Energy-Latency Tradeoff for In-Network Function Computation in Random Networks

P. Balister¹ B. Bollobás¹ A. Anandkumar² A.S. Willsky³

¹Dept. of Math., Univ. of Memphis, Memphis, TN, USA

 2 Dept. of EECS, University of California, Irvine, CA, USA.

³Dept. of EECS, Massachusetts Institute of Technology, Cambridge, MA, USA.

Presented by Dr. Ting He

IEEE INFOCOM 2011

Balister et. al. (Dept. of Math., Univ. of Me

Energy-Latency Tradeoff

In-network Function Computation

Internet

PSTN

Traditional Wire-line Networks

- Over-provisioned links
- Layered architecture
- Data forwarding: no processing at intermediate nodes

In-network Function Computation

Internet

Traditional Wire-line Networks

- Over-provisioned links
- Layered architecture
- Data forwarding: no processing at intermediate nodes

Energy-Constrained Sensor Networks

- Multihop wireless communication
- Transmission energy costs

In-network Function Computation

Internet

Traditional Wire-line Networks

- Over-provisioned links
- Lavered architecture
- Data forwarding: no processing at intermediate nodes

Energy-Constrained Sensor Networks

- Multihop wireless communication
- Transmission energy costs

In-network computation for energy savings

Transmission Energy Costs for Wireless Communication

Cost for direct transmission between i and j scales as $R^{\nu}(i, j)$, where $2 \le \nu \le 6$ and ν is known as path-loss exponent.

Transmission Energy Costs for Wireless Communication

Cost for direct transmission between i and j scales as $R^{\nu}(i, j)$, where $2 \le \nu \le 6$ and ν is known as path-loss exponent.

Achieving Energy Efficiency

- Multi-hop routing instead of direct transmission
- In-network computation to reduce amount of data transmitted

Transmission Energy Costs for Wireless Communication

Cost for direct transmission between i and j scales as $R^{\nu}(i, j)$, where $2 \le \nu \le 6$ and ν is known as path-loss exponent.

Achieving Energy Efficiency

- Multi-hop routing instead of direct transmission
- In-network computation to reduce amount of data transmitted

Latency of Data Reception

Number of hops required for data transmission

Transmission Energy Costs for Wireless Communication

Cost for direct transmission between i and j scales as $R^{\nu}(i, j)$, where $2 \le \nu \le 6$ and ν is known as path-loss exponent.

Achieving Energy Efficiency

- Multi-hop routing instead of direct transmission
- In-network computation to reduce amount of data transmitted

Latency of Data Reception

Number of hops required for data transmission

Energy-Latency Tradeoff

- Direct transmission: Higher cost but lower latency
- Multihop routing: Lower cost but higher latency

Problem Formulation

Goal

Design policy π to communicate certain function of data at nodes to the fusion center

Energy Consumption of a Policy π Total energy costs $\sum_{(i,j)\in G_n^{\pi}} R^{\nu}(i,j)$

Latency of Function Computation

Delay for function value to reach fusion center

Optimal Energy-Latency Tradeoff Minimize energy consumption subject to latency constraint

Can we design policies which achieve optimal energy-latency tradeoff?

Summary of Results

Stochastic Node Configuration

n nodes placed uniformly at random in \mathbb{R}^d over area n

Summary of Results

Stochastic Node Configuration

n nodes placed uniformly at random in \mathbb{R}^d over area n

Sum Function Computation

Deliver sum of data at nodes to fusion center

Summary of Results

Stochastic Node Configuration

n nodes placed uniformly at random in \mathbb{R}^d over area n

Sum Function Computation

Deliver sum of data at nodes to fusion center

Energy-Latency Tradeoff for Sum Function Computation

- Propose novel policies which meet latency constraint
- Prove order-optimal energy-latency tradeoff
- Characterize scaling behavior with respect to path-loss exponent u

Order-optimal Energy-Latency Tradeoff

Summary of Results Contd.,

Stochastic Node Configuration

n nodes placed uniformly at random in \mathbb{R}^d over $[0,n^{1/d}]^d$

Clique-Based Function Computation

- Function which decomposes over cliques of a graph
- Relevant for statistical inference of graphical models (correlated sensor data)

Summary of Results Contd.,

Stochastic Node Configuration

n nodes placed uniformly at random in \mathbb{R}^d over $[0,n^{1/d}]^d$

Clique-Based Function Computation

- Function which decomposes over cliques of a graph
- Relevant for statistical inference of graphical models (correlated sensor data)

Energy-Latency Tradeoff for Clique Function Computation

- Extend previous policy for this class of functions
- Prove order optimality under following conditions:
 - Latency constraints belong to a certain range
 - The graph governing the function is a proximity graph, e.g. k-nearest neighbor graph, random geometric graph

- 4 同 6 4 日 6 4 日 6

Capacity of In-network Function Computation

- Rate of computation (Giridhar & Kumar 06)
- Single-shot computation considered here

Capacity of In-network Function Computation

- Rate of computation (Giridhar & Kumar 06)
- Single-shot computation considered here

Minimum Broadcast Problem

- Minimize time of broadcast to all nodes from a single source (Ravi 94)
- Equivalent to latency of sum function computation
- Energy-latency tradeoff not considered before

Capacity of In-network Function Computation

- Rate of computation (Giridhar & Kumar 06)
- Single-shot computation considered here

Minimum Broadcast Problem

- Minimize time of broadcast to all nodes from a single source (Ravi 94)
- Equivalent to latency of sum function computation
- Energy-latency tradeoff not considered before

Energy Optimization for Clique Function Computation

- Steiner-tree reduction (Anandkumar et. al. 08, 09)
- Order-optimality for random networks (Anandkumar et. al. 09)

Capacity of In-network Function Computation

- Rate of computation (Giridhar & Kumar 06)
- Single-shot computation considered here

Minimum Broadcast Problem

- Minimize time of broadcast to all nodes from a single source (Ravi 94)
- Equivalent to latency of sum function computation
- Energy-latency tradeoff not considered before

Energy Optimization for Clique Function Computation

- Steiner-tree reduction (Anandkumar et. al. 08, 09)
- Order-optimality for random networks (Anandkumar et. al. 09)

Novelty: Energy-Latency Tradeoff for Function Computation

Outline

2 Detailed Model and Formulation

< 4 → < -

Detailed System Model

Communication Model

- Half-duplex nodes: no simultaneous transmission and reception
- Dedicated reception: Cannot receive data from multiple nodes
- No other interference constraints: orthogonal channels/directional antenna

Detailed System Model

Communication Model

- Half-duplex nodes: no simultaneous transmission and reception
- Dedicated reception: Cannot receive data from multiple nodes
- No other interference constraints: orthogonal channels/directional antenna

Propagation Model

• Unit transmission delay at all links

Stochastic Node Configuration \mathbf{V}_n

n nodes placed uniformly at random in \mathbb{R}^d over $[0,n^{1/d}]^d$

Energy-Latency Tradeoff

Energy Consumption of a Policy π $\mathcal{E}^{\pi}(\mathbf{V}_n) := \sum_{(i,j)\in G_n^{\pi}} R^{\nu}(i,j)$

- 本語 医 本 医 医 一 医

Energy-Latency Tradeoff

Energy Consumption of a Policy π $\mathcal{E}^{\pi}(\mathbf{V}_n) := \sum_{(i,j)\in G_n^{\pi}} R^{\nu}(i,j)$

Latency of Function Computation $L^{\pi}(\mathbf{V}_n)$ Delay for function value to reach fusion center

Minimum Latency

 $L^*(\mathbf{V}_n) := \min_{\pi} L^{\pi}(\mathbf{V}_n)$

Optimal Energy-Latency Tradeoff

$$\mathcal{E}^*(\mathbf{V}_n; \delta) := \min_{\pi} \mathcal{E}^{\pi}(\mathbf{V}_n), \quad s.t. \ L^{\pi} \le L^* + \delta.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Outline

Balister et. al. (Dept. of Math., Univ. of Me

Energy-Latency Tradeoff

< 一型

Preliminaries for Sum Function Computation

Computation Along a Tree ${\cal T}$

- Links directed towards fusion center (root)
- Each node waits to receive data from children
- It then computes sum of values (along with own data) and forwards along outgoing link
- Process stops when data reaches fusion center

Preliminaries for Sum Function Computation

Computation Along a Tree ${\cal T}$

- Links directed towards fusion center (root)
- Each node waits to receive data from children
- It then computes sum of values (along with own data) and forwards along outgoing link
- Process stops when data reaches fusion center

Latency Along a Tree

Latency L_T along tree T is

$$L_T = \max_{i=1,...,k} \{i + L_{T_i}\}$$

- T_i : subtree rooted at node i
- $1,\ldots,k$: are of root such that $L_{T_1} \geq L_{T_2} \ldots \geq L_{T_k}$

Minimum Latency Tree

Minimum Latency Result

- Minimum latency for sum function computation over n nodes is $L^*(n) = \lceil \log_2 n \rceil$.
- \iff max. # of nodes in tree with latency L is 2^L .

Minimum Latency Tree

Minimum Latency Result

- Minimum latency for sum function computation over n nodes is $L^*(n) = \lceil \log_2 n \rceil$.
- \iff max. # of nodes in tree with latency L is 2^L .

Construction Minimum Latency Tree T^{\ast}

Recursively add child to each node already in tree

Minimum Latency Tree

Minimum Latency Result

- Minimum latency for sum function computation over n nodes is $L^*(n) = \lceil \log_2 n \rceil$.
- \iff max. # of nodes in tree with latency L is 2^L .

Construction Minimum Latency Tree T^*

Recursively add child to each node already in tree

Level l(e;T) of link e in tree T

 $l(e;T) = L_T - t_e.$

• t_e: time of transmission at link e

• Process starts at time 0.

Shown with edge-level labels

Balister et. al. (Dept. of Math., Univ. of Me

Energy-Latency Tradeoff

IEEE INFOCOM '11 14 / 21

Shown with edge-level labels

General Policy for Energy-Latency Tradeoff

Observations

- Minimum Latency L^* independent of node locations \mathbf{V}_n
- Energy consumption depends on node locations \mathbf{V}_n

Construct aggregation tree T depending on \mathbf{V}_n

Overview of Algorithm $\pi^{\rm\scriptscriptstyle AGG}$

- Iteratively bisect region under consideration
- Choose child in the other half
- Connect to the child along least energy route with at most w_k intermediate nodes

Example for π^{AGG} **policy**

- 2

・ロト ・聞ト ・ヨト ・ヨト

Example for π^{AGG} **policy**

- 2

・ロト ・聞ト ・ヨト ・ヨト

Example for $\pi^{\rm\scriptscriptstyle AGG}$ policy

Example for π^{AGG} **policy**

- 2

ヘロン 人間と 人間と 人間と

Analysis of π^{AGG} policy

Latency under π^{AGG} policy

$$L^{\pi} = L^*(n) + \sum_{k=0}^{\lceil \log_2 n \rceil - 1} w_k$$

Balister et. al. (Dept. of Math., Univ. of Me

(日) (圖) (E) (E) (E)

Analysis of π^{AGG} policy

Latency under π^{AGG} policy

$$L^{\pi} = L^*(n) + \sum_{k=0}^{\lceil \log_2 n \rceil - 1} w_k$$

Optimal Energy-Latency Tradeoff Problem

Minimize energy subject to latency constraint

$$\mathcal{E}^*(\mathbf{V}_n; \delta) := \min_{\pi} \mathcal{E}^{\pi}(\mathbf{V}_n), \quad s.t. \ L^{\pi} \le L^* + \delta.$$

Analysis of π^{AGG} policy

Latency under π^{AGG} policy

$$L^{\pi} = L^*(n) + \sum_{k=0}^{\lceil \log_2 n \rceil - 1} w_k$$

Optimal Energy-Latency Tradeoff Problem

Minimize energy subject to latency constraint

$$\mathcal{E}^*(\mathbf{V}_n; \delta) := \min_{\pi} \mathcal{E}^{\pi}(\mathbf{V}_n), \quad s.t. \ L^{\pi} \le L^* + \delta.$$

Choice of weights for π^{AGG} for optimal tradeoff For $k=0,\ldots,\lceil \log_2 n \rceil-1$

$$w_k = \begin{cases} \lfloor \zeta \delta 2^{k(1/\nu - 1/d)} \rfloor & \text{if } \nu > d, \\ 0 & \text{o.w.} \end{cases}$$

Balister et. al. (Dept. of Math., Univ. of Me

Energy-Latency Tradeoff

Main Result: Optimal Energy-Latency Tradeoff

Optimal Energy-Latency Tradeoff

Minimize energy subject to latency constraint

$$\mathcal{E}^*(\mathbf{V}_n; \delta) := \min_{\pi} \mathcal{E}^{\pi}(\mathbf{V}_n), \quad s.t. \ L^{\pi} \le L^* + \delta.$$

Theorem

For given δ , path-loss ν , dimension d, as number of nodes $n \to \infty$,

$$\mathbb{E}(\mathcal{E}^*(\mathbf{V}_n; \delta)) = \begin{cases} \Theta(n) & \nu < d, \\ O\big(\max\{n, n(\log n)(1 + \frac{\delta}{\log n})^{1-\nu}\}\big) & \nu = d, \\ \Theta\big(\max\{n, n^{\nu/d}(1 + \delta)^{1-\nu}\}\big) & \nu > d, \end{cases}$$

• Expectation is over node locations \mathbf{V}_n of n

• Achieved by the policy $\pi^{\rm AGG}$

Outline

2 Detailed Model and Formulation

3 Sum Function Computation

< 17 ▶

Conclusion

Summary of Results

- Considered energy-latency tradeoff for function computation
- Considered sum function and function over cliques
- Proposed novel aggregation policies
- Proved order-optimal energy-latency tradeoff

Outlook

- Extensions beyond single-shot computation
- Multiple fusion centers with multiple functions for computation

Thank You !

Balister et. al. (Dept. of Math., Univ. of Me

Energy-Latency Tradeoff

IEEE INFOCOM '11 21 / 21

æ

・ロト ・聞ト ・ヨト ・ヨト