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High-Dimensional Graphical Modeling

Modeling Conditional Independencies through Graphs

o X, L X,|Xs.

@ Learning and inference are NP-hard.

Tractable Models: Tree Models

@ Efficient inference using belief propagation
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Walk-up: Learning Tree Models

Data processing inequality for Markov chains

I(X]XJ)SI(X],XQ)I(XQ,XJ) 1 2

Tree Structure Estimation (Chow and Liu ‘68)
@ MLE: Max-weight tree with estimated mutual information weights
o Pairwise statistics suffice

@ n samples and p nodes

1
Sample complexity: 8P O(1).
n
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Tractable Models: Tree Models
o Efficient inference using belief propagation
@ MLE is easy to compute.

@ Tree models are highly restrictive.

Latent tree graphical models
@ Tree models with hidden variables.

@ Number and location of hidden variables
unknown.



Application: Hierarchical Topic Modeling

@ Data: Word co-occurrences.

@ Graph: Topic-word structure.




Application of Latent Trees: Object Recognition

@ Challenge: Succinct representation of large-scale data

> Input: ~ 100 object categories, ~ 4000 training images
» Goal: learn ~ 2190 co-occurrence probabilities

@ Solution: Latent tree graphical models

“Context Models and Out-of-context Objects,” M. J. Choi, A. Torralba, and A. S. Willsky,
Pattern Recognition Letters, 2012.
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Tree Mixture Models

@ Multiple graphs: context specific
dependencies ®\
@ Each component is a tree model oo ‘ ’ ’—'<: ‘

@ Unsupervised learning: Class
variable is latent or hidden

Why use tree mixtures?
o Efficient Inference: BP on component trees and combining them.

@ Similarly marginalization and sampling also efficient.

Learning: Alternatives to EM (Meila & Jordan)?

In this talk: learning latent tree models and tree mixtures.
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Latent Tree Models
@ Number of hidden variables and location
unknown
o Integrated structure and parameter
estimation.
@ Local learning with global consistency
guarantees.



Summary of Results

Latent Tree Models

@ Number of hidden variables and location
unknown

o Integrated structure and parameter
estimation.

@ Local learning with global consistency
guarantees.

Mixtures of Trees
@ Structure and parameters under
different contexts unknown ®\

@ Unsupervised setting: choice variable — o o o o .<:
hidden. ‘ ’ ‘

o Efficient methods for consistent
structure and parameter learning.




Previous Approaches

Algorithms for Structure Estimation
@ Chow and Liu (68): Tree estimation
@ Meinshausen and Bithimann (06): Convex relaxation
@ Ravikumar, Wainwright, Lafferty (10): Convex relaxation
@ Bresler, Mossel and Sly (09): Bounded-degree graphs

Learning with Hidden Variables
@ Erdds, et. al. (99): Latent trees
@ Daskalakis, Mossel and Roch (06): Latent trees
@ Choi, Tan, Anandkumar and Willsky (10): Latent trees
@ Chandrasekaran, Parrilo and Willsky (11): Latent Gaussian models,

@ Anandkumar et. al (12): Tensor decompositions



Outline

© Tests for Structure Learning



Learning Latent Tree Graphical Models

Linear Multivariate Models
Conditional independence w.r.t tree

Categorical k-state hidden variables.
Multivariate d-dimensional observed variables. k£ < d.
When y is nbr. of h, E[y|h] = Ah.

Includes discrete, Poisson and Gaussian models, Gaussian mixtures
etc.
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Additive Tree Distances

Information Distances [d; ;] for Tree Models

Gaussian scalar: d;; := —log |p;j|.
209 Elyiy;
Linear multivariate models: d;; := —log HU"#O (El J ) .
\/ det E[y;y;' | det E[y;y, ]
[d; ;] is an additive tree metric: |dj; = Z di ;.

(4,7)ePath(k,l;E)

~

Learning latent tree using [d; ;]



Siblings Test Based on Information Distances

Exact Statistics: Distances [d; ]
Let (I)z'jk = d@k — def.
© —d; j<Pyjp="Dp <d;j Yk, k' #1i,j, < 1i,] leaves with common
parent
® &y =d;;, VEk #1i,j, <= iisaleaf and j is its parent.

.

Sample Statistics: ML Estimates [d; j]

Use only short distances: d; j,d; < 7, Relax equality relationships
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@ Sibling test and remove leaves

@ Build tree from bottom up

@ Consistent structure estimation.

@ Serial method, high computational complexity.
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Recursive Grouping Algorithm (Choi, Tan, A., Willsky)
@ Sibling test and remove leaves

@ Build tree from bottom up

SR,

@ Consistent structure estimation.

@ Serial method, high computational complexity.
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© Parameter Learning through Tensor Methods



Overview of Proposed Parameter Learning Method

xel

Toy Model: 3-star

@ Linear multivariate model.

o A" . :=E(x;lh =e,). and
z;|h i r
A =Plh =e,]. . ‘ ®
ol T2 I3

E(z1 ® 22 @ 23) = Yor_, Ar AL @ AQn @ A

Guaranteed Recovery through Tensor Decomposition
@ Transition matrices A, |, have full column rank.

@ Linear algebraic operations: SVD and tensor power iterations.

“Tensor Decompositions for Learning Latent Variable Models” by A. Anandkumar, R. Ge, D.
Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.



Overview of Tensor Decomposition Technique
e

o Let a, = E(x;|h = e,) for all i and
Ar = Plh = e,].

) MgZE[$1®$2®$3]:Ek

=1

\ia z® 3 ‘2""%._,_‘2»
®@®o.
r1 T2 X3
Intuition: if a; are orthogonal
o Ms3(I,a1,a1) := Y ; Nila;,a1)%a; = May.

@ a; are eigenvectors of the tensor Ms.

Convert to an orthogonal tensor using pairwise moments
o My = E[xl & $2] = ZZ )\Z‘(IZ@?
@ Whitening matrix: W' MyW = 1.

o Consider tensor M3(W, W, W) := 5. \;(W "a;)®3. It is an
orthogonal tensor.



Parameter Learning in Latent Trees

Learning through Hierarchical Tensor Decomposition
@ Assume known tree structure.

@ Decompose different triplets: hidden variable is join point on tree.

Alignment issue
@ Tensor decomposition is an unsupervised method.
@ Hidden labels permuted across different triplets.

@ Solution: Align using common node in triplets.
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Integrated Learning
So far..

@ Consistent structure learning through sibling tests on distances.

@ Parameter learning through tensor decomposition on triplets.

Challenges
@ How to integrate structure and parameter learning?
@ Can we save on computations through integration?
@ Can we learn parameters as we learn the structure?

@ Can we parallelize learning for scalability?



Integrated Learning
So far..

@ Consistent structure learning through sibling tests on distances.

@ Parameter learning through tensor decomposition on triplets.

Challenges
@ How to integrate structure and parameter learning?
@ Can we save on computations through integration?
@ Can we learn parameters as we learn the structure?

@ Can we parallelize learning for scalability?

Key Ideas
@ Divide and conquer: find (overlapping) groups of observed variables.
@ Learn local subtrees (and parameters) over the groups independently.

@ Merge subtrees and tweak parameters to obtain global latent tree
model.



Parallel Chow-Liu Based Grouping Algorithm

A

Minimum spanning tree using information distance [d; ;.




Alignment of Parameters
Alignment Correction

@ In-group
@ Across-group

@ Across-neighborhood

In-group Across-group

Across-neighborhood

oo



Consistency Guarantees

Theorem

The proposed method consistently recovers the structure with O(log p)
samples and parameters with poly(p) samples.

Extent of parallelism

o Size of groups |I' < AF77.
o Effective depth ¢ := max;{min;{path(v;,v;; T)}.

@ Maximum degree in latent tree: A.

@ Upper and lower bound on distances between neighbors in the latent
tree: u and .

Implications
@ For homogeneous HMM, constant sized groups.

@ Worst case: star graphs.



Computational Complexity

@ N samples, d dimensional observed variables, k& state hidden variables.
@ p number of observed variables. z non-zero entries per sample.

o [ sized groups.

Algorithm Steps | Time/worker | Degree of parallelism
Information Distance Estimation ONz+d+k% | O@p?)
Structure: Minimum Spanning Tree | O(log p) O(p?)

(
Structure: Local Recursive Grouping | O( O(
Parameter: Tensor Decomposition O(Tk3® +Tdk?) | O(p/T)
Merging and Alignment Correction O( (ol

“Integrated Structure and Parameter Learning in Latent Tree Graphical Models” by F. Huang,
U. N. Niranjan, A. Anandkumar. Preprint, June 2014.



Proof Ideas
Relating Chow-Liu Tree with Latent Tree

@ Surrogate Sg(i) for node i: observed node with strongest correlation

Sg(i) := argmind ;
JjEV

@ Neighborhood preservation
[(i,5) € T = (Sg(i), Se(y)) € Thar.|

Chow-Liu grouping reverses edge contractions
Proof by induction



Experiments

@ d = k = 2 dimensions, p = 9 number of variables.

10° 10°
samples

d | p | N[ Struct Error | Param Error | Running Time(s)
10 9 50K | 0 0.0104 3.8

100 9 50K | 0 0.0967 4.4

1000 9 50K | 0 0.1014 5.1

10,000 | 9 50K | 0 0.0917 29.9

100,000 | 9 50k | 0 0.0812 56.5

100 9 50K | 0 0.0967 10.9

100 81 | 50K | 0.06 0.1814 3237

100 729 | 50K | 0.16 0.1913 4220.1
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Mixtures of Graphical Models: Our Approach
Our Approach /OK
@ Consider data from graphical el Go
model mixture
[ ] e ©
@ Output tree mixture: best tree %v—'@ %- -@
approx. of each component

, &
, L

Steps ‘ s
@ Estimation of union graph I

@ Estimation of pairwise Gy
moments in each component Vs 4

@ Tree approximation of each o .o
component via Chow-Liu %#’%: %
algorithm. ./'/:

Efficient Learning of Tree Mixture Approximations



Learning Graphical Model Mixtures
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@ Cannot reduce to triplet tensor
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Adapt Tensor Decomposition Method for Graphical Model Mixtures?

Chall /QK
allenges . .

@ Cannot reduce to triplet tensor

decomposition o o0
@ Need to learn higher order moments of 5:

mixture components.

Solutions
@ Gy union graph learnt from rank test

@ Use separators on union graph Gy:
X, L X, L Xu‘.u;/|XS’ H {FU,“

@ Learn tree mixture approximation:
estimate pairwise mixture moments

Efficient Estimation of Tree Mixture Approximations
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Sparse Graphical Model Selection: Intuitions

@ First consider a graphical model with no latent variables

Markov Property of Graphical Models

Xu A X,U‘XS < Rank(Muw’{S;k}) =1

Alternative Test for Conditional Independence?

Mu,’u,{S;k‘} = [P(Xu =i, Xy =7,Xg = k)]%]

My s} =

Rank Test on Pairwise Probability Matrices
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Extending Rank Tests to Mixtures

@ Dimension of latent H is r and
each observed variable is d > r.

@ First assume Markov graph is the
same for all components.

G /OK Go

b= B

X, L X,|Xg, H

M, (s = [P(Xy =i, Xy = , X5 = k)i 5.

-/ -

My, 53k rxXr o rx

dxd dxr

T

P(X,, X, Xs)= > | P(Xu|Xs,H=h)

h=1




Extending Rank Tests to Mixtures

@ Dimension of latent H is r and Gy /OK Go
each observed variable is d > 7.

@ First assume Markov graph is the %‘—@ %—@
same for all components.

Xy L Xy|Xs, H| <= |Rank(M, , 15.)) =

M, (s = [P(Xy =i, Xy = , X5 = k)i 5.

-/ -

My, 53k rxXr o rx

dxd dxr

T

P(X,, X,|Xs)= > | P(Xu|Xs,H=h)|| P(H=h|Xs)

h=1



Rank Test for Mixtures

@ Dim(H) is r and each observed variable is d > 7.
@ (G : union of Markov graphs of components.

@ 7: Bound on separators btw. node pairs in Gy.
0 My, sy = [P(Xu=1,X, = j,Xs =k)]i;
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Rank Test for Mixtures

@ Dim(H) is r and each observed variable is d > 7.
@ (G : union of Markov graphs of components.

@ 17: Bound on separators btw. node pairs in G.
© My, su) = [P(Xy=1,X,=j,Xs=Fk);

Declare (v, dge if mi ax Rank(M, , rapilny) > 1
eclare (u,v) as edge i Sc‘r/n\lgw} krgn)’(x‘)é‘ ank (M, o, 1.k} §np) > 7
|S]<n

Small n = computationally efficient, uses only low order statistics.

Examples of graphs GG, with small n
@ Mixture of product distributions: G is trivial and 1 = 0.
@ Mixture on same tree: G is a tree and 1 = 1.

@ Mixture on arbitrary trees: Gy is union of r trees and 1 = r.



Rank Test for Mixtures

@ Dim(H) is r and each observed variable is d > 7.
@ (G : union of Markov graphs of components.

@ 17: Bound on separators btw. node pairs in G.
© My, su) = [P(Xy=1,X,=j,Xs=Fk);

Declare (v, dge if mi ax Rank(M, , rapilny) > 1
eclare (u,v) as edge i Sc‘r/n\lgw} krgn)’(x‘)é‘ ank (M, o, 1.k} §np) > 7
|S]<n

Small n = computationally efficient, uses only low order statistics.

Examples of graphs GG, with small n
@ Mixture of product distributions: G is trivial and 1 = 0.
@ Mixture on same tree: G is a tree and 1 = 1.

@ Mixture on arbitrary trees: Gy is union of r trees and 1 = r.

Simple Test for Estimation of Union Graph of Mixtures



Guarantees on Rank Test

Theorem (A. , Hsu, Huang, Kakade ‘12)

Rank test recovers graph structure G, correctly w.h.p on p nodes under n
samples when

-2
Prin 1ng _ O(l)
n

® pnin : Min. (r 4 1)™ singular value between neighbors.
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Guarantees on Rank Test

Theorem (A. , Hsu, Huang, Kakade ‘12)

Rank test recovers graph structure G, correctly w.h.p on p nodes under n
samples when

-2
Prin 1ng _ O(l)
n

® pnin : Min. (r 4 1)™ singular value between neighbors.

Efficient Test with Low Sample and Computational Requirements.

Recall examples of graphs GG, with small n
@ Mixture of product distributions: G is trivial and 1 = 0.
@ Mixture on same tree: G is a tree and 1) = 1.

@ Mixture on arbitrary trees: Gy is union of r trees and 1 = r.



Guarantees for Learning Graphical Model Mixtures

Steps Involved in Tree Mixture Approximation
@ Rank tests for structure estimation of union graph G
@ Tensor decomposition for estimation of pairwise moments of mixture
components
@ Chow-Liu algorithm to estimate mixture component trees

Computationally Efficient Algorithm for Learning Graphical Model Mixtures

“Learning High-Dimensional Mixtures of Graphical Models” by A. Anandkumar, D. Hsu, F.
Huang, and S.M. Kakade. NIPS 2012.
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Guarantees for Learning Graphical Model Mixtures
Steps Involved in Tree Mixture Approximation
@ Rank tests for structure estimation of union graph G

@ Tensor decomposition for estimation of pairwise moments of mixture
components

@ Chow-Liu algorithm to estimate mixture component trees

Computationally Efficient Algorithm for Learning Graphical Model Mixtures
Theorem (A. , Hsu, Huang, Kakade '12)

The above method recovers correct tree mixture approximation correctly
w.h.p on p nodes of » component mixture under n samples when

‘ n = poly(p,r). ‘

Efficient Learning of Multiple Graphs and Models in High Dimensions

“Learning High-Dimensional Mixtures of Graphical Models” by A. Anandkumar, D. Hsu, F.
Huang, and S.M. Kakade. NIPS 2012.



Splice Data
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Outline

© Conclusion



Summary and Outlook

Learning Latent Tree Models

@ Integrated Structure and Parameter
Learning

@ High level of parallelism without losing
consistency.

Learning Graphical Model Mixtures
@ Tree mixture approximations

@ Combinatorial search + spectral
decomposition

@ Computational and sample guarantees
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