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ABSTRACT
System design must strike a balance between energy and per-
formance by carefully selecting the speed at which the sys-
tem will run. In this work, we examine fundamental trade-
offs incurred when designing a speed scaler to minimize a
weighted sum of expected response time and energy use per
job. We prove that a popular dynamic speed scaling algo-
rithm is 2-competitive for this objective and that no “nat-
ural” speed scaler can improve on this. Further, we prove
that energy-proportional speed scaling works well across two
common scheduling policies: Shortest Remaining Process-
ing Time (SRPT) and Processor Sharing (PS). Third, we
show that under SRPT and PS, gated-static speed scaling is
nearly optimal when the mean workload is known, but that
dynamic speed scaling provides robustness against uncertain
workloads. Finally, we prove that speed scaling magnifies
unfairness, notably SRPT’s bias against large jobs and the
bias against short jobs in non-preemptive policies. However,
PS remains fair under speed scaling. Together, these results
show that the speed scalers studied here can achieve any two,
but only two, of optimality, fairness, and robustness.

1. INTRODUCTION
Computer systems must make a fundamental tradeoff be-

tween performance and energy usage. The days of “faster is
better” are gone — energy usage can no longer be ignored
in designs all the way from chips to mobile devices to data
centers.

The importance of energy has led designs at all levels of
systems to move toward speed scaling, once a technique used
primarily at the chip level. Speed scaling designs adapt the
“speed” of the system so as to balance energy and perfor-
mance measures. Speed scaling designs can be highly so-
phisticated — adapting the speed at all times to the current
state (dynamic speed scaling) — or very simple — running
at a static speed that is chosen to balance energy and per-
formance, except when idle (gated-static speed scaling).

The growing adoption of speed scaling designs for systems
from chips to disks to data centers has spurred analytic re-
search into the topic. The analytic study of the speed scal-
ing problem began with Yao et al. [34] in 1995. Since [34],
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three main performance objectives balancing energy and de-
lay have been considered: (i) minimize the total energy used
in order to meet job deadlines, e.g., [6, 25] (ii) minimize the
average response time given an energy/power budget, e.g.,
[11, 35], and (iii) minimize a linear combination of expected
response time and energy usage per job [1, 5]. In this work
we focus on the third objective. This objective captures how
much reduction in response time is necessary to justify using
an extra 1 joule of energy, and naturally applies to settings
where there is a known monetary cost to extra delay (e.g.
many web applications).

Fundamentally, a speed scaling algorithm must make two
decisions at each time: (i) a scheduling policy must decide
which job(s) to service, and (ii) a speed scaler must decide
how fast to run the server. It has been noted by prior work,
e.g., [25], that an optimal speed scaling algorithm will use
Shortest Remaining Processing Time (SRPT) scheduling.
However, in real systems, it is often impossible to imple-
ment SRPT, since it requires exact knowledge of remaining
sizes. Instead, typical system designs often use scheduling
that is closer to Processor Sharing (PS), e.g., web servers,
operating systems, and routers. In this work, we focus on
the design of speed scalers for both SRPT and PS.

The study of speed scaling algorithms for these two policies
is not new. There has been significant prior work, which
we discuss in Sections 3.1 and 3.2, studying speed scaling
for SRPT [1, 4, 5, 7, 22] and for PS [10, 14, 16, 30, 32].
Interestingly, the prior work for SRPT is entirely done using
a worst-case framework while the prior work for PS is done
in a stochastic environment, the M/GI/1 queue.

Despite the considerable literature studying speed scaling,
there are many fundamental issues in the design of speed
scaling algorithms that are not yet understood. This paper
provides new insights into four of these issues:

I Can a speed scaling algorithm be optimal? What struc-
ture do (near-)optimal algorithms have?

II How does speed scaling interact with scheduling?

III How important is the sophistication of the speed scaler?

IV What are the drawbacks of speed scaling?

To address these questions we study both PS and SRPT
scheduling under both dynamic and gated-static speed scal-
ing algorithms. Our work provides (i) new results for dy-
namic speed scaling with SRPT scheduling in the worst-case
model, (ii) the first results for dynamic speed scaling with PS
scheduling in the worst-case model, (iii) the first results for
dynamic speed scaling with SRPT scheduling in the stochas-
tic model, (iv) the first results for gated-static speed scaling
with SRPT in the stochastic model, and (v) the first results
identifying unfairness in speed scaling designs. Table 1 sum-
marizes these.



These results lead to important new insights into Issues
I-IV above. We describe these insights informally here and
provide pointers to the results in the body of the paper.

With respect to Issue I, our results show that “energy-
proportional” speed scaling provides near-optimal perfor-
mance. Specifically, we consider the algorithm which uses
SRPT scheduling and chooses sn, the speed to run at given n
jobs, to satisfy P (sn) = nβ (where P (s) is the power needed
to run at speed s and 1/β is the cost of energy). We prove
that this algorithm is (2 + ε)-competitive under general P
(Corollary 3). This provides a tight analysis of an algorithm
with a considerable literature, e.g., [1, 4, 5, 7, 22] (see Sec-
tion 3.1 for a discussion). It also gives analytic justification
for a common heuristic applied by system designers, e.g., [8].
Further, we show that no “natural” speed scaling algorithm
(Definition 1) can be better than 2-competitive (Theorem
4), which implies that no online energy-proportional speed
scaler can match the offline optimal.

With respect to Issue II, our results uncover two new
insights. First, we prove that, at least with respect to PS
and SRPT, speed scaling can be decoupled from the scheduler.
That is, energy-proportional speed scaling performs well for
both SRPT and PS (and another policy LAPS studied in
[12]). Specifically, we show that PS scheduling with speeds
such that P (sn) = n, which are optimally competitive under
SRPT, is again O(1)-competitive (Theorem 5). Further, we
show that using the speeds optimal for an M/GI/1 PS queue
to control instead an M/GI/1 SRPT queue leads to nearly
optimal performance (Section 3.2). Second, our results show
that scheduling is not as important once energy is considered.
Specifically, PS is O(1)-competitive for the linear combina-
tion of energy and response time; however, when just mean
response time is considered PS is Ω(ν1/3)-competitive for in-
stances with ν jobs [24]. Similarly, we see in the stochastic
environment that the performance under SRPT and PS is
almost indistinguishable (e.g., Figure 1). Together, the in-
sights into Issue II provide a significant simplification of the
design of speed scaling systems: they suggest that practi-
tioners can separate two seemingly coupled design decisions
and deal with each individually.

With respect to Issue III, our results add support to an
insight suggested by prior work. Prior work [32] has shown
that the optimal gated-static speed scaling algorithm per-
forms nearly as well as the optimal dynamic speed scaling al-
gorithm in the M/GI/1 PS setting. Our results show that the
same holds for SRPT (Section 4). Thus, sophistication does
not provide significant performance improvements in speed
scaling designs. However, sophistication provides improved
robustness (Section 5). To support this analytically, we pro-
vide worst-case guarantees on the (near) optimal stochastic
speed scalers for PS and SRPT (Corollary 14). Note that it
is rare to be able to provide such guarantees for stochastic
control policies. The insights related to Issue III have an
interesting practical implication: instead of designing “opti-
mal” speeds it may be better to design “optimally robust”
speeds, since the main function of dynamic speed scaling is
to provide robustness. This represents a significant shift in
approach for stochastic speed scaling design.

With respect to Issue IV, our results uncover one unin-
tended drawback of dynamic speed scaling: speed scaling can
magnify unfairness. Unfairness in speed scaling designs has
not been identified previously, but in retrospect the intuition
behind it is clear: If a job’s size is correlated with the oc-
cupancy of the system while it is in service, then dynamic
speed scaling will lead to differential service rates across job

sizes, and thus unfairness. We prove that speed scaling mag-
nifies unfairness under SRPT (Theorem 16) and all non-
preemptive policies, e.g. FCFS (Proposition 17). In contrast,
PS is fair even with dynamic speed scaling (Proposition 15).
Combining these results with our insights related to Issue
II, we see that designers can decouple the scheduler and the
speed scaler when considering performance, but should be
wary about the interaction when considering fairness.

Our results highlight the balancing act a speed scaling al-
gorithm must perform in order to achieve the three desirable
properties we have discussed: near-optimal performance, ro-
bustness, and fairness. It is possible to be near-optimal and
robust using SRPT scheduling and dynamic speed scaling,
but this creates unfairness. SRPT can be fair and still near-
optimal if gated-static speed scaling is used, but this is not
robust. On the other hand, dynamic speed scaling with PS
can be fair and robust but, in the worst case, pays a signif-
icant performance penalty (though in stochastic settings is
near-optimal). Thus, the policies considered in this paper
can achieve any two of near-optimal, fair, and robust — but
not all three.

Finally, it is important to note that the analytic approach
of this paper is distinctive. It is unusual to treat both
stochastic and worst-case models in one paper; and further,
many results depend on a combination of worst-case and
stochastic techniques, which leads to insights that could not
have been attained by focusing on one model alone.

2. MODEL AND NOTATION
We consider the joint problem of speed scaling and

scheduling in a single server queue to minimize a linear com-
bination of expected response time (also called sojourn time
or flow time), denoted by T , and energy usage per job, de-
noted E :

z = E[T ] + E[E ]/β. (1)

By Little’s law, this may be more conveniently expressed as

λz = E[N ] + E[P ]/β (2)

where N is the number of jobs in the system and P = λE is
the power expended.

Before defining the speed scaling algorithms, we need some
notation. Let n(t) be the number of jobs in the system at
time t and s(t) be the speed that the system is running
at at time t. Further, define P (s) as the power needed
to run at speed s. Then, the energy used by time t is
E(t) =

∫ t
0
P (s(t))dt.

Measurements have shown that P (s) can take on a variety
of forms depending on the system being studied; however,
in many applications a low-order polynomial form provides
a good approximation, i.e., P (s) = ksα with α ∈ (1, 3). For
example, for dynamic power in CMOS chips α ≈ 1.8 is a
good approximation [32]. However, this polynomial form is
not always appropriate; wireless and other communication
over an additive white Gaussian noise channel have an expo-
nential power function [13], while interference-limited com-
munications has unbounded power at finite rate [17]. Some
of our results assume a polynomial form to make the analysis
tractable, and particularly α = 2 provides a simple example
which we use for many of our numerical experiments. Other
results hold for general, even non-convex and discontinuous,
power functions. Additionally, we occasionally limit our re-
sults to regular power functions, which are differentiable on
[0,∞), strictly concave, non-negative, and 0 at speed 0.



Name Scheduler Speed scaler: sn P (s) Optimal? Robust? Fair?

SRPT-INV SRPT Dynamic: P−1(nβ) General 2-competitive (Theorem 1). yes no

SRPT-DP SRPT Dynamic: Prop. 7 sα O(1)-competitive for α ≤ 2 (Corollary 14). weakly no

SRPT-LIN SRPT Dynamic: n
√
β s2 No guarantee, simulation results in Figure 7. weakly no

SRPT-GATED SRPT Gated: (22) Regular O(1)-competitive in M/GI/1 under heavy traffic
with P (s) = s2 (Corollary 13). Optimal gated in
M/GI/1 under heavy traffic (Theorem 10).

no yes

PS-INV PS Dynamic: P−1(nβ) sα O(1)-competitive (Theorem 5). yes yes

PS-DP PS Dynamic: Prop. 7 sα O(1)-competitive for α ≤ 2 (Corollary 14).
Optimal in M/GI/1 PS [32].

weakly yes

PS-LIN PS Dynamic: n
√
β s2 O(1)-competitive in M/GI/1 with P (s) = s2 [32]. weakly yes

PS-GATED PS Gated: (19) Regular O(1)-competitive in M/GI/1 with P (s) = s2

(Corollary 13). Optimal gated in M/GI/1 [32].
no yes

Table 1: Summary of the speed scaling schemes in this paper.

Now, we can define a speed scaling algorithm: A speed
scaling algorithm A = (π,Σ), is a pair of a scheduling dis-
cipline π that defines the order in which jobs are processed,
and a speed scaling rule Σ that defines the speed as a func-
tion of system state, in terms of the power function, P . In
this paper we consider speed scaling rules where the speed
is a function of the number of jobs in the system, i.e., sn is
the speed when the occupancy is n.1

The scheduling algorithms π we consider are online, and
so are not aware of a job j until it arrives at time r(j),
at which point π learns the size of the job, xj . We con-
sider a preempt-resume model, that is, the scheduler may
preempt a job and later restart it from the point it was in-
terrupted without any overhead. The policies that we focus
on are: Shortest Remaining Processing Time (SRPT), which
preemptively serves the job with the least remaining work;
Processor Sharing (PS), which shares the service rate evenly
among the jobs in the system at all times; and First Come
First Served (FCFS), which serves jobs in order of arrival.

The speed scaling rules, sn, we consider can be gated-
static, which runs at a constant speed while the system
is non-idle and sleeps while the system is idle, i.e., sn =
sgs1n 6=0; or more generally dynamic sn = g(n) for some func-
tion g : N ∪ {0} → [0,∞). Note that the speed is simply the
rate at which work is completed, i.e., a job of size x served
at speed s will complete in time x/s. To avoid confusion, we
occasionally write sπn as the speed under policy π when the
occupancy is n.

We analyze the performance of speed scaling algorithms in
two different models — one worst-case and one stochastic.

Notation for the worst-case model
In the worst-case model we consider finite, arbitrary (maybe
adversarial) instances of arriving jobs. A problem instance
consists of ν jobs, with the jth job having arrival time (re-
lease time) r(j) and size (work) xj . Our objective is again a
linear combination of response time and energy usage. Let
E(I) be the total energy used to complete instance I, and
Tj be the response time of job j, the completion time minus
the release time. The analog of (1) is to replace the ensemble
average by the sample average, giving the cost of an instance

1Note that for some other objectives, it is better to base the
speed on the unfinished work instead [7].

I under a given algorithm A as

zA(I) =
1

ν

(∑
j
Tj +

1

β
E(I)

)
. (3)

In this model, we compare the cost of speed scaling algo-
rithms to the cost of the optimal offline algorithm, OPT. In
particular, we study the competitive ratio, defined as

CR = sup
I
zA(I)/zO(I),

where zO(I) is the optimal cost achievable on I.

Notation for the stochastic model
In the stochastic model, we consider an M/GI/1 (or some-
times GI/GI/1) queue with arrival rate λ. Let X denote a
random job size with c.d.f. F (x), c.c.d.f. F̄ (x), and continu-
ous p.d.f. f(x). Let ρ = λE[X] ∈ [0,∞) denote the load of
arriving jobs. Note that ρ is not the utilization of the system
and that many dynamic speed scaling algorithms are stable
for all ρ. When the power function is P (s) = sα, it is natural
to use a scaled load, γ := ρ/βα, which jointly characterizes
the impact of ρ and β (see [32]).

Denote the response time of a job of size x by T (x). We
consider the performance metric (1) where the expectations
are averages per job. In this model the goal is to optimize
this cost for a specific workload, ρ. Define the competitive
ratio in the M/GI/1 model as

CR = sup
F,λ

zA/zO

where zO is the average cost of the optimal offline algorithm.

3. DYNAMIC SPEED SCALING
We start by studying the most sophisticated speed scaling

algorithms, those that dynamically adjust the speed as a
function of the queue length. In this section we investigate
the structure of the “optimal” speed scaling algorithm in two
ways: (i) we study near-optimal speed scaling rules in the
case of both SRPT and PS scheduling; (ii) we study each
of these algorithms in both the worst-case model and the
stochastic model.

3.1 Worst-case analysis



There has been significant work studying speed scaling in
the worst-case model following Yao et al.’s seminal 1995 pa-
per [34], most of it focusing on SRPT. A promising algorithm
that has emerged is (SRPT, P−1(n)), and there has been a
significant stream of papers providing upper bounds on the
competitive ratio of this algorithm for objective (1): for unit-
size jobs in [1, 7] and for general jobs with P (s) = sα in [4,
22]. A major breakthrough was made in [5], which shows the
3-competitiveness of (SRPT, P−1(n+ 1)) for general P .

Our contribution to this literature is twofold. First,
we tightly characterize the competitive ratio of (SRPT,
P−1(nβ)). Specifically, we prove that (SRPT, P−1(nβ))
is exactly 2-competitive under general power functions (see
Theorem 1 and Corollary 3). Second, we prove that no
“natural” speed scaling algorithm can be better than 2-
competitive. Natural speed scaling algorithms include al-
gorithms which have speeds that grow faster, slower, or pro-
portional to P−1(nβ), or that use a scheduler that works on
exactly one job between arrival/departure events (see Defini-
tion 1). Thus, the class of natural algorithms includes energy
proportional designs for all schedulers and SRPT scheduling
for any sn. We conjecture that this result can be extended
to all speed scaling algorithms, which would imply that the
competitive ratio of (SRPT, P−1(nβ)) is minimal.

In contrast to this stream of work studying SRPT, there
has been no analysis of speed scaling under PS. We prove
that (PS, P−1(nβ)) is O(1)-competitive, and in particular
is (4α − 2)-competitive for typical α, i.e., α ∈ (1, 3]. This
builds on [12], which studies LAPS, another policy “blind”
to job sizes. (LAPS, P−1(nβ)) is also O(1)-competitive for
P (s) = sα with fixed α. However, for both PS and LAPS the
competitive ratio is unbounded for large α, which [12] proves
holds for all blind policies. But, note that α ∈ (1, 3] in most
computer systems today (e.g., disks, chips, and servers);
thus, asymptotics in α are less important than the perfor-
mance for small α.

The results in this section highlight important insights
about fundamental issues in speed scaling design. First, the
competitive ratio results highlight that energy-proportional
speed scaling (P (sn) = nβ) is nearly optimal, which provides
analytic justification of a common design heuristic, e.g., [8].
Second, note that energy-proportional speed scaling works
well for PS and SRPT (and LAPS). This suggests a designer
may decouple the choice of a speed scaler from the choice
of a scheduler, choices that initially seem very intertwined.
Though we have seen this decoupling only for PS, SRPT, and
LAPS, we conjecture that it holds more generally. Third,
scheduling seems much less important in the speed scaling
model than in the standard constant speed model. For an
instance of ν jobs, PS is Ω(ν1/3)-competitive for mean re-
sponse time in the constant speed model [24], but is O(1)-
competitive in the speed scaling model. Again, we conjecture
that this holds more generally than for just PS.

3.1.1 Amortized competitive analysis
The proofs of the results described above use a technique

termed amortized local competitive analysis [15, 28]. The
technique works as follows.

To show that an algorithm A is c-competitive with an op-
timal algorithm OPT for a performance metric z =

∫
z(t)dt

it is sufficient to find a potential function Φ : R → R such
that, for any instance of the problem:

1. Boundary condition: Φ = 0 before the first job is re-
leased, and Φ ≥ 0 after the last job is finished;

2. Jump condition: At any point where Φ is not differen-

tiable, it does not increase;

3. Running condition: When Φ is differentiable,

zA(t) +
dΦ

dt
≤ czO(t), (4)

where zA(t) and zO(t) are the cost z(t) under A and
OPT respectively.

Given these conditions, the competitiveness follows from in-
tegrating (4), which gives

zA ≤ zA + Φ(∞)− Φ(−∞) ≤ czO.

3.1.2 SRPT analysis
We now state and prove our results for SRPT.

Theorem 1. For any regular power function P , (SRPT,
P−1(nβ)) has a competitive ratio of exactly 2.

The proof of the upper bound is a modification of the anal-
ysis in [5] that accounts more carefully for some boundary
cases. It uses the potential function:

Φ(t) =

∫ ∞
0

n[q;t]∑
i=1

∆(i) dq (5)

for some non-decreasing ∆(·) with ∆(i) = 0 for i ≤ 0, where
n[q; t] = max(0, nA[q; t] − nO[q; t]) with nA[q; t] and nO[q; t]
the number of unfinished jobs at time t with remaining size at
least q under the scheme under investigation and the optimal
(offline) scheme, respectively.

The following technical lemma is the key step of the proof
and is proven in Appendix A.

Lemma 2. Let η ≥ 1 and Φ be given by (5) with

∆(i) =
1 + η

β
P ′
(
P−1 (iβ)

)
. (6)

Let A = (SRPT, sn) with sn ∈ [P−1(nβ), P−1(ηnβ)]. Then
at points where Φ is differentiable,

nA + P (sA)/β +
dΦ

dt
≤ (1 + η)(nO + P (sO)/β). (7)

Using the above Lemma, we can now prove Theorem 1.

Proof of Theorem 1. To show that the competitive ra-
tio of (SRPT, P−1(nβ)) is at most 2, we show that Φ given
by (5) and (6) is a valid potential function.

The boundary conditions are satisfied since Φ = 0 when
there are no jobs in the system. Also, Φ is differentiable
except when a job arrives or departs. When a job arrives,
the change in nA[q] equals that in nO[q] for all q, and so Φ
is unchanged. When a job is completed, n[q] is unchanged
for all q > 0, and so Φ is again unchanged. The running
condition is established by Lemma 2 with η = 1.

To prove the lower bound on the competitive ratio, con-
sider periodic unit-work arrivals at rate λ = sn for some n.
As the number of jobs that arrive grows large, the optimal
schedule runs at rate λ, and maintains a queue of at most one
packet (the one in service), giving a cost per job of at most
(1 + P (λ)/β)/λ. In order to run at speed λ, the schedule
(SRPT, P−1(nβ)) requires n = P (λ)/β jobs in the queue,
giving a cost per job of (P (λ)+P (λ))/(λβ). The competitive

ratio is thus at least 2P (λ)
β+P (λ)

. As λ becomes large, this tends

to 2 since a regular P is unbounded.

Theorem 1 can easily be extended to non-negative power
functions by applying the same argument as used in [5].



Corollary 3. Let ε > 0. For any non-negative and un-
bounded P̃ , there exists a P such that emulating (SRPT,
P−1(nβ)) yields a (2 + ε)-competitive algorithm.

This emulation involves avoiding speeds where P is not
convex, instead emulating such speeds by switching between
a higher and lower speed on the convex hull of P̃ .

Corollary 3 shows that (SRPT, P−1(nβ)) does not match
the performance of the offline optimal. This motivates con-
sidering other algorithms; however we now show that no
“natural” algorithm can do better.

Definition 1. A speed scaling algorithm A is natural if
it runs at speed sn when it has n unfinished jobs, and for
convex P , one of the following holds:

(a) the scheduler is work-conserving and works on a single
job between arrival/departure events; or

(b) g(s) + P (s)/β is convex, for some g with g(sn) = n; or

(c) the speeds sn satisfy P (sn) = ω(n); or

(d) the speeds sn satisfy P (sn) = o(n).

Note that natural algorithms include all algorithms that
use the optimal scheduler SRPT, and all algorithms whose
speeds grow faster than, slower than, or proportional to
P−1(n).

Theorem 4. For any ε > 0 there is a regular power func-
tion Pε such that any natural algorithm A on Pε has com-
petitive ratio larger than 2− ε.

This theorem highlights that if an algorithm does have a
smaller competitive ratio than (SRPT, P−1(nβ)), it will not
use “natural” scheduling or speed scaling. Though the result
only applies to natural algorithms, we conjecture that, in
fact, it holds for all speed scaling algorithms, and thus the
competitive ratio of (SRPT, P−1(nβ)) is minimal.

Proof. Consider the case when P (s) = sα, with α yet to
be determined. We show that, for large α, the competitive
ratio is at least 2−ε, by considering two cases: instance IB(ν)

is a batch arrival of ν jobs of size 1 at time 0 with no future
arrivals, and instance IR(b,λ) is a batch of b jobs at time 0
followed by a long train of periodic arrivals of jobs of size 1
at times k/λ for k ∈ N.

Fix an ε > 0 and consider a speed scaling which can attain
a competitive ratio of 2 − ε for all instances IR(·,·). For
IR(·,λ), with large λ, the optimal algorithm will run at speed
exceeding λ for a finite time until the occupancy is one. After
that, it will run at speed λ so that no queue forms. For long
trains, this leads to a cost per job of (1 + P (λ)/β)/λ.

First, consider a“type (d)”naturalA. For sufficiently large
λ, n > ksαn for all sn ≥ λ/2, where k = 2α+2/β. Between
arrivals, at least 1/2 unit of work must be done at speed at
least λ/2, in order for A not to fall behind. The cost per
unit work is at least (1/s)(ksα+sα/β), and so the total cost
of performing this 1/2 unit is at least (k + 1/β)λα−1/2α >
4λα−1/β. For large λ, this is at least twice the cost per job
under the optimal scheme: (1 + P (λ)/β)/λ < 2λα−1/β.

It remains to consider natural algorithms of types (a)–(c).
Consider a “type (a)” natural A on the instance IR(n,sn)

for some n. It will initially process exactly one job at speed
sn, which it will finish at time 1/sn. From this time, a new
arrival will occur whenever a job completes, and so the algo-
rithm runs at speed sn with occupancy n until the last ar-
rival. So, the average cost per job tends to (n+P (sn)/β)/sn
on large instances, leading to a competitive ratio of:

1 +
n− 1

P (sn)/β + 1
≤ CRperiodic ≤ 2− ε. (8)

Consider a “type (b)” natural A. On IR(n,sn), A also sat-
isfies (8): Let s̄ to denote the time-average speed. For all
φ < 1, for sufficiently long instances we need s̄ ≥ φsn to
prevent an unbounded queue forming. By Jensen’s inequal-
ity, the average cost per job satisfies z̄ ≥ (g(s̄) + P (s̄)/β) ≥
(g(φsn) + P (φsn)/β). Since φ can be arbitrarily close to 1,
the cost can be arbitrarily close to n+ P (sn)/β, whence (8)
holds.

For a “type (c)” natural A, P (sn)/n→∞ for large n.
Thus, for types (a)-(c), ∃n0 such that for all n > n0:

xn :=
P (sn)

nβ
≥ 1

1− ε/2 (9)

We now show that this condition precludes having a com-
petitive ratio of 2− ε in the case of batch arrivals, IB(ν).

For IB(ν), the cost of any algorithm which does not serve
the jobs one at a time can be lowered by reassigning the
service instants so that it does. So, without loss of generality,

z(IB(ν)) ≥
ν∑
n=1

n

sn
+
P (sn)

βsn

=

ν∑
n=1

n(α−1)/α

β1/α

[(
nβ

sαn

)1/α

+

(
sαn
nβ

)(α−1)/α
]

The unique local minimum of (·)(α−1)/α + (·)−1/α occurs at
1/(α− 1). This gives a minimum cost of

zO(IB(ν)) ≥
α
∑ν
n=1 n

(α−1)/α

β1/α(α− 1)(α−1)/α

for sn = (nβ/(α− 1))1/α. More generally, the optimum is

βn = snP
′(sn)− P (sn). (10)

Moreover, for α − 1 > 1 − ε/2, the minimum subject to (9)
occurs when xn = 1/(1− ε/2). Hence the competitive ratio
for the batch case subject to (9), satisfies

CRbatch ≥

(∑ν
n=n0

n(α−1)/α∑ν
n=1 n

(α−1)/α

)(
(α− 1)(α−1)/α

α

)
[(

1

1− ε/2

)(α−1)/α

+

(
1

1− ε/2

)−1/α
]

For any ε ∈ (0, 1), the product of the last two factors tends
to 1 + 1/(1− ε/2) as α→∞, and hence there is an α = α(ε)
for which their product exceeds 1/(1−ε/3)+1. Similarly, for
all α > 1, there is a sufficiently large ν that the first factor
exceeds 1/(1 + ε/9). For this α and ν, CRbatch > 2.

So, for P (s) = sα(ε), if the competitive ratio is smaller
than 2 − ε in the periodic case, it must be larger than 2 in
the batch case.

Theorem 4 is pessimistic, but note that the proof focuses
on P (s) = sα for large α. Thus, it is likely possible to design
natural algorithms that can outperform (SRPT, P−1(nβ))
for α ∈ (1, 3], which is typical for computer systems today.
This is an interesting topic for future research.

3.1.3 PS analysis
We now state and prove our bound on the competitive

ratio of PS.

Theorem 5. If P (s) = sα then (PS, P−1(nβ)) is
max(4α− 2, 2(2− 1/α)α)-competitive.



In particular, PS is (4α−2)-competitive for α in the typical
range of (1, 3].

Theorem 5 is proven using amortized local competitive-
ness. Let η ≥ 1, and Γ = (1+η)(2α−1)/β1/α. The potential
function is then defined as

Φ = Γ

nA(t)∑
i=1

i1−1/α max(0, qA(ji; t)− qO(ji; t)) (11)

where qπ(j; t) is the remaining work on job j at time t under

scheme π, and {ji}n
A(t)
i=1 is an ordering of the jobs in increas-

ing order of release time: r(j1) ≤ r(j2) ≤ · · · ≤ r(jnA(t)).
Note that this is a scaling of the potential function that was
used in [12] to analyze LAPS. As a result, to prove Theo-
rem 5, we can use the corresponding results in [12] to verify
the boundary and jump conditions. All that remains is the
running condition, which follows from the technical lemma
below. The proof is provided in Appendix B.

Lemma 6. Let Φ be given by (11) and A be the discipline

(PS, sn) with sn ∈ [(nβ)1/α, (ηnβ)1/α]. Then under A, at
points where Φ is differentiable,

nA + (sA)α/β +
dΦ

dt
≤ c(nO + (sO)α/β) (12)

where c = (1 + η) max((2α− 1), (2− 1/α)α).

3.2 Stochastic analysis
We now study optimal dynamic speed scaling in the

stochastic setting. In contrast to the worst-case results, in
the stochastic setting, it is possible to optimize the algorithm
for the expected workload. In a real application, it is clear
that incorporating knowledge about the workload into the
design can lead to improved performance. Of course, the
drawback is that there is always uncertainty about workload
information, either due to time-varying workloads, measure-
ment noise, or simply model inaccuracies. We discuss ro-
bustness to these factors in Section 5, and in the current
section assume that exact workload information is known to
the speed scaler and that the model is accurate.

In this setting, there has been a substantial amount of work
studying the M/GI/1 PS model [10, 14, 16, 30]2. This work
is in the context of operations management and so focuses on
“operating costs” rather than “energy”, but the model struc-
ture is equivalent. This series of work formulates the deter-
mination of the optimal speeds as a stochastic dynamic pro-
gramming (DP) problem and provides numeric techniques
for determining the optimal speeds, as well as proving that
the optimal speeds are monotonic in the queue length. The
optimal speeds have been characterized as follows [32]. Re-

call that γ = ρ/β1/α.

Proposition 7. Consider an M/GI/1 PS queue with
controllable service rates sn. Let P (s) = sα. The optimal
dynamic speeds are concave and satisfy the dynamic program
given in [32]. For α = 2 and any n ≥ 2γ, they satisfy

γ +
√
n− 2γ ≤ sn√

β
≤ γ +

√
n+ min

( γ
2n
, γ1/3

)
(13)

2This work actually studies the M/M/1 FCFS queue, but
since the M/GI/1 PS queue with controllable service rates is
a symmetric discipline [19] it has the same occupancy distri-
bution and mean delay as an M/M/1 FCFS queue.

For general α > 1, they satisfy3

sn
β1/α

≤
(

1

α
min
σ>γ

(
n+ σα − γα

(σ − γ)
+

γ

(σ − γ)2

))1/(α−1)

(14)

sn
β1/α

≥
(

n

α− 1

)1/α

. (15)

Proof. Bounds (13) and (14) are shown in [32]. Addi-
tionally, the concavity of sn follows from results in [32]. To
prove (15), note that when ρ = 0 the optimal speeds are
those optimal for batch arrivals, which satisfy (15) by (10).
Then, it is straightforward from the DP that sn increases
monotonically with load ρ, which gives (15).

Interestingly, the bounds in Proposition 7 are tight for
large n and have a form similar to the form of the worst-case
speeds for SRPT and PS in Theorems 1 and 5.

In contrast to the large body of work studying the opti-
mal speeds under PS scheduling, there is no work charac-
terizing the optimal speeds under SRPT scheduling. This
is not unexpected since the analysis of SRPT in the static
speed setting is significantly more involved than that of PS.
Thus, instead of analytically determining the optimal speeds
for SRPT, we are left to use a heuristic approach.

Note that the speeds suggested by the worst-case results
for SRPT and PS (Theorems 1 and 5) are the same, and the
optimal speeds for a batch arrival are given by (10) for both
policies. Motivated by this and the fact that (10) matches
the asymptotic form of the stochastic results for PS in Propo-
sition 7, we propose to use the optimal PS speeds in the case
of SRPT.

To evaluate the performance of this heuristic, we use simu-
lation experiments (Figure 1) that compare the performance
of this speed scaling algorithm to the following lower bound.

Proposition 8. In a GI/GI/1 queue with P (s) = sα,

zO ≥ 1

λ
max(γα, γα(α− 1)(1/α)−1).

This was proven in [32] in the context of the M/GI/1 PS but
the proof can easily be seen to hold more generally.

Simulation experiments also allow us to study other inter-
esting topics, such as (i) a comparison of the performance of
the worst-case schemes for SRPT and PS with the stochastic
schemes and (ii) a comparison of the performance of SRPT
and PS in the speed scaling model. In these experiments,
the optimal speeds for PS in the stochastic model are found
using the numeric algorithm for solving the DP described in
[16, 32], and then these speeds are also used for SRPT. Due
to limited space, we describe the results from only one of
many settings we investigated.

Figure 2 shows that the optimal speeds from the DP
(“DP”) have a similar form to the speeds motivated by the
worst-case results, P−1(nβ) (“INV”), differing by γ for high
queue occupancies. Figure 1 shows how the total cost (1) de-
pends on the choice of speeds and scheduler. At low loads,
all schemes are indistinguishable. At higher loads, the per-
formance of the PS-INV scheme degrades significantly, but
the SRPT-INV scheme maintains fairly good performance.
Note though that if P (s) = sα for α > 3 the performance of
SRPT-INV degrades significantly too. In contrast, the DP-
based schemes benefit significantly from having the slightly
higher speeds chosen to optimize (1) rather than minimize
the competitive ratio. Finally, the SRPT-DP scheme per-
forms nearly optimally, which justifies the heuristic of using

3In [32] the range of minimization was misstated as σ > 0.
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Figure 1: Comparison of SRPT and PS scheduling
under both sn = P−1(nβ) and speeds optimized for
an M/GI/1 PS system, using Pareto(2.2) job sizes
and P (s) = s2.

the optimal speeds for PS in the case of SRPT4. However,
the PS-DP scheme performs nearly as well as SRPT-DP. To-
gether, these observations suggest that it is important to
optimize the speed scaler, but not necessarily the scheduler.

4. GATED-STATIC SPEED SCALING
Section 3 studied a sophisticated form of speed scaling

where the speed can depend on the current occupancy. This
scheme can perform (nearly) optimally; however its complex-
ity and overheads may be prohibitive. This is in contrast
to the simplest non-trivial form: gated-static speed scaling,
where sn = sgs1n 6=0 for some constant speed sgs. This re-
quires minimal hardware to support; e.g., a CMOS chip may
have a constant clock speed but AND it with the gating sig-
nal to set the speed to 0.

Gated-static speed scaling can be arbitrarily bad in the
worst-case since jobs can arrive faster than sgs. Thus, we
study gated-static speed scaling only in the stochastic model,
where the constant speed sgs can depend on the load.

We study the gated-static speed scaling under SRPT and
PS scheduling. The optimal gated-static speed under PS has
been derived in [32], but the optimal speed under SRPT has
not been studied previously.

Our results highlight two practical insights. First, we show
that gated-static speed scaling can provide nearly the same
cost as the optimal dynamic policy in the stochastic model.
Thus, the simplest policy can nearly match the performance
of the most sophisticated policy. Second, we show that the
performance of gated-static under PS and SRPT is not too
different, thus scheduling is much less important to optimize
than in systems in which the speed is fixed in advance. This
reinforces what we observed for dynamic speed scaling.

4.1 Optimal gated-static speeds
We now derive the optimal speed sgs, which minimizes the

expected cost of gated-static in the stochastic model under
both SRPT and PS. First note that, since the power cost
is constant at P (sgs) whenever the server is running, the
optimal speed is

sgs = arg min
s
βE[T ] +

1

λ
P (s) Pr(N 6= 0) (16)

In the second term Pr(N 6= 0) = ρ/s, and so multiplying
by λ and setting the derivative to 0 gives that the optimal

4Note that the peak around γ = 1 in Fig. 1(b) is most likely
due to the looseness of the lower bound.
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sizes with E[X] = 1.

gated-static speed satisfies

β
dE[N ]

ds
+ r

P ∗(s)

s
= 0, (17)

where r = ρ/s is the utilization and

P ∗(s) ≡ sP ′(s)− P (s). (18)

Note that if P is convex then P ∗ is increasing and if P ′′ is
bounded away from 0 then P ∗ is unbounded.

Under PS, E[N ] = ρ/(s − ρ), and so dE[N ]/ds =
E[N ]/(ρ− s). By (17), the optimal speeds satisfy [32]

βE[N ] = (1− r)rP ∗(s). (19)

Unfortunately, in the case of SRPT, things are not as easy.
For s = 1, it is well known, e.g., [21], that

E[T ] =

∫ ∞
x=0

∫ x

t=0

dt

1− λ
∫ t
0 τ dF (τ)

+
λ
∫ x
0 τ2 dF (τ) + x2F̄ (x)

2(1− λ
∫ x
0 τdF (τ))2

dF (x)

The complexity of this equation rules out calculating the
speeds analytically. So, instead we use simpler forms for
E[N ] that are exact in asymptotically heavy or light traffic.

4.1.1 A heavy-traffic approximation
We state the heavy traffic results for distributions whose

c.c.d.f. F̄ has lower and upper Matuszewska indices [9] m
and M . Intuitively, C1x

m . F̄ (x) . C2x
M as x → ∞ for

some C1, C2. So, the Matuszewska index can be thought of
as a “moment index.” Further, let G(x) =

∫ x
0
tf(t) dt/E[X]

be the fraction of work coming from jobs of size at most x.
The following was proven in [23].

Proposition 9 ([23]). For an M/GI/1 under SRPT
with speed 1, E[N ] = θ(H(ρ)) as ρ→ 1, where

H(ρ) =

{
E[X2]/((1− ρ)G−1(ρ)) if M < −2
E[X] log(1/(1− ρ)) if m > −2

(20)

Proposition 9 motivates the following heavy-traffic approxi-
mation for the case when the speed is 1:

E[N ] ≈ CH(ρ) (21)

where C is a constant dependent on the job size distribu-
tion. For job sizes which are Pareto(a) (or more gener-
ally, regularly varying [9]) with a > 2, it is known that
C = (π/(1 − a))/(2 sin(π/(1 − a))) [23]. Figure 3 shows
that in this case, the heavy-traffic results are accurate even
for quite low loads.

Given approximation (21), we can now return to equation
(17) and calculate the optimal speed for gated-static SRPT.
Define h(r) = (G−1)′(r)/G−1(r).
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Figure 4: Comparison for gated-static: PS using (19)
and SRPT using (24), with P (s) = s2. (a) Utilization
given Pareto(2.2) job sizes. (b) Dependence of speed
on the job size distribution, for Pareto(a).

Theorem 10. Suppose approximation (21) holds with
equality.

(i) If M < −2, then for the optimal gated-static speed,

βE[N ]

(
2− r
1− r − rh(r)

)
= rP ∗(s). (22a)

(ii) If m > −2, then for the optimal gated-static speed,

βE[N ]

(
1

(1− r) log(1/(1− r))

)
= P ∗(s). (22b)

Proof. For brevity, we only prove the second claim. If
m > −2, then there is a C′ = CE[X] such that

E[N ] =
C′

s
log

(
1

1− ρ/s

)
. (23)

for speed s. Now

dE[N ]

ds
= −C

′

s2
log

(
1

1− ρ/s

)
− C′ρ

s2(s− ρ)

= −E[N ]

s

(
1 +

ρ

s

1

(1− ρ/s) log(1/(1− ρ/s))

)
,

and the factor in brackets is dominated by its second term in
heavy traffic. Substituting this into (17) gives the result.

To evaluate the speeds derived for heavy-traffic, Fig-
ure 4(b) illustrates the gated-static speeds derived for SRPT
and PS, for P (s) = s2 and ρ = 10 and varying job size dis-
tribution. This suggests that the SRPT speeds are nearly
independent of the job size distribution. (Note that the ver-
tical axis does not start from 0.) Moreover, the speeds of
SRPT and PS differ significantly in this setting since the
speeds under SRPT are approximately minimal (the speeds
must be larger than γ), while the PS speeds are γ + 1.

Theorem 10 assumes that the system is in heavy-traffic.
To understand when this holds, first note that if there is a
maximum allowable speed smax then the heavy traffic regime
is valid as ρ ↑ smax. In the case when there is no maximum
allowable speed, the following applies.

Proposition 11. If P ∗(s) is unbounded as s → ∞ and
−2 6∈ [m,M ] then as ρ → ∞, (22) induces the heavy traffic
regime, ρ/s→ 1.

We omit the proof of this result due to space concerns. Fig-
ure 4(a) illustrates the effect of raising the load on the uti-
lization in the case of P (s) = s2 and Pareto(2.2) job sizes.
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Figure 5: Comparison of PS and SRPT with gated-
static speeds (19) and (24), versus the dynamic
speeds optimal for an M/GI/1 PS. Job sizes are dis-
tributed as Pareto(2.2) and P (s) = s2.

4.1.2 Beyond heavy-traffic
Let us next briefly consider the light-traffic regime. As

ρ → 0, there is seldom more than one job in the system,
and SRPT and PS have nearly indistinguishable E[N ]. So,
in this case, it is appropriate to use speeds given by (19).

Given the light- and heavy-traffic approximations we have
just described, it remains to decide the speed in the inter-
mediate regime. We propose setting

sSRPTgs = min(sPSgs , s
SRPT (HT )
gs ), (24)

where sPSgs satisfies (19), and s
SRPT (HT )
gs is given by (22) with

E[N ] estimated by (21).
To see why (24) is reasonable, we first show that (22) often

tends to the optimal speed as ρ→ 0.

Proposition 12. If m > −2 or both M < −2 and arbi-
trarily small jobs are possible (i.e. for all x > 0 there is a
y ∈ [0, x] with F (y) > 0), then (22) produces the optimal
scaling as ρ→ 0.

Proof. For ρ → 0, also r → 0, and E[N ]/r → 1. By
L’Hospital’s rule (1− r) log(1/(1− r))/r ∼ 1, and (22b)
gives β = P ∗(s). If arbitrarily small jobs are possible, then
G−1(0) = 0, and rh(r) → 1 by L’Hospital’s rule, whence
(22a) also becomes β = P ∗(s).

From (10), this is the optimal speed at which to server a
batch of a single job. Since, as ρ → 0, the system almost
certainly has a single job when it is non-empty, this is an
appropriate speed.

Although (22) tends to the optimal speeds, (21) over-

estimates E[N ] for small ρ and so s
SRPT (HT )
gs is higher than

optimal for small loads. Conversely, for a given speed,
the delay is less under SRPT than PS, and so the optimal
speed under SRPT will be lower than that under PS. Hence

s
SRPT (HT )
gs < sPSgs in the large ρ regime where the former

becomes accurate. Thus, the min operation in (24) selects
the appropriate form in each regime.

4.2 Gated-static vs. dynamic speed scaling
Now that we have derived the optimal gated-static speeds,

we can contrast the performance of gated-static with that of
dynamic speed scaling. This is a comparison of the most and
least sophisticated forms of speed scaling.

As Figure 5 shows, the performance (in terms of mean
delay plus mean energy) of a well-tuned gated-static system
is almost indistinguishable from that of the optimal dynamic
speeds. Moreover, there is little difference between the cost
under PS-GATED and SRPT-GATED, again highlighting
that the importance of scheduling in the speed scaling model
is considerably less than in standard queueing models.
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Figure 6: Impact of misestimation of γ under PS
and SRPT: cost when γ = 10, but sn were chosen for
“designed γ”. Job sizes are Pareto(2.2) and P (s) = s2.

In addition to observing numerically that the gated-static
schemes are near optimal, it is possible to provide some ana-
lytic support for this fact as well. In [32] it was proven that
PS-GATED is within a factor of 2 of PS-DP when P (s) = s2.
Combining this result with the competitive ratio results in
this paper, we have

Corollary 13. Consider P (s) = s2. The optimal PS
and SRPT gated-static designs are O(1)-competitive in an
M/GI/1 queue with load ρ.

Proof. Let π ∈ {PS, SRPT} and sπgs be the optimal

gated-static speed for π and sDPn be the optimal speeds,
which solve the DP for the M/GI/1 PS queue. Then

z(π,sπgs) ≤ z(PS,sPSgs ) ≤ 2z(PS,sDPn ) ≤ 12zO

The last two inequalities follow from [32] and Theorem 5, as

z(PS,sDPn ) ≤ z(PS,P−1(nβ)) in an M/GI/1 with known ρ.

5. ROBUSTNESS AND SPEED SCALING
Section 4 shows that near-optimal performance can be ob-

tained using the simplest form of speed scaling — running at
a static speed when not idle. Why then do CPU manufactur-
ers design chips with multiple speeds? The reason is that the
optimal gated-static design depends intimately on the load
ρ. This cannot be known exactly in advance, especially since
workloads typically vary over time. So, an important prop-
erty of a speed scaling design is robustness to uncertainty in
the workload, ρ and F , and to model inaccuracies.

Figure 6 illustrates that if a gated-static design is used,
performance degrades dramatically when ρ is mispredicted.
If the static speed is chosen and the load is lower than ex-
pected, excess energy will be used. Underestimating the load
is even worse; if the system has static speed s and ρ ≥ s then
the cost is unbounded.

In contrast, Figure 6 illustrates simulation experiments
which show that dynamic speed scaling (SRPT-DP) is sig-
nificantly more robust to misprediction of the workload. In
fact, we can prove this analytically by providing worst-case
guarantees for the SRPT-DP and PS-DP. Let sDPn denote
the speeds used for SRPT-DP and PS-DP. Note that the
corollary below is distinctive in that it provides worst-case
guarantees for a stochastic control policy.

Corollary 14. Consider P (s) = sα with α ∈ (1, 2]
and algorithm A which chooses speeds sDPn optimal for PS
scheduling in an M/GI/1 queue with load ρ. If A uses either
PS or SRPT scheduling, then A is O(1)-competitive in the
worst-case model.

Proof. The proof applies Lemmas 2 and 6 from the
worst-case model to the speeds from the stochastic model.
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Figure 7: Comparison of PS and SRPT with linear
speeds, sn = n

√
β, and with dynamic speeds optimal

for PS. Job sizes are Pareto(2.2) and P (s) = s2.

By Proposition 7, sn ≥ (nβ/(α− 1))1/α. Since α < 2, this
implies sn ≥ P−1(nβ). Further, (14) implies that sDPn =

O(n1/α) for any fixed ρ and β and is bounded for finite n.
Hence the speeds sDPn are of the form given in Lemmas

2 and 6 for some finite η (which may depend on π and the
constant ρ), from which it follows that A is constant com-
petitive.

For α = 2, Proposition 7 implies sDPn ≤ (2γ + 1)P−1(nβ),
whence (SRPT, sDPn ) is (2γ + 2)-competitive.

Corollary 14 highlights that sDPn designed for a given ρ
leads to a speed scaler that is “robust”. However, the cost
still degrades significantly when ρ is mispredicted badly (as
shown in Figure 6).

We now consider a different form of robustness: If the ar-
rivals are known to be well-approximated by a Poisson pro-
cess, but ρ is unknown, is it possible to choose speeds that
are close to optimal for all ρ? It was shown in [32] that using
“linear” speeds, sn = n

√
β, gives near-optimal performance

when P (s) = s2 and PS scheduling is used. This scheme per-
forms considerably better than using sn = P−1(nβ), despite
the fact that it also uses no knowledge of the workload. Given
the decoupling of scheduling and speed scaling suggested by
the results in Section 3, this motivates using the same linear
speed scaling for SRPT. Figure 7 illustrates that this lin-
ear speed scaling provides near-optimal performance under
SRPT too. The robustness of this speed scaling is illustrated
in Figure 6. However, despite being more robust in the sense
of this paragraph, the linear scaling is not robust to inaccu-
racies in the model. Specifically, it is not O(1)-competitive
in general, nor even for the case of batch arrivals.

6. FAIRNESS AND SPEED SCALING
To this point we have seen that speed scaling has many

benefits; however we show in this section that dynamic speed
scaling has an undesirable consequence — magnifying unfair-
ness. Fairness is an important concern for system design in
many applications, and the importance of fairness when con-
sidering energy efficiency was recently raised in [29]. How-
ever, unfairness under speed scaling designs has not previ-
ously been identified. In retrospect though, it is not a sur-
prising byproduct of speed scaling: If there is some job type
that is always served when the queue length is long/short it
will receive better/worse performance than it would have in
a system with a static speed. To see that this magnifies un-
fairness, rather than being independent of other biases, note
that the scheduler has greatest flexibility to select which job
to serve when the queue is long, and so jobs served at that
time are likely to be those that already get better service.

In this section, we prove that this service-rate differen-



tial can lead to unfairness in a rigorous sense under SRPT
and non-preemptive policies (e.g. FCFS). However, under
PS, speed scaling does not lead to unfairness.

6.1 Defining fairness
The fairness of scheduling policies has recently received a

lot of attention in computer systems modeling, which has
led to a variety of fairness measures, e.g., [2, 27, 33], and the
analysis of nearly all common scheduling policies, e.g., [20,
26, 33]. Refer to the survey [31] for more details.

Here, we compare fairness not between individual jobs, but
between classes of jobs, where a class consists of all jobs of
a given size. Since this paper focuses on delay, we compare
E[T (x)] across x. For this purpose, fairness when s = 1 has
been defined in prior work as follows [31]:

Definition 2. A policy π is fair if for all x

E[Tπ(x)]

x
≤ E[TPS(x)]

x
.

This metric is motivated by the fact that (i) PS is intuitively
fair since it shares the server evenly among all jobs at all
times; (ii) the slowdown (a.k.a. stretch) of PS is constant,
i.e., E[T (x)]/x = 1/(1− ρ); (iii) E[T (x)] = Θ(x) [18], so nor-
malizing by x when comparing the performance of different
job sizes is appropriate. Additional support is provided by
the fact that minπ maxx E[Tπ(x)]/x = 1/(1− ρ) [33].

Using this definition, it is interesting to note that the class
of large jobs is always treated fairly under all work conserving
policies, i.e., limx→∞ E[T (x)]/x ≤ 1/(1 − ρ) [18] — even
under policies such as SRPT that seem biased against large
jobs. In contrast, all non-preemptive policies, e.g., FCFS
have been shown to be unfair to small jobs [33].

The foregoing applies when s = 1. The following propo-
sition shows that PS still maintains a constant slowdown in
the speed scaling environment, and so Definition 2 is still a
natural notion of fairness.

Proposition 15. Consider an M/GI/1 queue with a
symmetric scheduling discipline, e.g., PS with controllable
service rates. Then, E[T (x)] = x (E[T ]/E[X]) .

The proof follows from using Little’s law for jobs with size
in [x, x+ ε], but is omitted for brevity.

6.2 Speed scaling magnifies unfairness
Now that we have a natural criterion for fairness, we prove

that speed scaling creates/magnifies unfairness under SRPT
and non-preemptive policies such as FCFS.

6.2.1 SRPT
We first prove that SRPT treats the largest jobs unfairly

in a speed scaling system. Recall that the largest jobs are
always treated fairly in the case of a static speed.

Let s̄π be the time average speed under policy π, and let
π+1 denote running policy π on a system with a permanent
customer in addition to the stochastic load.

Theorem 16. Consider a GI/GI/1 queue with control-
lable service rates and unbounded interarrival times. Let
sSRPTn ≤ sPSn be weakly monotone increasing and satisfy
s̄PS+1 > ρ and s̄SRPT+1 > ρ.5 Then

lim
x→∞

TPS(x)

x
<a.s. lim

x→∞

TSRPT (x)

x
.

5Note that the conditions s̄PS+1 > ρ and s̄SRPT+1 > ρ are
equivalent to the stability conditions for sSRPTn and sPSn .
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Figure 8: Slowdown of large jobs under PS and
SRPT under Pareto(2.2) job sizes, γ = 1, sn = P−1(n),
and P (s) = s2.

The intuition behind Theorem 16 is the following. An
infinitely sized job under SRPT will receive almost all of
its service while the system is empty of smaller jobs. Thus
it receives service during the idle periods of the rest of the
system. Further, if sSRPTn ≤ sPSn then the busy periods will
be longer under SRPT and so the slowdown of the largest
job will be strictly greater under SRPT. This intuition also
provides an outline of the proof.

Proof. By Lemma 21 in Appendix C, Tπ(x)/x →
1/(s̄π+1 − ρ) a.s. in each case.

Lemma 24 completes the proof by showing s̄PS+1 >
s̄SRPT+1. It considers the average speed between renewal
instants in which both queues are empty, which it maps to
renewal periods. It then uses Lemma 22, which shows that
a busy period is longer under SRPT than PS, to show that
less work is done on the permanent customer in the renewal
period under SRPT than under PS.

Figure 8 shows that unfairness under SRPT can be consid-
erable, with large jobs suffering a significant increase in slow-
down as compared to PS. However, in this case only around
10% of the jobs are worse off than under PS. Note that this
setting has a moderate load, which means that SRPT with
static speeds would be fair to all job sizes. Figure 8 was
generated by running a simulation to steady state and then
injecting a job of size x into the system and measuring its
response time. This was repeated until the 90% confidence
intervals (shown on Figure 8(a) for SRPT) were tight around
the estimate.

Theorem 16 proves that SRPT cannot use dynamic speeds
and provide fairness to large jobs; however, by using gated-
static speed scaling SRPT can provide fairness, e.g., [33].
Further, as Figure 5 illustrates, gated-static speed scaling
provides nearly optimal cost. So, it is possible to be fair and
near-optimal using SRPT scheduling but, to be fair, robust-
ness must be sacrificed.

6.2.2 Non-preemptive policies
The magnification of unfairness by speed scaling also oc-

curs for all non-preemptive policies.
In the static speed setting, all non-preemptive policies are

unfair to small jobs [33] since the response time must include
at least the residual of the job size distribution if the server
is busy, i.e.,

E[T (x)]/x ≥ 1 + ρE[X2]/(2E[X]x),

which grows unboundedly as x → 0. However, if we condi-
tion on the arrival of a job to an empty system (i.e., the
work in system at arrival W = 0), then non-preemptive
policies are “fair”, in the sense that the slowdown is con-
stant: T (x|W = 0)/x = 1. Speed scaling magnifies unfair-



ness under non-preemptive policies in the following sense:
T (x|W = 0)/x can now differ dramatically across job sizes.

Proposition 17. Consider a non-preemptive GI/GI/1
speed scaling queue with mean inter-arrival time 1/λ and
speeds sn monotonically approaching s∞ ∈ (0,∞] as n→∞.
Then, with probability 1,

lim
x→0

T (x|W = 0)

x
=

1

s1
and lim

x→∞

T (x|W = 0)

x
=

1

s∞
.

The intuition behind this result is that small jobs receive
their whole service while alone in the system; whereas large
jobs have a large queue build up behind them, and there-
fore get served at a faster speed. Thus, the service rate
of large and small jobs differs, magnifying the unfairness of
non-preemptive policies.

Proof. First, the limit as x → 0 follows immediately
from noting that as x shrinks the probability of another ar-
rival before completion goes to 0.

To prove the limit as x→∞, let Ã(x) be such that

Ã(x)−1∑
i=0

si
λ
< x ≤

Ã(x)∑
i=0

si
λ
.

and let ε > 0 be arbitrary. This Ã(x) can be thought of
as the number of arrivals before x work is completed if jobs
arrived periodically with interarrival time 1/λ.

Since speeds are non-decreasing, the time to finish the job
can be bounded above by the time to reach speed si plus
the time it would take to finish the whole job at speed si.
Further, we can use the law of large numbers to bound the
time to reach speed si as x→∞. This gives

Pr

T (x|W = 0)

x
<

1

s√
Ã(x)

+

√
Ã(x)

x

1 + ε

λ

→ 1 w.p.1

(25)

Since {si} are non-decreasing and Ã(x) = Θ(x), it follows
that the right hand side inside the brackets approaches 1/s∞
as x→∞.

Conversely, a lower bound on the time to finish the job is
given by the time to finish it at maximum speed:

Pr

(
T (x|W = 0)

x
≥ 1

s∞

)
= 1 w.p.1. (26)

Together, (25) and (26) establish the result.

In general, speed scaling based on the occupancy n may
magnify unfairness in any policy for which n(t) is correlated
with the size of the job(s) being processed at time t. Note
that gated-static scaling does not magnify unfairness, regard-
less of the scheduling discipline, since all jobs are processed
at the same speed.

7. CONCLUDING REMARKS
This paper has studied several fundamental questions

about the design of speed scaling algorithms. The focus has
been on understanding the structure of the optimal algo-
rithm, the interaction between speed scaling and scheduling,
and the impact of the sophistication of the speed scaler. This
has led to a number of new insights, which are summarized
in the introduction.

The analytic approach of this paper is distinctive in that it
considers both worst-case and stochastic models. This com-
bination of techniques is fundamental in obtaining two of the

main results of the work: Corollary 14 providing worst-case
guarantees for policies designed in the stochastic model, and
Theorem 16 identifying unfairness in expected performance
under dynamic speed scaling with SRPT. Further, the com-
bination of stochastic and worst-case analysis adds support
to many of the other insights of the paper, e.g., the decou-
pling of scheduling and speed scaling.

The results in this paper motivate many interesting topics
for future work. Foremost, it will be interesting to see if the
lower bound of 2-competitive for natural speed scaling algo-
rithms can be extended to all algorithms. Additionally, it
is important to understand the range of applicability of the
insights that speed scaling can be decoupled from schedul-
ing with little performance loss, and that scheduling is less
important when energy is added to the objective. Further,
the study of fairness in the context of speed scaling was only
touched on briefly in this paper, and there are many ques-
tions left to answer. Finally, it is important to address all of
the issues studied in this paper in the context of other per-
formance objectives, e.g., when temperature is considered or
when more general combinations of energy and response time
are considered.
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APPENDIX
A. RUNNING CONDITION FOR SRPT

The proof of Lemma 2 uses the following lemmas, which
parallel those in [5]. Let nA(·) and nO(·) be arbitrary unfin-
ished work profiles, nA = nA(0), nO = nO(0), and let sA and
sO be arbitrary non-negative speeds, with sO = 0 if nO = 0.

Lemma 18. For any non-decreasing ∆ with ∆(i) = 0 for
i ≤ 0, if nO < nA then, under SRPT, where Φ is differen-
tiable either

both d
dt

Φ ≤ ∆(nA − nO + 1)(−sA + sO) (27a)

and nO ≥ 1, (27b)

or d
dt

Φ ≤ ∆(nA − nO)(−sA + sO). (27c)

Proof. Consider an interval I = [t, t + dt] sufficiently
small that no arrivals or departures occur. Let Φ(t + dt) −
Φ(t) = dΦA+dΦO, where dΦA reflects the change in nA and
dΦO reflects the change due to OPT. On I, nx[q] decreases
by 1 for q ∈ [qx − sx dt, qx], for x = A,OPT . Then A will
remove a term from the sum in (5), and OPT may add an
additional term. Let qA (qO) be the remaining work of the

job being processed by algorithm A (OPT ). If qA 6= qO,
these intervals do not overlap, and so

dΦA = −∆(nA[qA]− nO[qA])sA dt (28a)

dΦO ≤ ∆(nA[qO]− (nO[qO]− 1))sO dt (28b)

The result follows from one of the following cases, divided
by dt. The improvement from [5] comes from handling the
boundary case nO = 0 more carefully.

qA < qO The second term in (28a) becomes nO[qA] =
nO[qO] = nO, whence dΦA = −∆(nA−nO)sA dt. Since
qA < qO implies nA[qO] ≤ nA[qA] − 1, and ∆ is non-
decreasing, ∆(nA[qO] − (nO[qO] − 1)) ≤ ∆(nA[qA] −
nO[qO]). Thus dΦA+dΦO ≤ ∆(nA−nO)(−sA+sO) dt.

qA = qO If sA ≥ sO then one term is removed from the
sum in (5) for q ∈ [qA − sA dt, qA − sO dt], which gives
Φ(t+ dt)− Φ(t) = ∆(nA − nO)(−sA + sO) dt.
If sO > sA, then one term is added for q ∈ [qA −
sO dt, qA − sA dt], whence Φ(t + dt) − Φ(t) = ∆(nA −
nO+1)(−sA+sO) dt. As sO > sA ≥ 0, nO 6= 0, whence
nO ≥ 1.

qA > qO If nO = 0 then, nO[qA] = 0 = nO whence dΦA ≤
−∆(nA − nO)sA dt, and sO = 0 whence dΦO = 0 =
2∆(nA − nO)sO dt. This implies (27c).
If nO > 1 then qA > qO implies nO[qA] ≤ nO[qO] −
1. Since ∆ is non-decreasing, (28a) becomes dΦA ≤
−∆(nA − nO + 1)sA dt. Since qA > qO, nA[qO] =
nA[qA] = nA, and (28b) becomes dΦO ≤ ∆(nA − nO +
1)sO dt. This implies (27a) and (27b).

This differs from the corresponding result in [5] in condi-
tion (27b), which ensures that the argument of ∆ in (27) is
always at most nA and gives the following.

Lemma 19. Consider a regular power function, P , and
let ∆(i) be given by (6) for i > 0. If nO < nA and nA ≤
P (sA)/β then (27) implies

dΦ

dt
≤ (1 + η)(P (sO)/β − nA + nO). (29)

Proof. Since P is regular, ∆ is non-decreasing. Now,
consider two cases.

If (27a) and (27b) holds, then let Ψ(s) = P (s)/β and set
i = nA − nO + 1 in Lemma 20 below to give

dΦ

dt
≤ ∆(nA − nO + 1)(−sA + sO)

= (1 + η)Ψ′(Ψ−1(nA − nO + 1))(−sA + sO)

≤ (1 + η)
(
− sA+ Ψ−1(nA− nO+ 1)

)
Ψ′(Ψ−1(nA− nO+ 1))

+ (1 + η)(Ψ(sO)− nA + nO − 1)

≤ (1 + η)(Ψ(sO)− nA + nO)

where the last inequality follows from

nO ≥ 1 ⇒ sA ≥ P−1(nAβ) ≥ Ψ−1(nA − nO + 1). (30)

Otherwise (27c) holds. Since sA ≥ P−1(nAβ) ≥ Ψ−1(nA−
nO), the above manipulations go through again, with i =
nA − nO in Lemma 20.

Next, we need the following result, which is Lemma 3.1
in [5].

Lemma 20. ([5]) Let Ψ be a strictly increasing, strictly
convex, differentiable function. Let i, sA, sO ≥ 0 be any real
numbers. Then

Ψ′(Ψ−1(i))(−sA + sO)

≤ (−sA + Ψ−1(i))Ψ′(Ψ−1(i)) + Ψ(sO)− i



We can now prove Lemma 2.
Proof of Lemma 2. When nA = 0, (7) holds trivially.

Consider now three cases when nA ≥ 1:
If nO > nA, then dΦO = 0, since there is a dt > 0 such

that nO[q] > nA[q] for q ∈ [qO−sO dt, qO], which implies that
nO[q]−nA[q] ≤ 0 for all times in [t, t+dt]. Since dΦA ≤ 0 on
any interval, dΦ ≤ 0. Thus (7) holds, since P (sA)/β ≤ ηnA.

Consider next nO < nA. Since the optimal scheme runs
at zero speed when it is empty, sO = 0 if nO = 0, and
so Lemma 18 applies. Then by Lemma 19, dΦ/dt ≤ (1 +
η)(P (sO)/β − nA + nO), whence

nA+
P (sA)

β
+
d

dt
Φ ≤ nA+ ηnA+ (1 + η)(

P (sO)

β
− nA+ nO)

= (1 + η)(nO + P (sO)/β). (31)

Finally, if nO = nA, then either dΦ ≤ 0 or (27) holds:

1. If qA < qO, then nA[q] − nO[q] becomes negative for
q ∈ [qA−sA dt, qA] (whence n[q] = max(0, nA[q]−nO[q])
remains 0), and remains negative for q ∈ [qO−sO dt, qO].
Hence n[q] is unchanged, and dΦ = 0.

2. If qA = qO, consider two cases. (i) If sA ≥ sO then
nA[q]−nO[q] becomes negative for q ∈ [qA−sA dt, qA−
sO dt] and remains zero for q ∈ [qA− sO dt, qA], whence
n[q] again remains unchanged. (ii) Otherwise, n[q]
increases by 1 for q ∈ [qA − sO dt, qA − sA dt], and
dΦ = ∆(nA−nO+1)(−sA+sO) dt. Again, nO ≥ 1 since
sO > sA ≥ 0, and the optimal is idle when nO = 0.

3. The case qA > qO is identical to the case in the proof
of Lemma 18, and (27) holds.

Again, if (27) holds, then (7) holds. If instead dΦ ≤ 0,
then the left hand side of (7) is at most (1 + η)nA, which is
less than the first term on the right hand side.

B. RUNNING CONDITION FOR PS
Proof of Lemma 6. First note that if nA = 0 then the

LHS of (12) is 0, and the inequality holds. Henceforth, con-
sider the case nA ≥ 1.

The rate of change of Φ caused by running OPT is at
most Γ(nA)1−1/αsO, which occurs when all of the speed is
allocated to the job with the largest weight in (11).

Let l ≥ 0 be the number of zero terms in the sum (11),
corresponding to jobs on which PS is leading OPT. The sum
in (11) contains nA − l non-zero terms, each decreasing due

to PS at rate i1−1/αdqA/dt = i1−1/αsA/nA. The sum is
minimized (in magnitude) if these are terms i = 1, . . . , nA−l.
Thus, the change in Φ due to PS is at least as negative as

−Γ

nA−l∑
i=1

i1−1/α s
A

nA
≤ −Γ

∫ nA−l

0

i1−1/α s
A

nA
di

≤ −Γ
α

2α− 1
(nA − l)2−1/αβ1/α(nA)(1/α)−1 (32)

since sA ≥ (nAβ)1/α. This gives

dΦ

dt
≤ Γ(nA)1−1/αsO − Γ

αβ1/α

2α− 1
(nA)(1/α)−1(nA − l)2−1/α

Moreover, since (sA)α/β ≤ ηnA and l ≤ nO, we have
nA+ (sA)α/β ≤ (1 +η)nA and nO + (sO)α/β ≥ l+ (sO)α/β.
To show (12), it is sufficient to show that

(1 + η)nA+ Γ(nA)1−1/αsO− Γ
αβ1/α(nA)(1/α)−1(nA − l)2−1/α

2α− 1

≤ c(l + (sO)α/β).

Since nA > 0, dividing by nA gives the sufficient condition

0 ≤ c(sO)α/(βnA)− ΓsO/(nA)1/α

+ cl/nA + Γ
αβ1/α

2α− 1
(1− l/nA)2−1/α − (1 + η). (33)

To find a sufficient condition on c, we take the minimum of
the right hand side with respect to sO, l and nA. Follow-
ing [3], note that the minimum of the first two terms with

respect to sO occurs for sO = (βΓ
cα

)1/(α−1)(nA)1/α, at which
point the first two terms become

−
(

1− 1

α

)(
βΓα

cα

)1/(α−1)

. (34)

Now consider a lower bound on the sum of the terms in
l. Let j = l/nA, and minimize this with respect to j ≥
0. Setting the derivative with respect to j to 0 gives c =
β1/αΓ(1− j)1−1/α. Hence the minimum for j ≥ 0 is for j =

1 − (min(1, c/(β1/αΓ)))α/(α−1). For c ≥ β1/αΓ, the sum of
the terms in l achieves a minimum (with respect to l) of

β1/αΓα/(2α − 1) at l = 0, for all nA. In this case, it is
sufficient that

0 ≤ −
(

1− 1

α

)(
βΓα

cα

)1/(α−1)

+ β1/αΓ
α

2α− 1
− (1 + η).

Rearranging shows that it is sufficient that c ≥ β1/αΓ and

c ≥ β
(

Γ

α

)α(
(α− 1)(2α− 1)

αβ1/αΓ− (1 + η)(2α− 1)

)α−1

= (1 + η)

(
2α− 1

α

)α
.

where the equality uses Γ = (1 + η)(2α− 1)/β1/α.

C. PROOF OF UNFAIRNESS OF SRPT
The following lemmas establish Theorem 16.
We start by characterizing the limiting slowdown in terms

of the average speed in a system with a permanent customer.

Lemma 21. Consider a GI/GI/1 queue with service disci-
pline π ∈ {PS, SRPT} with controllable service rate sπn such
that s̄π+1 > ρ, then

lim
x→∞

Tπ(x)

x
=a.s.

1

s̄π+1 − ρ .
Proof. For brevity, we prove only the case of PS. The

proof for SRPT is analogous.
Consider a PS+1 system. Let S(t) be the total work com-

pleted (service given) by time t. Let R(t) be the service given
to the permanent job by time t and R̄(t) be the service given
to all other jobs by time t. Note S(t) = R(t) + R̄(t).

Since the system is stable, we have limt→∞ R̄(t)/t =a.s. ρ,
and by definition, we have limt→∞ S(t)/t =a.s. s̄

PS+1. Thus,

lim
t→∞

R(t)/t =a.s. s̄
PS+1 − ρ.

To complete the proof note that R(T (x)) = x and so

lim
x→∞

T (x)

x
= lim
t→∞

t

R(t)
=a.s.

1

s̄PS+1 − ρ .

Next, we focus on relating the length of the busy periods in
the PS and SRPT systems. This eventually lets us conclude
that s̄PS+1 > s̄SRPT+1. Let tπ(w) as the time when w work
has been completed under policy π.



Lemma 22. Consider a single server with a controllable
service rate. Assume sPSn ≥ sSRPTn for all n and that sPSn
and sSRPTn are both weakly monotonically increasing. Then

tPS(w) ≤ tSRPT (w).

Hence, busy periods are longer under SRPT than under PS.

Proof. We prove the result only in the case where sPSn =
sSRPTn for all n and sPSn and sSRPTn are both strictly mono-
tonically increasing; the general proof is analogous.

Observe that t(w) is continuous under both PS and
SRPT. So, it is sufficient to show that at every point v
when tPS(v) = tSRPT (v) ceases to be true it is because
tPS(v+) < tSRPT (v+). Thus, we induct over moments when
tPS(v) = tSRPT (v) and tPS(w) ≤ tSRPT (w) for all w ≤ v.

The base case follows from noting that tPS(0) =
tSRPT (0) = 0 and that sPSn = sSRPTn until the moment
of the first completion, which happens under SRPT due to
the optimality of SRPT. Let w0 be the work that has been
completed at this moment. Then, if the system is not empty,
tPS(w+

0 ) < tSRPT (w+
0 ) since sn is strictly monotonically in-

creasing.
Next, consider a point v such that tPS(v) = tSRPT (v) and

tPS(w) ≤ tSRPT (w) for all w ≤ v. There are three cases:

nPS(tPS(v)) > nSRPT (tSRPT (v)): In this case, tPS(v+) <
tSRPT (v+) since sn is strictly increasing.

nPS(tPS(v)) = nSRPT (tSRPT (v)): In this case, tPS(w) =
tSRPT (w) for all w > v until the next completion mo-
ment, w0. Applying Lemma 23 below, we know that
this completion happens under SRPT. So, tPS(w+

0 ) <
tSRPT (w+

0 ) since sn is strictly increasing.

nPS(tPS(v)) < nSRPT (tSRPT (v)): Lemma 23, below, proves
that this cannot happen.

Lemma 23. Consider a single server with a controllable
service rate. At moments when tPS(v) = tSRPT (v) and
tPS(w) ≤ tSRPT (w) for all w ≤ v,

nPS(tPS(v)) ≥ nSRPT (tSRPT (v)).

Proof. The first step is to warp time separately for each
system such that the server is always working at rate 1 until
v work has been done. To do that, scale time by 1/sn(t) at all
times t until that point. The warping, and hence the arrival
instance, will be different in each system. Call the resulting
instances IPS and ISRPT .

These two instances satisfy the following relationships:

(i) The number of arrivals is the same in both instances.

(ii) The size of the ith arrival is the same in both instances
for all i.

(iii) The interarrival times of the two instances may differ.

(iv) The ith arrival in ISRPT happens no later than the ith
arrival in IPS . This follows from the hypothesis of the
lemma that tPS(w) ≤ tSRPT (w) for all w ≤ v.

Let nπ(t, I) denote the number in system at time t in in-
stance I under policy π. Now, it is enough to prove that
nPS(t, IPS) ≥ nSRPT (t, ISRPT ). Intuitively, this should be
true because (i) the arrivals are happening earlier in ISRPT

and (ii) SRPT minimizes the queue length.
To prove this formally, note that the optimality of SRPT

immediately gives nPS(t, IPS) ≥ nSRPT (t, IPS). Second,
consider Cπ(t, I), the number of completions by time t
under policy π and instance I. To finish the proof, we
claim that CSRPT (t, IPS) ≤ CSRPT (t, ISRPT ), whence
nSRPT (t, IPS) ≥ nSRPT (t, ISRPT ). To prove the claim, first

define a (non–work-conserving) policy Q, which, when run
on instance ISRPT , has exactly the same completion instants
as SRPT does on instance IPS . Such a Q exists since all ar-
rivals happen no later under ISRPT than IPS .

By the optimality of SRPT and the definition of Q,

CSRPT (t, IPS) = CQ(t, ISRPT ) ≤ CSRPT (t, ISRPT ),

which completes the proof of the claim and the lemma.

Finally, we use the above results to prove that s̄SRPT+1 <
s̄PS+1, which completes the proof of Theorem 16.

Lemma 24. Consider a single server GI/GI/1 queue with
a controllable service rate and an unbounded interarrival time
distribution. Assume sPSn ≥ sSRPTn for all n and sPSn and
sSRPTn are both weakly monotonically increasing with s1 > 0.
Further, assume that supn s

PS
n > ρ and supn s

SRPT
n > ρ.

Then both systems are stable and

ρ < s̄SRPT+1 < s̄PS+1.

Proof. First, note that the stability of π and sπ1 > 0
guarantees that s̄π+1

n > ρ for π ∈ {SRPT, PS}.
We will prove the result in the case that sPSn = sSRPTn

for all n. The case of sPSn ≥ sSRPTn follows immediately.
We refer to the PS+1 or the SRPT+1 system as “empty”
when it is empty except for the permanent customer. De-
fine a renewal point as occurring when both the PS+1 and
SRPT+1 systems are “empty”. Since both systems are sta-
ble and the interarrival time distribution is unbounded, there
are infinitely many such renewals.

Note that at the moments when both systems are“empty”,
the same customers have been completed in both systems.
The only difference is how much work has been done on the
permanent customer. So, the policy which has completed
the most of the permanent customer has the largest average
service rate.

We now focus on a single renewal and determine the time
average speeds under SRPT+1 and PS+1. By the renewal
reward theorem, this is enough to prove the lemma. Let
time 0 be the moment at which the sub-busy period began,
i.e., the time when both systems were last empty. Let te
denote the first time when both systems are “empty”. Let v
denote the amount of work that has been completed on the
permanent customer under PS during this sub-busy period.

Now, consider an instance that is unchanged except that
the permanent customer is replaced by a job of size z that
arrives at time 0 and that no new arrivals occurs after time
te. Choose z large enough that it will always have lowest
priority in the SRPT+1 system. By Lemma 22, this busy
period is at least as long under SRPT+1 as under PS+1.
Thus, since sPS1 = sSRPT1 , at time te SRPT+1 must have
completed no more than v work on the permanent customer.
So, within this renewal, s̄SRPT+1 ≤ s̄PS+1.

Finally, the stronger statement s̄SRPT+1 < s̄PS+1 holds
since with positive probability the renewal will include ex-
actly 2 arrivals that are both in the system at the moment
of the first departure under SRPT+1, which guarantees that
this completion instant is strictly earlier under SRPT+1 than
under PS+1.


