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High-Dimensional Graphical Modeling

Modeling Conditional Independencies through Graphs

Xu ⊥⊥ Xv |XS .

Learning and inference are NP-hard.
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Tractable Models: Tree Models

Efficient inference using belief propagation
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I(X1;X3) ≤ I(X1;X2), I(X2;X3). 1 2 3

Tree Structure Estimation (Chow and Liu ‘68)

MLE: Max-weight tree with estimated mutual information weights

Pairwise statistics suffice

n samples and p nodes

Sample complexity:
log p

n
= O(1). B
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Learning Tractable Graphical Models

Tractable Models: Tree Models

Efficient inference using belief propagation

MLE is easy to compute.

Tree models are highly restrictive.

B

Latent tree graphical models

Tree models with hidden variables.

Number and location of hidden variables
unknown.



Application: Hierarchical Topic Modeling

Data: Word co-occurrences.

Graph: Topic-word structure.
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Application of Latent Trees: Object Recognition

Challenge: Succinct representation of large-scale data
◮ Input: ∼ 100 object categories, ∼ 4000 training images
◮ Goal: learn ∼ 2100 co-occurrence probabilities

Solution: Latent tree graphical models

“Context Models and Out-of-context Objects,” M. J. Choi, A. Torralba, and A. S. Willsky,

Pattern Recognition Letters, 2012.
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Tree Mixture Models

Tree Mixture Models

Multiple graphs: context specific
dependencies

Each component is a tree model

Unsupervised learning: Class
variable is latent or hidden

H

Why use tree mixtures?

Efficient Inference: BP on component trees and combining them.

Similarly marginalization and sampling also efficient.

Learning: Alternatives to EM (Meila & Jordan)?

In this talk: learning latent tree models and tree mixtures.



Summary of Results

Latent Tree Models

Number of hidden variables and location
unknown

Integrated structure and parameter
estimation.

Local learning with global consistency
guarantees.



Summary of Results

Latent Tree Models

Number of hidden variables and location
unknown

Integrated structure and parameter
estimation.

Local learning with global consistency
guarantees.

Mixtures of Trees

Structure and parameters under
different contexts unknown

Unsupervised setting: choice variable
hidden.

Efficient methods for consistent
structure and parameter learning.

H



Previous Approaches

Algorithms for Structure Estimation

Chow and Liu (68): Tree estimation

Meinshausen and Bühlmann (06): Convex relaxation

Ravikumar, Wainwright, Lafferty (10): Convex relaxation

Bresler, Mossel and Sly (09): Bounded-degree graphs . . .

Learning with Hidden Variables

Erdös, et. al. (99): Latent trees

Daskalakis, Mossel and Roch (06): Latent trees

Choi, Tan, Anandkumar and Willsky (10): Latent trees

Chandrasekaran, Parrilo and Willsky (11): Latent Gaussian models,

Anandkumar et. al (12): Tensor decompositions . . .
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Learning Latent Tree Graphical Models

v6

y

h

Linear Multivariate Models

Conditional independence w.r.t tree

Categorical k-state hidden variables.

Multivariate d-dimensional observed variables. k ≤ d.

When y is nbr. of h, E[y|h] = Ah.

Includes discrete, Poisson and Gaussian models, Gaussian mixtures
etc.
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Additive Tree Distances

Information Distances [di,j] for Tree Models

Gaussian scalar: dij := − log |ρij |.

Linear multivariate models: dij := − log

∏

σi 6=0 σ(E[yiy
⊤
j ])

√

detE[yiy⊤i ] detE[yjy
⊤
j ]

.

[di,j] is an additive tree metric: dk,l =
∑

(i,j)∈Path(k,l;E)

di,j.

Learning latent tree using [d̂i,j]



Siblings Test Based on Information Distances

Exact Statistics: Distances [di,j]

Let Φijk := di,k − dj,k.

−di,j<Φijk=Φijk′<di,j ∀ k, k′ 6= i, j, ⇐⇒ i, j leaves with common
parent

Φijk = di,j, ∀ k 6= i, j, ⇐⇒ i is a leaf and j is its parent.

Sample Statistics: ML Estimates [d̂i,j]

Use only short distances: di,k, dj,k < τ , Relax equality relationships
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Serial method, high computational complexity.
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Overview of Proposed Parameter Learning Method

Toy Model: 3-star

Linear multivariate model.

Ar
xi|h

:= E(xi|h = er). and

λr := P[h = er].

h

x1 x2 x3

E(x1 ⊗ x2 ⊗ x3) =
∑k

r=1 λrA
r
x1|h

⊗Ar
x2|h

⊗Ar
x3|h

.

Guaranteed Recovery through Tensor Decomposition

Transition matrices Axi|h have full column rank.

Linear algebraic operations: SVD and tensor power iterations.

“Tensor Decompositions for Learning Latent Variable Models” by A. Anandkumar, R. Ge, D.

Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.



Overview of Tensor Decomposition Technique

Let ar = E(xi|h = er) for all i and
λr := P[h = er].

M3 = E[x1 ⊗ x2 ⊗ x3] =
∑k

i=1 λia
⊗3
i .

h

x1 x2 x3

Intuition: if ai are orthogonal

M3(I, a1, a1) :=
∑

i λi〈ai, a1〉
2ai = λ1a1.

ai are eigenvectors of the tensor M3.

Convert to an orthogonal tensor using pairwise moments

M2 := E[x1 ⊗ x2] =
∑

i λia
⊗2
i .

Whitening matrix: W⊤M2W = I.

Consider tensor M3(W,W,W ) :=
∑

i λi(W
⊤ai)

⊗3. It is an
orthogonal tensor.
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Learning through Hierarchical Tensor Decomposition

Assume known tree structure.

Decompose different triplets: hidden variable is join point on tree.

Alignment issue

Tensor decomposition is an unsupervised method.

Hidden labels permuted across different triplets.

Solution: Align using common node in triplets.
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Integrated Learning

So far..

Consistent structure learning through sibling tests on distances.

Parameter learning through tensor decomposition on triplets.

Challenges

How to integrate structure and parameter learning?

Can we save on computations through integration?

Can we learn parameters as we learn the structure?

Can we parallelize learning for scalability?



Integrated Learning

So far..

Consistent structure learning through sibling tests on distances.

Parameter learning through tensor decomposition on triplets.

Challenges

How to integrate structure and parameter learning?

Can we save on computations through integration?

Can we learn parameters as we learn the structure?

Can we parallelize learning for scalability?

Key Ideas

Divide and conquer: find (overlapping) groups of observed variables.

Learn local subtrees (and parameters) over the groups independently.

Merge subtrees and tweak parameters to obtain global latent tree
model.



Parallel Chow-Liu Based Grouping Algorithm

Minimum spanning tree using information distance [d̂i,j ].
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Alignment of Parameters

Alignment Correction

In-group

Across-group

Across-neighborhood

In-group Across-group

Across-neighborhood



Consistency Guarantees

Theorem

The proposed method consistently recovers the structure with O(log p)
samples and parameters with poly(p) samples.

Extent of parallelism

Size of groups Γ ≤ ∆1+u
l
δ.

Effective depth δ := maxi{minj{path(vi, vj ;T )}.

Maximum degree in latent tree: ∆.

Upper and lower bound on distances between neighbors in the latent
tree: u and l.

Implications

For homogeneous HMM, constant sized groups.

Worst case: star graphs.



Computational Complexity

N samples, d dimensional observed variables, k state hidden variables.

p number of observed variables. z non-zero entries per sample.

Γ sized groups.

Algorithm Steps Time/worker Degree of parallelism

Information Distance Estimation O(Nz + d+ k3) O(p2)
Structure: Minimum Spanning Tree O(log p) O(p2)
Structure: Local Recursive Grouping O(Γ3) O(p/Γ)
Parameter: Tensor Decomposition O(Γk3 + Γdk2) O(p/Γ)
Merging and Alignment Correction O(dk2) O(p/Γ)

“Integrated Structure and Parameter Learning in Latent Tree Graphical Models” by F. Huang,

U. N. Niranjan, A. Anandkumar. Preprint, June 2014.



Proof Ideas

Relating Chow-Liu Tree with Latent Tree

Surrogate Sg(i) for node i: observed node with strongest correlation

Sg(i) := argmin
j∈V

di,j

Neighborhood preservation

(i, j) ∈ T ⇒ (Sg(i),Sg(j)) ∈ TML.

Chow-Liu grouping reverses edge contractions

Proof by induction



Experiments

d = k = 2 dimensions, p = 9 number of variables.
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Structure Error
CLRG-EM
Proposed

d p N Struct Error Param Error Running Time(s)

10 9 50K 0 0.0104 3.8
100 9 50K 0 0.0967 4.4
1000 9 50K 0 0.1014 5.1
10,000 9 50K 0 0.0917 29.9
100,000 9 50k 0 0.0812 56.5
100 9 50K 0 0.0967 10.9
100 81 50K 0.06 0.1814 323.7
100 729 50K 0.16 0.1913 4220.1
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Mixtures of Graphical Models: Our Approach
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Consider data from graphical
model mixture

Output tree mixture: best tree
approx. of each component
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Efficient Learning of Tree Mixture Approximations
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Adapt Tensor Decomposition Method for Graphical Model Mixtures?

Challenges

Cannot reduce to triplet tensor
decomposition

Need to learn higher order moments of
mixture components.
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estimate pairwise mixture moments
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Efficient Estimation of Tree Mixture Approximations
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First consider a graphical model with no latent variables

Markov Property of Graphical Models

Xu ⊥⊥ Xv |XS
?
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P (Xu= i,Xv= j|XS= k) = P (Xu= i|XS= k) P (Xv= j|XS= k)

Mu,v,{S;k} := [P (Xu = i,Xv = j,XS = k)]i,j.

=Mu,v,{S;k}

Rank Test on Pairwise Probability Matrices
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Rank Test for Mixtures

Dim(H) is r and each observed variable is d > r.

G∪ : union of Markov graphs of components.

η: Bound on separators btw. node pairs in G∪.

Mu,v,{S;k} := [P (Xu = i,Xv = j,XS = k)]i,j
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Dim(H) is r and each observed variable is d > r.

G∪ : union of Markov graphs of components.

η: Bound on separators btw. node pairs in G∪.
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Declare (u, v) as edge if min
S⊂V \{u,v}

|S|≤η

max
k∈X |S|

Rank(Mu,v,{S;k}; ξn,p) > r.

Small η ⇒ computationally efficient, uses only low order statistics.

Examples of graphs G∪ with small η

Mixture of product distributions: G∪ is trivial and η = 0.

Mixture on same tree: G∪ is a tree and η = 1.

Mixture on arbitrary trees: G∪ is union of r trees and η = r.

Simple Test for Estimation of Union Graph of Mixtures



Guarantees on Rank Test

Theorem (A. , Hsu, Huang, Kakade ‘12)

Rank test recovers graph structure G∪ correctly w.h.p on p nodes under n
samples when

ρ−2
min log p

n
= O(1).

ρmin : Min. (r + 1)th singular value between neighbors.
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Recall examples of graphs G∪ with small η

Mixture of product distributions: G∪ is trivial and η = 0.

Mixture on same tree: G∪ is a tree and η = 1.

Mixture on arbitrary trees: G∪ is union of r trees and η = r.



Guarantees for Learning Graphical Model Mixtures

Steps Involved in Tree Mixture Approximation

Rank tests for structure estimation of union graph G∪

Tensor decomposition for estimation of pairwise moments of mixture
components

Chow-Liu algorithm to estimate mixture component trees

Computationally Efficient Algorithm for Learning Graphical Model Mixtures

“Learning High-Dimensional Mixtures of Graphical Models” by A. Anandkumar, D. Hsu, F.

Huang, and S.M. Kakade. NIPS 2012.
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Guarantees for Learning Graphical Model Mixtures

Steps Involved in Tree Mixture Approximation

Rank tests for structure estimation of union graph G∪

Tensor decomposition for estimation of pairwise moments of mixture
components

Chow-Liu algorithm to estimate mixture component trees

Computationally Efficient Algorithm for Learning Graphical Model Mixtures

Theorem (A. , Hsu, Huang, Kakade ‘12)

The above method recovers correct tree mixture approximation correctly
w.h.p on p nodes of r component mixture under n samples when

n = poly(p, r).

Efficient Learning of Multiple Graphs and Models in High Dimensions

“Learning High-Dimensional Mixtures of Graphical Models” by A. Anandkumar, D. Hsu, F.

Huang, and S.M. Kakade. NIPS 2012.



Splice Data

DNA SPLICE-junctions

60 variables(sequence of
DNA bases) , class variable

Splice junction type: EI, IE,
none.
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Summary and Outlook

Learning Latent Tree Models

Integrated Structure and Parameter
Learning

High level of parallelism without losing
consistency.

Learning Graphical Model Mixtures

Tree mixture approximations

Combinatorial search + spectral
decomposition

Computational and sample guarantees
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