. and
 $\lambda_r := \mathbb{P}[h = e_r]$.

▲日▼▲□▼▲□▼▲□▼ □ ののの

$$\mathbb{E}(x_1 \otimes x_2 \otimes x_3) = \sum_{r=1}^k \lambda_r A_{x_1|h}^r \otimes A_{x_2|h}^r \otimes A_{x_3|h}^r.$$

Guaranteed Recovery through Tensor Decomposition

- Transition matrices $A_{x_i|h}$ have full column rank.
- Linear algebraic operations: SVD and tensor power iterations.

"Tensor Decompositions for Learning Latent Variable Models" by A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.

Overview of Tensor Decomposition Technique

• Let
$$a_r = \mathbb{E}(x_i | h = e_r)$$
 for all i and $\lambda_r := \mathbb{P}[h = e_r].$

• $M_3 = \mathbb{E}[x_1 \otimes x_2 \otimes x_3] = \sum_{i=1}^k \lambda_i a_i^{\otimes 3}.$

Intuition: if a_i are orthogonal

- $M_3(I, a_1, a_1) := \sum_i \lambda_i \langle a_i, a_1 \rangle^2 a_i = \lambda_1 a_1.$
- a_i are eigenvectors of the tensor M_3 .

Convert to an orthogonal tensor using pairwise moments

•
$$M_2 := \mathbb{E}[x_1 \otimes x_2] = \sum_i \lambda_i a_i^{\otimes 2}.$$

- Whitening matrix: $W^{\top}M_2W = I$.
- Consider tensor $M_3(W, W, W) := \sum_i \lambda_i (W^\top a_i)^{\otimes 3}$. It is an orthogonal tensor.

Learning through Hierarchical Tensor Decomposition

- Assume known tree structure.
- Decompose different triplets: hidden variable is join point on tree.

- Tensor decomposition is an unsupervised method.
- Hidden labels permuted across different triplets.
- Solution: Align using common node in triplets.

Learning through Hierarchical Tensor Decomposition

- Assume known tree structure.
- Decompose different triplets: hidden variable is join point on tree.

- Tensor decomposition is an unsupervised method.
- Hidden labels permuted across different triplets.
- Solution: Align using common node in triplets.

Learning through Hierarchical Tensor Decomposition

- Assume known tree structure.
- Decompose different triplets: hidden variable is join point on tree.

- Tensor decomposition is an unsupervised method.
- Hidden labels permuted across different triplets.
- Solution: Align using common node in triplets.

Learning through Hierarchical Tensor Decomposition

- Assume known tree structure.
- Decompose different triplets: hidden variable is join point on tree.

- Tensor decomposition is an unsupervised method.
- Hidden labels permuted across different triplets.
- Solution: Align using common node in triplets.

Outline

Introduction

- 2 Tests for Structure Learning
- 3 Parameter Learning through Tensor Methods
- Integrating Structure and Parameter Learning
 - 5 Mixtures of Trees
 - 6 Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▶ ▲□▶

Integrated Learning

So far..

- Consistent structure learning through sibling tests on distances.
- Parameter learning through tensor decomposition on triplets.

Challenges

- How to integrate structure and parameter learning?
- Can we save on computations through integration?
- Can we learn parameters as we learn the structure?
- Can we parallelize learning for scalability?

Integrated Learning

So far..

- Consistent structure learning through sibling tests on distances.
- Parameter learning through tensor decomposition on triplets.

Challenges

- How to integrate structure and parameter learning?
- Can we save on computations through integration?
- Can we learn parameters as we learn the structure?
- Can we parallelize learning for scalability?

Key Ideas

- Divide and conquer: find (overlapping) groups of observed variables.
- Learn local subtrees (and parameters) over the groups independently.
- Merge subtrees and tweak parameters to obtain global latent tree model.

Parallel Chow-Liu Based Grouping Algorithm

Minimum spanning tree using information distance $[\hat{d}_{i,j}]$.

Alignment of Parameters

Alignment Correction

- In-group
- Across-group
- Across-neighborhood

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Consistency Guarantees

Theorem

The proposed method consistently recovers the structure with $O(\log p)$ samples and parameters with poly(p) samples.

Extent of parallelism

- Size of groups $\Gamma \leq \Delta^{1+\frac{u}{l}\delta}$.
- Effective depth $\delta := \max_i \{ \min_j \{ path(v_i, v_j; \mathcal{T}) \}.$
- Maximum degree in latent tree: Δ.
- Upper and lower bound on distances between neighbors in the latent tree: *u* and *l*.

Implications

- For homogeneous HMM, constant sized groups.
- Worst case: star graphs.

Computational Complexity

- N samples, d dimensional observed variables, k state hidden variables.
- p number of observed variables. z non-zero entries per sample.
- Γ sized groups.

Algorithm Steps	Time/worker	Degree of parallelism
Information Distance Estimation	$O(Nz + d + k^3)$	$O(p^2)$
Structure: Minimum Spanning Tree	$O(\log p)$	$O(p^2)$
Structure: Local Recursive Grouping	$O(\Gamma^3)$	$O(p/\Gamma)$
Parameter: Tensor Decomposition	$O(\Gamma k^3 + \Gamma dk^2)$	$O(p/\Gamma)$
Merging and Alignment Correction	$O(dk^2)$	$O(p/\Gamma)$

"Integrated Structure and Parameter Learning in Latent Tree Graphical Models" by F. Huang, U. N. Niranjan, A. Anandkumar. Preprint, June 2014.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof Ideas

Relating Chow-Liu Tree with Latent Tree

• Surrogate Sg(i) for node i: observed node with strongest correlation

 $\operatorname{Sg}(i) := \operatorname*{argmin}_{j \in V} d_{i,j}$

Neighborhood preservation

 $(i,j) \in T \Rightarrow (\mathrm{Sg}(i), \mathrm{Sg}(j)) \in T_{\mathrm{ML}}.$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Chow-Liu grouping reverses edge contractions Proof by induction

Experiments

• d = k = 2 dimensions, p = 9 number of variables.

d	p	N	Struct Error	Param Error	Running Time(s)
10	9	50K	0	0.0104	3.8
100	9	50K	0	0.0967	4.4
1000	9	50K	0	0.1014	5.1
10,000	9	50K	0	0.0917	29.9
100,000	9	50k	0	0.0812	56.5
100	9	50K	0	0.0967	10.9
100	81	50K	0.06	0.1814	323.7
100	729	50K	0.16	0.1913	4220.1

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Outline

Introduction

- 2 Tests for Structure Learning
- 3 Parameter Learning through Tensor Methods
 - Integrating Structure and Parameter Learning
- 5 Mixtures of Trees
 - 6 Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▶ ▲□▶

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

• Estimation of union graph

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

• Estimation of union graph

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

- Estimation of union graph
- Estimation of pairwise moments in each component

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

- Estimation of union graph
- Estimation of pairwise moments in each component
- Tree approximation of each component via Chow-Liu algorithm.

(日)

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

- Estimation of union graph
- Estimation of pairwise moments in each component
- Tree approximation of each component via Chow-Liu algorithm.

Efficient Learning of Tree Mixture Approximations

Adapt Tensor Decomposition Method for Graphical Model Mixtures?

Challenges

• Cannot reduce to triplet tensor decomposition

(日)

э

Solutions

Adapt Tensor Decomposition Method for Graphical Model Mixtures?

Challenges

• Cannot reduce to triplet tensor decomposition

Solutions

• G_{\cup} : union graph learnt from rank test

Adapt Tensor Decomposition Method for Graphical Model Mixtures?

Challenges

• Cannot reduce to triplet tensor decomposition

Solutions

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} :

Adapt Tensor Decomposition Method for Graphical Model Mixtures?

Challenges

• Cannot reduce to triplet tensor decomposition

Solutions

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} :

Adapt Tensor Decomposition Method for Graphical Model Mixtures?

Challenges

- Cannot reduce to triplet tensor decomposition
- Need to learn higher order moments of mixture components.

Solutions

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} :

 $X_u \perp\!\!\!\perp X_v \perp\!\!\!\perp X_w \mid\!\!\!\!|X_S,H$

Adapt Tensor Decomposition Method for Graphical Model Mixtures?

Challenges

- Cannot reduce to triplet tensor decomposition
- Need to learn higher order moments of mixture components.

Solutions

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} : $X_u \perp X_v \perp |X_S, H$
- Learn tree mixture approximation: estimate pairwise mixture moments

Adapt Tensor Decomposition Method for Graphical Model Mixtures?

Challenges

- Cannot reduce to triplet tensor decomposition
- Need to learn higher order moments of mixture components.

Solutions

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} : $\boxed{X_u \perp X_v \perp X_{w,w'} | X_S, H}$
- Learn tree mixture approximation: estimate pairwise mixture moments

Adapt Tensor Decomposition Method for Graphical Model Mixtures?

Challenges

- Cannot reduce to triplet tensor decomposition
- Need to learn higher order moments of mixture components.

Solutions

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} : $\boxed{X_u \perp X_v \perp X_{w,w'} | X_S, H}$
- Learn tree mixture approximation: estimate pairwise mixture moments

Efficient Estimation of Tree Mixture Approximations

Sparse Graphical Model Selection: Intuitions

• First consider a graphical model with no latent variables

Markov Property of Graphical Models

 $X_u \perp X_v | \mathbf{X}_S \iff I(X_u; X_v | \mathbf{X}_S) = 0$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Sparse Graphical Model Selection: Intuitions

• First consider a graphical model with no latent variables

Markov Property of Graphical Models

 $X_u \perp X_v | \mathbf{X}_S \iff I(X_u; X_v | \mathbf{X}_S) = 0$

Alternative Test for Conditional Independence?

▲日▼▲□▼▲□▼▲□▼ □ ののの
• First consider a graphical model with no latent variables

Markov Property of Graphical Models

$$X_u \perp X_v | \mathbf{X}_S \iff I(X_u; X_v | \mathbf{X}_S) = 0$$

Alternative Test for Conditional Independence?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$P(X_u = i, X_v = j | \mathbf{X}_S = k) = P(X_u = i | \mathbf{X}_S = k) \quad P(X_v = j | \mathbf{X}_S = k)$$

• First consider a graphical model with no latent variables

Markov Property of Graphical Models

$$X_u \perp X_v | \mathbf{X}_S \iff I(X_u; X_v | \mathbf{X}_S) = 0$$

Alternative Test for Conditional Independence?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$P(X_{u} = i, X_{v} = j | \mathbf{X}_{S} = k) = P(X_{u} = i | \mathbf{X}_{S} = k) P(X_{v} = j | \mathbf{X}_{S} = k)$$
$$M_{u,v,\{S;k\}} := [P(X_{u} = i, X_{v} = j, \mathbf{X}_{S} = k)]_{i,j}.$$
$$M_{u,v,\{S;k\}} =$$

• First consider a graphical model with no latent variables

Markov Property of Graphical Models

$$X_{u} \perp X_{v} | \mathbf{X}_{S} \iff \operatorname{Rank}(M_{u,v,\{S;k\}}) = 1$$

Alternative Test for Conditional Independence?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$P(X_{u} = i, X_{v} = j | \mathbf{X}_{S} = k) = P(X_{u} = i | \mathbf{X}_{S} = k) P(X_{v} = j | \mathbf{X}_{S} = k)$$
$$M_{u,v,\{S;k\}} := [P(X_{u} = i, X_{v} = j, \mathbf{X}_{S} = k)]_{i,j}.$$
$$M_{u,v,\{S;k\}} =$$

• First consider a graphical model with no latent variables

Markov Property of Graphical Models

$$X_{u} \perp X_{v} | \mathbf{X}_{S} \iff \operatorname{Rank}(M_{u,v,\{S;k\}}) = 1$$

Alternative Test for Conditional Independence?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$P(X_{u} = i, X_{v} = j | \mathbf{X}_{S} = k) = P(X_{u} = i | \mathbf{X}_{S} = k) | P(X_{v} = j | \mathbf{X}_{S} = k)$$
$$M_{u,v,\{S;k\}} := [P(X_{u} = i, X_{v} = j, \mathbf{X}_{S} = k)]_{i,j}.$$
$$M_{u,v,\{S;k\}} =$$

Rank Test on Pairwise Probability Matrices

• Dimension of latent *H* is *r* and each observed variable is *d* > *r*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

ヘロト ヘ部ト ヘヨト ヘヨト

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

 $X_u \not\perp X_v | \mathbf{X}_S$

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

 $X_u \not\perp X_v | \mathbf{X}_S$

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

 $X_u \not\perp X_v | \mathbf{X}_S$

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

 $X_u \perp X_v | \mathbf{X}_S, H$

(日) (部) (E) (E) (E)

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

 $X_u \perp X_v | \mathbf{X}_S, H$

< ロ > < 同 > < 回 > < 回 >

$$P(X_u, X_v | \mathbf{X}_S) = \sum_{h=1}^r P(X_u | \mathbf{X}_S, \mathbf{H} = \mathbf{h}) P(\mathbf{H} = \mathbf{h} | \mathbf{X}_S) P(X_v | \mathbf{X}_S, \mathbf{H} = \mathbf{h})$$

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

 $X_u \perp X_v | \mathbf{X}_S, H$

$$M_{u,v,\{S;k\}} := [P(X_u = i, X_v = j, X_S = k)]_{i,j}.$$

$$M_{u,v,\{S;k\}} = \begin{bmatrix} \bullet \bullet \bullet \\ r \times r & r \times d \end{bmatrix}$$

$$d \times d \qquad d \times r$$

$$P(X_u, X_v | \mathbf{X}_S) = \sum_{h=1}^r P(X_u | \mathbf{X}_S, \mathbf{H} = \mathbf{h}) P(\mathbf{H} = \mathbf{h} | \mathbf{X}_S) P(X_v | \mathbf{X}_S, \mathbf{H} = \mathbf{h})$$

▲ロト ▲御 ト ▲ 唐 ト ▲ 唐 ト ○ 唐 ○ のへで

• Dimension of latent H is r and each observed variable is d > r. • First assume Markov graph is the same for all components. $X_u \perp X_v | \mathbf{X}_S, H | \iff \operatorname{Rank}(M_{u,v,\{S:k\}}) = r$ $M_{u,v,\{S:k\}} := [P(X_u = i, X_v = j, X_S = k)]_{i,j}.$ $M_{u,v,\{S;k\}}$ $r \times r$ $r \times d$ $d \times d$ $d \times r$ $P(X_u, X_v | \mathbf{X}_S) = \sum_{i=1}^{r} P(X_u | \mathbf{X}_S, \mathbf{H} = \mathbf{h}) P(\mathbf{H} = \mathbf{h} | \mathbf{X}_S) P(X_v | \mathbf{X}_S, \mathbf{H} = \mathbf{h})$

- Dim(H) is r and each observed variable is d > r.
- G_{\cup} : union of Markov graphs of components.
- η : Bound on separators btw. node pairs in G_{\cup} .
- $M_{u,v,\{S;k\}} := [P(X_u = i, X_v = j, X_S = k)]_{i,j}$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

 $\begin{array}{l} \text{Declare } (u,v) \text{ as edge if } \min_{\substack{S \subset V \setminus \{u,v\} \\ |S| \leq \eta}} \max_{k \in \mathcal{X}^{|S|}} \operatorname{Rank}(M_{u,v,\{S;k\}};\xi_{n,p}) > r. \end{array} \end{array}$

- Dim(H) is r and each observed variable is d > r.
- G_{\cup} : union of Markov graphs of components.
- η : Bound on separators btw. node pairs in G_{\cup} .
- $M_{u,v,\{S;k\}} := [P(X_u = i, X_v = j, \mathbf{X}_S = k)]_{i,j}$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Declare (u, v) as edge if	$\min_{S \subset V \setminus \{u,v\}}$	$\max_{k \in \mathcal{X}^{ S }}$	$\operatorname{Rank}(M_{u,v,\{S;k\}};\xi_{n,p})$	>	r.
	$ S {\leq} \eta$				

Small $\eta \Rightarrow$ computationally efficient, uses only low order statistics.

- Dim(H) is r and each observed variable is d > r.
- G_{\cup} : union of Markov graphs of components.
- η : Bound on separators btw. node pairs in G_{\cup} .
- $M_{u,v,\{S;k\}} := [P(X_u = i, X_v = j, \mathbf{X}_S = k)]_{i,j}$

$$\begin{array}{l} \text{Declare } (u,v) \text{ as edge if } \min_{\substack{S \subset V \setminus \{u,v\} \\ |S| \leq \eta}} \max_{\substack{k \in \mathcal{X}^{|S|} \\ |S| \leq \eta}} \operatorname{Rank}(M_{u,v,\{S;k\}};\xi_{n,p}) > r. \end{array}$$

Small $\eta \Rightarrow$ computationally efficient, uses only low order statistics.

Examples of graphs G_{\cup} with small η

- Mixture of product distributions: G_{\cup} is trivial and $\eta = 0$.
- Mixture on same tree: G_{\cup} is a tree and $\eta = 1$.
- Mixture on arbitrary trees: G_{\cup} is union of r trees and $\eta = r$.

- Dim(H) is r and each observed variable is d > r.
- G_{\cup} : union of Markov graphs of components.
- η : Bound on separators btw. node pairs in G_{\cup} .
- $M_{u,v,\{S;k\}} := [P(X_u = i, X_v = j, X_S = k)]_{i,j}$

$$\begin{array}{l} \text{Declare } (u,v) \text{ as edge if } \min_{\substack{S \subset V \setminus \{u,v\} \\ |S| \leq \eta}} \max_{\substack{k \in \mathcal{X}^{|S|} \\ |S| \leq \eta}} \operatorname{Rank}(M_{u,v,\{S;k\}};\xi_{n,p}) > r. \end{array}$$

Small $\eta \Rightarrow$ computationally efficient, uses only low order statistics.

Examples of graphs G_{\cup} with small η

- Mixture of product distributions: G_{\cup} is trivial and $\eta = 0$.
- Mixture on same tree: G_{\cup} is a tree and $\eta = 1$.
- Mixture on arbitrary trees: G_{\cup} is union of r trees and $\eta = r$.

Simple Test for Estimation of Union Graph of Mixtures

Guarantees on Rank Test

Theorem (A., Hsu, Huang, Kakade '12)

Rank test recovers graph structure G_{\cup} correctly w.h.p on p nodes under n samples when

$$\frac{\rho_{\min}^{-2}\log p}{n} = O(1).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

• ρ_{\min} : Min. $(r+1)^{\text{th}}$ singular value between neighbors.

Guarantees on Rank Test

Theorem (A., Hsu, Huang, Kakade '12)

Rank test recovers graph structure G_{\cup} correctly w.h.p on p nodes under n samples when

$$\frac{\rho_{\min}^{-2}\log p}{n} = O(1).$$

• ρ_{\min} : Min. $(r+1)^{\text{th}}$ singular value between neighbors.

Efficient Test with Low Sample and Computational Requirements.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Guarantees on Rank Test

Theorem (A., Hsu, Huang, Kakade '12)

Rank test recovers graph structure G_{\cup} correctly w.h.p on p nodes under n samples when

$$\frac{\rho_{\min}^{-2}\log p}{n} = O(1).$$

• ρ_{\min} : Min. $(r+1)^{\text{th}}$ singular value between neighbors.

Efficient Test with Low Sample and Computational Requirements.

Recall examples of graphs G_{\cup} with small η

- Mixture of product distributions: G_{\cup} is trivial and $\eta = 0$.
- Mixture on same tree: G_{\cup} is a tree and $\eta = 1$.
- Mixture on arbitrary trees: G_{\cup} is union of r trees and $\eta = r$.

Guarantees for Learning Graphical Model Mixtures

Steps Involved in Tree Mixture Approximation

- Rank tests for structure estimation of union graph G_{\cup}
- Tensor decomposition for estimation of pairwise moments of mixture components
- Chow-Liu algorithm to estimate mixture component trees

Computationally Efficient Algorithm for Learning Graphical Model Mixtures

"Learning High-Dimensional Mixtures of Graphical Models" by A. Anandkumar, D. Hsu, F. Huang, and S.M. Kakade. NIPS 2012.

Guarantees for Learning Graphical Model Mixtures

Steps Involved in Tree Mixture Approximation

- Rank tests for structure estimation of union graph G_{\cup}
- Tensor decomposition for estimation of pairwise moments of mixture components
- Chow-Liu algorithm to estimate mixture component trees

Computationally Efficient Algorithm for Learning Graphical Model Mixtures

Theorem (A., Hsu, Huang, Kakade '12)

The above method recovers correct tree mixture approximation correctly w.h.p on p nodes of r component mixture under n samples when

 $n = \operatorname{poly}(p, r).$

"Learning High-Dimensional Mixtures of Graphical Models" by A. Anandkumar, D. Hsu, F. Huang, and S.M. Kakade. NIPS 2012.

Guarantees for Learning Graphical Model Mixtures

Steps Involved in Tree Mixture Approximation

- Rank tests for structure estimation of union graph G_{\cup}
- Tensor decomposition for estimation of pairwise moments of mixture components
- Chow-Liu algorithm to estimate mixture component trees

Computationally Efficient Algorithm for Learning Graphical Model Mixtures

Theorem (A., Hsu, Huang, Kakade '12)

The above method recovers correct tree mixture approximation correctly w.h.p on p nodes of r component mixture under n samples when

 $n = \operatorname{poly}(p, r).$

Efficient Learning of Multiple Graphs and Models in High Dimensions

"Learning High-Dimensional Mixtures of Graphical Models" by A. Anandkumar, D. Hsu, F. Huang, and S.M. Kakade. NIPS 2012.

Splice Data

- DNA SPLICE-junctions
- 60 variables(sequence of DNA bases) , class variable
- Splice junction type: EI, IE, none.

Mixing weight estimation(r=3)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Outline

Introduction

- 2 Tests for Structure Learning
- 3 Parameter Learning through Tensor Methods
 - Integrating Structure and Parameter Learning
 - 5 Mixtures of Trees

Summary and Outlook

Learning Latent Tree Models

- Integrated Structure and Parameter Learning
- High level of parallelism without losing consistency.

Learning Graphical Model Mixtures

- Tree mixture approximations
- Combinatorial search + spectral decomposition
- Computational and sample guarantees

