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Abstract

The rapid growth of content distribution on the Internet has brought with it pro-
portional increases in the costs of distributing content. Adding to distribution costs is
the fact that digital content is easily duplicable, and hence can be shared in an illicit
peer-to-peer (P2P) manner that generates no revenue for the content provider. In
this paper, we study whether the content provider can recover lost revenue through
a more innovative approach to distribution. In particular, we evaluate the benefits of
a hybrid revenue-sharing system that combines a legitimate P2P swarm and a cen-
tralized client-server approach. We show how the revenue recovered by the content
provider using a server-supported legitimate P2P swarm can exceed that of the mo-
nopolistic scheme by an order of magnitude. Our analytical results are obtained in a
fluid model, and supported by stochastic simulations.

1 Introduction

The past decade has seen the rapid increase of content distribution using the Internet as
the medium of delivery [1]. Users and applications expect a low cost for content, but at the
same time require high levels of quality of service. However, providing content distribution
at a low cost is challenging. The major costs associated with meeting demand at a good
quality of service are (i) the high cost of hosting services on the managed infrastructure of
CDN [2], and (ii) the additional costs associated with the fact that digital content is easily
duplicable, and hence can be shared in an illicit peer-to-peer (P2P) manner that generates
no revenue for the content provider. Together, these factors have led content distributors
to search for methods of defraying costs.

One technique that is often suggested for defraying distribution costs is to use legal peer-
to-peer (P2P) networks to supplement provider distribution [3, 4]. It is well documented
that the efficient use of P2P methods can result in significant cost reductions from the
perspective of ISPs [2, 5]; however there are substantial drawbacks as well. Probably the
most troublesome is that providers fear losing control of content ownership, in the sense
that they are no longer in control of the distribution of the content and worry about feeding
illegal P2P activity.

Thus, a key question that must be answered before we can expect mainstream utilization
of P2P approaches is: How can users that have obtained content legally be encouraged
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to reshare it legally? Said in a different way, can mechanisms be designed that ensure
legitimate P2P swarms will dominate the illicit P2P swarms?

In this paper, we investigate a “revenue sharing” approach to this issue. Motivated by
recent work using lottery schemes to promote societally beneficial conduct [6], we suggest
that users can be motivated to reshare the content legally by allowing them to share the
revenue associated with future sales. This can be accomplished through either a lottery
scheme or by simply sharing a fraction of the sale price.

Such an approach has two key benefits: First, obviously, this mechanism ensures that
users are incentivized to join the legitimate P2P network since they can profit from joining.
Second, less obviously, this approach actually damages the illicit P2P network. Specifically,
despite the fact that content is free in the illicit P2P network, since most users expect a
reasonable quality of service, if the delay in the illegitimate swarm is large they may be
willing to use the legitimate P2P network instead. Thus, by encouraging users to reshare
legitimately, we are averting them from joining the illicit P2P network, reducing its capacity
and performance; thus making it less likely for others to use it.

The natural worry about a revenue sharing approach is that by sharing profits with
users, the provider is losing revenue. However, the key insight provided by the results in
this paper is that the bootstrapping provided by the second effect described above provides
a magnification of the initial revenue sharing “investments”, which turns out to provide
exponential gains in revenue for the provider even when very little revenue sharing is used.

More specifically, the contribution of this paper is to develop and analyze a model to
explore the revenue sharing approach described above. Our model (see Section 2) is a fluid
model that builds on work studying the capacity of P2P content distribution systems. The
key novel component of the model is the competition for users among an illicit P2P system
and a legal content distribution network (CDN), which may make use of a supplementary
P2P network with revenue sharing. The main results of the paper (see Section 3) are
Theorems 1 and 2, which highlight the order-of-magnitude gains in revenue extracted by
the provider as a result of participating in revenue sharing. Further, Corollary 3 highlights
that the optimal amount of revenue sharing is quite small. In addition to the analytic
results, to validate the insights provided by our asymptotic analysis of the fluid model
we also perform numerical experiments of the underlying finite stochastic model. Figures
3(a), 3(b), 3(c) and 3(d) summarize these experiments, which highlight both that the
results obtained in the fluid model are quite predictive for the finite setting and that there
are significant beneficial effects of revenue sharing. In particular, the examples that we
present indicate that revenue extraction gains between 25% to 180% are possible through
appropriate revenue sharing.

There is a significant body of prior work modeling and analyzing P2P systems. Perhaps
the most related work from this literature is the work that focuses on server-assisted P2P
content distribution networks [7–12] in which a central server is used to “boost” P2P
systems. This boost is important since pure P2P systems suffer poor performance during
initial stages of content distribution. In fact, it is this initially poor performance that our
revenue sharing mechanism exploits to ensure that the legitimate P2P network dominates.

Two key differentiating factors of the current work compared to this work are: (i) We
model the impact of competition between legal and illegal swarms on the revenue extraction
of a content provider. (ii) Unlike most previous works on P2P systems, we consider a time
varying viral demand model for the evolution of demand in a piece of content based on
the Bass diffusion model (see Section 2). Thus, we model the fact that interest in content
grows as interested users contact others and make them interested.

With respect to (i), there has been prior work that focuses on identifying the relative
value of content and resources for different users [13, 14]. For instance, [13] deals with



creating a content exchange that goes beyond traditional P2P barter schemes, while [14]
attempts to characterize the relative value of peers in terms of their impact on system
performance as a function of time. However, to the best of our knowledge, ours is the
first work that considers the question of economics and incentives in hybrid P2P content
distribution networks.

With respect to (ii), there has been prior work that considers fluid models of P2P
systems such as [15–17]. However, these all focus on the performance evaluation of a P2P
system with constant demand rate. As mentioned above, a unique facet of our approach is
that we explicitly make use the transient nature of demand in our modeling. In the sense
of explicitly accounting for transient demand, the closest work to ours is [11]. However, [11]
focuses only on jointly optimizing server and P2P usage in the case of transient demand in
order to obtain a target delay guarantee at the lowest possible server cost.

The remainder of the paper is organized as follows. We first introduce the details of our
model in Section 2. Then, Section 3 summarizes analytic and numeric results, the proofs
of which are included in the appendix. Finally, Section 4 provides concluding remarks.

2 Model overview

Our goal is to model the competition between illicit peer-to-peer (P2P) distribution and
a legitimate content distribution network (CDN), which may make use of its own P2P
network. Our model is a fluid model, and there are four main components:

(i) The evolution of the demand for content. As mentioned in the introduction, a key
feature of this paper is that we consider a realistic model for the evolution of demand,
specifically, the Bass diffusion model.

(ii) The model of user behavior, which allows the user to strategically choose between
attaining content legally or illegally based on the price and performance of the two
options.

(iii) The model of the illicit P2P system.

(iv) The model of the legal CDN and its possibility to use “revenue sharing”.

We discuss these each in turn in the following.

2.1 The evolution of demand

Models of the dynamics of demand growth for innovations date back to the work of Griliches
[18] and Bass [19]. The most widely used model for dynamics of demand growth is the Bass
diffusion model which describes how new products get adopted as potential users interact
with users that have already adopted the product. Such word of mouth interaction between
users and potential users is very common in the Internet and we use a version of Bass
diffusion model that only has word of mouth spreading.

In our setting we have two key pieces of notation: N , the total size of the population,
and I(t), the number of users that are interested in the content at time t. We model that
each interested user “attempts” to cause a randomly selected user to become interested in
the content.1 At any time t, there are N − I(t) users that could potentially be interested

1Note that these “attempts” should not be interpreted literally, but rather as the natural diffusion of
interest in the new content through the population.



in the content. Thus, the probability of finding such a users is (N − I(t))/N . Assuming
that an interested user can interact with other users at rate 1 per unit time, we get that
the rate at which interested users increase is given by the following differential equation:

dI(t)

dt
=

(

N − I(t)

N

)

I(t). (1)

The above differential equation can be easily solved and yields the so-called logistic function
as its solution.

I(t) =
I(0)et

1 − (1 − et) I(0)
N

, (2)

where I(0) is the number of user that are interested in the content at time t = 0.
Though this model is simplistic, it is a useful qualitative summary of the spread of

content. To highlight this, Figure 1 (taken from [11]) highlights a similar behavior in a
data trace from CoralCDN [20], a CDN hosted at different university sites. The figure
shows the cumulative demand for a home video of the Asian Tsunami seen over a month in
December 2005. For comparision, the figure on the right shows the model in equation (2).
The qualitative usefulness of the Bass model has been verified empirically in other settings
as well. For example, [21] shows that a variant accurately represents the penetration of
CDs using data collected internationally [22]. There are many other examples of the use of
the Bass model for forecasting the dissemination of innovations [23–25], and hence it can
be considered as canonical [26]2.
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(b) Demand in Bass model

Figure 1: (a) shows the cumulative demand for a file over one month on Coral CDN (Dec
2005–Jan 2006). (b) shows the cumulative demand seen in a Bass diffusion.

In the current model, for analytic reasons, we are not able to work with the exact Bass
model. Thus, we approximate the logistic curve as follows:

I(t) =















NI(0)et

N−I(0)+I(0)et 0 ≤ t ≤ T1 : Phase 1
I2 = N/ ln N T1 < t ≤ T2 : Phase 2

I3 = N
2 T2 < t ≤ T3 : Phase 3

I4 = N T3 < t < T4 : Phase 4,

(3)

where we have T1 = ln(N/(I(0) ln N)), T2 = ln(N/I(0)), T3 = 2 ln(N/I(0)) and T4 =
3 ln(N/I(0)).3 Notice that the first stage is the exact Bass diffusion, while the other stages

2Indeed, the original work by Bass is one of the ten most cited papers in Management Science, and was
republished in 2004 to illustrate its impact.

3Note that the value of T1 has been chosen such that limN→∞ I(T1) = N/ ln N.



are order sense approximations of the actual expression. Though this model is approximate,
it yields the same qualitative insight as the original model.

2.2 The progression of a user

In order to capture the strategic behavior of users in the face of competition between a
legitimate CDN using P2P and an illicit P2P network our model is necessarily complex.
Figure 2 provides a broad overview of the user behavior in the system, which we explain in
detail in the following. In what follows, we develop a fluid (differential equation) model to
describe our system. However, we note that it is straightforward to show that the stochastic
version of the model would give the same results in an order sense, as we did in earlier
work [12]. Also, all the simulations in this paper are conducted using a full stochastic
model, and their accurate match with the fluid model further indicates its accuracy.

Let us explain the model through tracking the progression of a user. We term an initial
user that wants, but has not yet attained, the content a Wanter (W). When a Wanter
arrives to the system, it has two options: get content from the illicit P2P system for free
or get content from the legitimate system for a price p. We assume that the Wanter wishes
to obtain content as quickly and cheaply as possible, and so she first approaches the illicit
P2P swarm and then only attains the content from the legitimate system if the content is
not attained a reasonable time interval (one infinitesimal clock tick in our model) from the
illicit P2P. This cycle repeats, if necessary, until the content is attained. In some sense,
this is the worst-case for the legitimate provider since the illicit source is tried first.

Once the Wanter has attained the content, we assume the the Wanter acts strategically
when deciding its next action. If a Wanter obtains the content legally, then the Wanter has
three options: (i) It might decide to use the content to assist the illicit P2P swarm, i.e.,
go Rogue (R). We denote the probability this happens by ρ < 1. (ii) It might decide to
assist the legitimate P2P swarm (if one exists) as a Booster (B). We denote the probability
of this event by β < 1. Note that β = 0 if no legal P2P is used. (iii) Or, it may simply
Quit(Q) and leave the system. If a Wanter obtains the content illegally the options are
similar: it can either aid the illicit swarm as a Fraudster (F), or Quit(Q) and leave the
system. We denote the probability that a Wanter that has obtained the content illegally
becomes a Fraudster by κ < 1.

Note that the goal of revenue sharing is to incentivize Wanters to become Boosters after
attaining content legally, rather than going Rogue. The hope is that the revenue invested
toward reducing the number of “early adopters” that go Rogue keeps the illicit P2P swarm
from growing enough to provide good enough quality of service to dominate the legitimate
swarm.

To model this system more formally, we introduce the following notation. Let Nw(t) be
the number of Wanters at time t, i.e., the number of users who have not yet attained the
content, and assume Nw(0) = 0. Further, let Nl(t) and Ni(t) be the number of users with
legal and illegal copies of the content at time t. Note that the total number of interested
users at any time t satisfies the following equation

I(t) = Nw(t) + Nl(t) + Ni(t) (4)

We can break this down further by noting that the number of Rogues, Fraudsters, and
Boosters in the system at time t (denoted by Nr(t), Nf (t), and Nb(t) respectively) is:

Nr(t) = ρNl(t) (5)

Nf (t) = κNi(t) (6)

Nb(t) = βNl(t), (7)









 













 








Figure 2: An overview of the progression of a user through the systems. The labels are
defined as follows: W - Wanter, F - Fraudster, R - Rogue, B - Booster, and Q - Quit.

with ρ + β < 1. The rest of legal and illegal users leave the system.
The key remaining piece of the model is to formally define the transition of Wanters

to holders of illegal/legal content, i.e., the evolution of Ni(t) and Nl(t). However, this
evolution depends critically on the model of the two systems, and so we describe it in the
next section.

2.3 System models

We discuss in detail the illicit and legitimate system models below. The factors in these
models are key determinants of the choice of a Wanter to get the content legally or illegally.
When modeling the two systems, we consider a fluid model, and so the performance is
determined primarily by the capacity of each system, i.e., the combination of the initial
seeds and the Fraudsters/Boosters that choose to join (and add capacity). However, other
factors also play a role, as we describe below. Throughout, we model the upload capacity
of a user as being 1.

2.3.1 The illicit P2P system

There are two components to the model of the illicit P2P network: (i) the efficiency of the
network in terms of finding content, and (ii) the initial size of the network and its growth.

Let us start with (i). To capture the efficiency of the P2P system, we take a simple
qualitative model. When attaining the content illegally, a Wanter must contact either a
Rogue or a Fraudster. We let η(t) capture the probability of a Wanter finding a Rogue
or a Fraudster when looking for one instantaneous time slot. We will consider two cases:
an efficient P2P and an inefficient P2P. In an efficient P2P , we model η(t) = 1, with
the understanding the the P2P allows easy lookup of content and all content is truthfully
represented. In contrast, for an inefficient P2P , we model

η(t) = (Nr(t) + Nf (t))/N,

where recall that N is the total population size. This corresponds to looking randomly
within the user population for a Rogue or Fraudster. Neither of these models is completely
realistic, but we choose them with the goal of upper and lower bounding the true efficiency
of an illicit P2P system.

Next, with respect to (ii), we model the initial condition for the illicit network with
Ni(0) = 0, since the assumption is that the content has not yet been released, and therefore
is not yet available in the illicit P2P swarm. From this initial condition, Ni(0) evolves as



follows:

dNi(t)

dt
= min

{

η(t)

(

Nw(t) +
dI(t)

dt

)

, Nr(t) + Nf (t)

}

, (8)

The interpretation of the above is that Nr(t) + Nf (t) is the current capacity of the illicit
P2P and η(t)(Nw(t)+dI(t)/dt) is the fraction of the Wanters (newly arriving and remaining
in the system) that find the content in the illicit P2P network. The min then ensures that
no more than the capacity is used.

2.3.2 The legitimate CDN

As discussed in the introduction, our goal in this work is to contrast the revenue attained
by a CDN that uses P2P and revenue sharing with one that does not use P2P. Thus, there
are two key factors in modeling the legitimate CDN: (i) the amount revenue sharing used,
and (ii) the initial size of the CDN and its growth, which depends on the presence/absence
of the legal P2P.

Let us start with (i). Suppose that the purchase price of a copy of the content is
p. Hence, a user that wishes to obtain a legal copy of the content must pay the content
generator the sum p through some kind of online banking system. We consider a simple
model for revenue sharing where a user receives εp for each piece of content it distributes
when taking part in the legitimate network as a Booster. Thus, ε = 0 corresponds to no
revenue sharing. Note that this could potentially be implemented on a system such as
BitTorrent by simply keeping track of amount uploaded by each peer4. The value ε can be
viewed either as a share of the revenue from each download or as the expected payoff of a
lottery scheme operated by the CDN.

Intuitively, κ is fixed regardless of ε, since once a Wanter gets the content illegally,
whether it becomes a Fraudster or not is independent of revenue sharing. The key conse-
quence of revenue sharing is on the “rogue factor” ρ. We make the assumption

ρ + β = κ.

By fixing ρ+ β, we are assuming that the likelihood of a user joining a P2P swarm (either
legal or not) is fixed irrespective of ε, and only which P2P swarm is joined is affected by
revenue sharing. The idea is that increased revenue sharing should limit the likelihood of
a Wanter going rogue after attaining the content legally.

It is difficult to predict the exact impact of this effect; however to qualitatively capture
this, we model ρ as a decreasing function of ε. To make the analysis tractable, we use the
specific form

ρ = κN−ε,

which captures the desired qualitative effect.
Next, with respect to (ii), unlike for the illicit P2P swarm, the legitimate network does

not start empty. This is because it has a set of dedicated servers at the beginning which
are then (possibly) supplemented using a P2P network. We denote by CN be the capacity
of the dedicated CDN servers when the total population size is N . Note that this capacity
must scale with the total population size to ensure that the average wait time for the users
is small. As shown in [11], a natural scaling that ensures no more that O(ln ln N) delay is
to have the capacity CN = Θ (N/ ln N). Based on this, we adopt

CN =
N

ln N
4BitTorrent Trackers already collect such information in order to gather performance statistics.



in this work. Additionally, we assume Nl(0) = I(0) and I(0) ∈ Θ(1).
Given these initial conditions, Nl(t) evolves as follows:

dNl(t)

dt
=

{

CN + βNl(t), Nw(t) > 0,

min
{

CN + βNl(t),
dI(t)

dt − dNi(t)
dt

}

Nw(t) = 0. (9)

The interpretation for the above is that if there are a positive number of Wanters remaining
in the system, then the full current capacity of the CDN can be used to serve them, i.e.,
CN + βNl(t). However, if there are no “leftover” Wanters, arriving Wanters that are not
served by the illicit P2P (dI(t)

dt − dNi(t)
dt ) are served up to the capacity of the CDN.

3 Results

Given the model, we can now investigate the impact “revenue sharing” has on the revenue
attained by the CDN. The goal of the work is to highlight that the revenue shared serves
as an “investment” which pays itself back many times over as a result of the damage it
causes to the capacity/performance of the illicit P2P network.

To characterize the revenue attained by the CDN, we use the fractional revenue attained,
which is defined as follows:

Definition 1 The fractional revenue, R, attained by the CDN is defined as

R =
Nl(T4)p(1 − ε)

Np
=

Nl(T4)(1 − ε)

N
(10)

Recall that T4 is the final point of time in the evolution of demand, and so this can be
interpreted as an approximation5 of the revenue attained by the CDN divided by the
maximal revenue the CDN could have achieved.

Using this metric, we look at the impact of revenue sharing in two settings: when the
CDN competes against inefficient illicit P2P sharing and when it competes against efficient
illicit P2P sharing. Recall, that our models for these two cases are meant to serve as upper
and lower bounds on the true efficiency of an illicit P2P system.

Note that the theorems stated below characterize only the asymptotic growth of the
fractional revenue. However, the proofs of these theorems, presented in Appendicies A and
B, actually characterize the exact growth.

Let us first consider the case of an inefficient, illicit P2P.

Theorem 1 Let ρ + β = κ and ρ = κN−ε. The fractional revenue attained by the content
provider in the presence an inefficient, illicit P2P is

R ∈ Ω

(

1 − ε

ln N

(

ln ln N + (ln N)1−N−ε
)

)

(11)

Further, when ε = 0,

R ∈ Θ

(

ln ln N

ln N

)

. (12)
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(a) No Revenue Sharing:
Inefficient P2P
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(b) Revenue Sharing: Inefficient
P2P
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(c) No Revenue Sharing:
Efficient P2P
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(d) Revenue Sharing: Efficient
P2P
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(e) Optimal Revenue Sharing

Figure 3: Numerical simlation of different cases. In all cases revenue sharing increases the
profit obtained by the content provider.

The interpretation of this theorem is striking. When no revenue sharing is used the frac-
tional revenue attained by the content provider is exponentially small, Θ

(

ln ln N
ln N

)

. However,
when revenue sharing is used, the fractional revenue grows by orders of magnitude. Admit-
tedly, the exact form of the improvement is dependent on our assumption that ρ = κN−ε

(which facilitates analysis); however the qualitative comparison is not dependent on this
form. Further, as we show later in this section, despite the asymptotic nature of the result
the qualitative insight is visible even in finite, discrete systems.

Next, let us consider the case of an efficient, illicit P2P system.

Theorem 2 Let ρ + β = κ, with ρ = κN−ε and κ ∈ (CN/N, 1 − CN/N). The fractional
revenue attained by the content provider in the presence an efficient, illicit P2P is

R ∈ Ω

(

1 − ε

ln N

(

(ln N)1−N−ε − 1

1 − N−ε

))

. (13)

Further, when ε = 0,

R ∈ Θ

(

ln ln N

ln N

)

. (14)

5This is an approximation (actually a lower bound) since it assumes that only (1 − ε)p is attained
from all sales, rather than having the full p attained from distribution from the dedicated servers. This
difference does not affect the asymptotic order of the fractional revenue, which is what we are interested
in characterizing.



Again, the the impact of revenue sharing in Theorem 2 is striking. The fraction of
revenue obtained by the content provider rises by an order of magnitude when revenue
sharing is used. Interestingly, the efficiency of the illicit P2P does not impact the asymptotic
order of the fractional revenue when revenue sharing is not used, since in both the efficient
and inefficient case it is Θ

(

ln ln N
ln N

)

. However, the efficiency of the illicit P2P does affect
the fractional revenue attained by revenue sharing. In particular, it causes a 1 − N−ε

factor change in the fractional revenue attained; however this has almost no effect on the
asymptotic growth. So, the benefits of revenue sharing are robust to the efficiency of the
P2P system. Note that for technical reasons, Theorem 2 requires an extra assumption on
κ.

Given Theorems 1 and 2, it is natural to ask about the optimal amount of revenue
sharing a CDN should use. One might worry that sharing a significant amount of revenue
is necessary in order to properly incentivize users. Using the scalings in Theorems 1 and 2 it
is possible to characterize the asymptotically optimal revenue sharing ε = εN . Interestingly,
it turns out that the order of the optimal revenue sharing is the same in both the case of
an inefficient and an efficient illicit P2P, and that a very small revenue share is optimal.
Formally, we have the following corollary. The proof is omitted due to space constraints.

Corollary 3 Let ρ + β = κ with ρ = κN−εN . In the presence of either an inefficient P2P
or an efficient P2P with κ ∈ (CN/N, 1 − CN/N), the choice of εN that achieves optimal
fractional revenue is

εN ∈ Θ

(

ln ln ln N

ln N

)

. (15)

Since Theorems 1 and 2 and Corollary 3 rely on a fluid model, and characterize only
the asymptotic growth rate of the fractional revenue and the optimal revenue sharing, we
present numerical simulations to verify the qualitative insights in discrete systems with
finite N .

To simulate the underlying discrete stochastic system, we assume time is discrete and
that there are N = 100, 000 users in the system. At each time slot, each user picks a
Poisson distributed number (with mean 1) of other users to spread interest to. The server
has a FIFO policy with service rate C = 8000 ≈ N/ ln N .

Figures 3(a) and 3(b) illustrate the case of an inefficient illicit P2P system with and
without revenue sharing. We use κ = 0.75, ε = 0 in the no revenue sharing setting (Figure
3(a)) and ε = 0.1 in the case of revenue sharing (Figure 3(b)). In the case of no revenue
sharing, the number of legal users eventually present in the system is 63, 000, while the
value anticipated from our theoretical analysis, specifically by Corollory 7, is 60, 100. In
the revenue sharing setting, the final number of legal users in the system is 88, 888, while
the value predicted by Lemma 6 is 79, 100. The simulation results validate the insights
obtained from our theoretical analysis. The key point in this figure is that even when
the illicit P2P is extremely inefficient, there is significant revenue that can be gained from
revenue sharing. In fact, the fractional revenue increases by more than 25%.

Next, we move to the case of an efficient illicit P2P. Figures 3(c) and 3(d) illustrate the
case of an efficient illicit P2P system with and without revenue sharing. We use κ = 0.4,
ε = 0 in the no revenue sharing setting (Figure3(c)) and ε = 0.25 in the case of revenue
sharing (Figure 3(d)). In the case of no revenue sharing, the number of legal users eventually
present in the system is 23, 153, while the value anticipated from our theoretical analysis,
specifically by Corollory 10, is 45, 920. In the revenue sharing setting, the final number
of legal users in the system is 89, 151, while the value predicted by Lemma 9 is 96, 380.



The key point here is that when the illicit P2P is efficient, the gain from revenue sharing
increases. In particular, the gain perceived by the content provider in terms of fractional
revenue is over 180%. Note that this detailed contrast was not evident in the asymptotic
results in Theorems 1 and 2.

Finally, Figure 3(e) illustrates the impact of the amount of revenue sharing on the
fractional revenue ratio of the CDN in the cases of inefficient and efficient illicit P2Ps. We
use κ = 0.75 in the simulation. The key point to observe in the figure is that there is a
clear optimal amount of revenue sharing for the provider. In both cases, this amount is
fairly small, however, it is clearly desirable to share more revenue in the presence of an
efficient illicit P2P than in the presence of an inefficient illicit P2P. In fact, sharing nearly
zero percent of the revenue still provides fairly close to the optimal fractional revenue in
the inefficient case, while one must share more than 10% of the revenue to be near-optimal
in the case of an efficient, illicit P2P.

4 Conclusion

Our goal in this paper is to quantify the ramifications of coopting legal P2P content sharing,
not only as a means of reducing costs of content distribution, but, more importantly, as
a way of hurting the performance of illegal P2P file sharing. The model that we propose
internalizes the idea that demand for any content is transient, and that all content will
eventually be available for free through illegal file sharing. The objective then is not to cling
to ownership rights, but to extract as much revenue from legal copies as possible within the
available time. We develop a revenue sharing scheme that recognizes the importance of early
adopters in extending the duration of time that revenue may be extracted. In particular,
keeping users from “going rogue” (becoming seeds in illegal networks) by allowing them to
extract some revenue for themselves (and so defray part of their expense in purchasing the
content in the first place), provides order sense improvements in the extractable revenue.
We realize that our paradigm is contrary to the “conventional wisdom” of charging more
rather than less to early adopters, and also to discourage file sharing using legal threats.
However, as many recent studies have demonstrated, incentives work better than threats in
human society, and adoption of our revenue sharing approach might result in a cooperative
equilibrium between content owners, distributors and end-users. Future work includes a
characterization of the exact value of users based on their times of joining the system, as
well as considering content streaming, which requires strict quality of service guarantees.
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A Proof of Theorem 1

To prove Theorem 1, we go through a sequence of intermediate results characterizing the
number of legal/illegal users at the transition points of the approximate Bass model.

We start by characterizing the number of legal and illegal users at the end of Phase 1.

Lemma 4 In the presence of an inefficient, illicit P2P, the number of illegal and legal
users at the end of Phase 1 of the approximate Bass model are given by

Ni(T1) =

(

ρI(0)

κ− ρ
+

Nρ

(κ− ρ)2

)

exp (BN) −
I(T1)ρ

κ− ρ
−

Nρ

(κ− ρ)2
(16)

Nl(T1) = I(T1) − Ni(T1), (17)

where I(T1) =
N

ln N

N

N − I(0) + (N/ ln N)
and BN =

(

(κ− ρ)

N
(I(T1) − I(0))

)

.

Note that in the above, we have allowed κ, ρ, and β to be arbitrary. In fact, in this case,
β is inconsequential since the full amount of interested users can be served by the dedicated
capacity of the CDN. Note that in the case when ρ = κ, things simplify considerably.

Corollary 5 Let ρ = κ. In the presence of an inefficient, illicit P2P, the number of illegal
and legal users at the end of Phase 1 of the approximate Bass model are given by

Ni(T1) =
κ(I2(T1) − I2(0))

2N
and Nl(T1) = I(T1) − Ni(T1),

where I(T1) = N
ln N

N
N−I(0)+(N/ ln N) .

We now prove the lemma.
Proof Lemma 4. From (3), the population of interested users in phase I is given by

I(t) =
NI(0)et

N − I(0) + I(0)et
. (18)

From the above equation, it is easy to verify that the rate of growth of interested users is
less than the server capacity CN , i.e., dI(t)/dt ≤ CN . Thus, any interested user is served



instantaneously either by a legal or illegal mechanism. Hence, the number of Wanters in
the system is zero, i.e, Nw(t) = 0. Therefore, it follows from (4) that Nl(t) + Ni(t) = I(t).

Next, from equation (8), we get that

dNi(t)

dt
= min

{

η(t)
dI(t)

dt
,Nr(t) + Nf (t)

}

(a)
= η(t)

dI(t)

dt
, (19)

where the equality (a) follows from the definition of η(t) and the fact that dI(t)/dt ≤ CN <
N . Because we are considering an inefficient P2P, we have

η(t) = Nr(t)+Nf (t)
N

(b)
= ρNl(t)+κNi(t)

N

(c)
= ρ(I(t)−Ni(t))

N + κNi(t)
N = ρI(t)

N + (κ−ρ)Ni(t)
N . (20)

where equality (b) follows from (5), (6) and the equality (c) follows from the fact that
Nl(t) = I(t) − Ni(t). Substituting the above result in equation (19), we get

dNi(t)

dt
=

dI(t)

dt

ρI(t)

N
+

dI(t)

dt

(κ− ρ)Ni(t)

N
.

The solution of the above differential equation with the initial condition, Ni(0) = 0, is
given by

Ni(t) =

(

ρI(0)

κ− ρ
+

Nρ

(κ− ρ)2

)

exp

(

(κ− ρ)

N
(I(t) − I(0))

)

−
ρI(t)

κ− ρ
−

Nρ

(κ− ρ)2
.

The number of illegal users at the end of Phase 1 can be obtained by evaluating the above
expression at t = T1. The remaining population get the content legally, i.e, Nl(T1) =
I(T1) − Ni(T1).

Now that we have characterized the number of legal and illegal users at the end of
Phase 1, we can move to Phases 2-4. Unfortunately, the resulting number of legal and
illegal users at the end of these phases is much more complicated. However, much of this
complicated form is only necessary to specify the exact analytic values. Once we focus on
the asymptotic form (as in Theorem 1), it simplifies considerably.

Before stating the result, we need to introduce a considerable amount of notation.
This notation stems from the fact that we do not analyze the exact process of Nl(t) and
Ni(t). Instead, we define a processes N̄l(t) and N̄i(t) which bounds Nl(t) and Ni(t) and
analyze these processes. Importantly, the bounding processes are equivalent to the original
processes when β = 0, i.e., the case of no revenue sharing.

Before defining N̄l and N̄i, we need some notation. Let

∆τ̄2 =
1

κ ln NZ1
ln

(

Z1 + 1 − 2I(T1)
(N/ ln N)

Z1 − 1 + 2I(T1)
(N/ ln N)

)

+
1

κ ln NZ1
ln

(

Z1 + 1

Z1 − 1

)

, (21)

∆τ̄3 =
2

κZ2
ln

(

Z2 + 1 − 4
ln N

Z2 − 1 + 4
ln N

)

+
2

κZ2
ln

(

Z2 + 1

Z2 − 1

)

, , ∆τ̄4 =
1

κZ3
ln

(

Z3 + 1

Z3 − 1

)

,

(22)



where Z1 =
√

1 + 4 ln N
κ , Z2 =

√

1 + 16
κ ln N , Z3 =

√

1 + 4
κ ln N and I(T1) = N

ln N
N

N−I(0)+(N/ ln N) .

In addition, let

θj
1 = κ

Ij

2N
+

1

2

√

(

κIj

N

)2

+
4κ

ln N
, θj

2 = κ
Ij

2N
−

1

2

√

(

κIj

N

)2

+
4κ

ln N
,

bj =
Nθj

1 − κI(Tj−1)

κI(Tj−1) − Nθj
2

(23)

and ∆θj = θj
1 − θj

2. Note that, in the above definition, in fact I(Tj−1) = Ij−1 for j = 3

and 4. Furthermore, for j = 2, 3 and 4, let dj = (bj + exp(∆θj∆τ̄j)), q
j
1 =

(

βθj
2

κ − βIj

N

)

and

qj
2 = βθj

1
κ − βIj

N

Finally, we are ready to define the bounding processes used in the proof, N̄l(t) and
N̄i(t). Let N̄i(T1) = Ni(T1). Furthermore, during Phase j, let

dN̄i(t)

dt
=

ρN̄l(t) + κN̄i(t)

N
(Ij − (N̄l(t) + N̄i(t))). (24)

Similarly, let N̄l(T1) = Nl(T1) and, during Phase j,

dN̄l(t)

dt
=

{

CN + βN̄l(t)
Ij−(N̄l(t)+N̄i(t))

N , N̄w(t) > 0,
0, N̄w(t) = 0.

(25)

where N̄w(t) = Ij − (N̄i(t) + N̄l(t)). Finally, let Ū(t) = N̄l(t) + N̄i(t).
To state the result, we use a bit more notation about these processes. Let N̄1

l = Nl(T1)
and for j = 2, 3, and 4 define N̄l(Tj) recursively as follows:

N̄ j
l = N̄ j−1

l

(

1+bj

dj

)
β
κ

e(−qj
1∆τ̄j) + CN

(

bj

dj

)
β
κ

e(−qj
1∆τ̄j)

(

e

„

q
j
1

ln bj
∆θj

«

qj
1

− 1
qj
1

)

1b≥1

+CN

(

1
dj

)
β
κ

e(−qj
1∆τ̄j)







e(q
j
2∆τ̄j)
qj
2

− e

0

@

q
j
2 ln bj
∆θj

1

A

1b≥1

qj
2






− CN

(

1
dj

)
β
κ

e(−qj
1∆τ̄j) 1

qj
2

(1 − 1b≥1),(26)

where 1b≥1 = 1 when b ≥ 1 and zero otherwise.
We can now state our result characterizing the number of legal and illegal users at the

end of Phases 2-4.

Lemma 6 Let ρ + β = κ. In the presence of an inefficient, illicit P2P, the number of
illegal and legal users at the end of Phase j, j ∈ {2, 3, 4} of the approximate Bass model
are given by

Nl(Tj) ≥ N̄ j
l ,

where equality holds when β = 0.



Proof. From the approximate Bass model (3), the evolution of demand in Phase j is,
I(t) = Ij, where t ∈ (Tj−1, Tj],and the number of Wanters in Phase j is Nw(t) =
Ij − (Nl(t) + Ni(t)). Recall that the efficiency factor of an inefficient illicit P2P, η(t), is
given by

η(t) =
Nr(t) + Nf (t)

N
=

ρNl(t) + κNi(t)

N
. (27)

The second equality follows from (5) and (6). From (8), the illegal growth rate in Phase j
is

dNi(t)

dt
(a)
= min {η(t)Nw(t), Nr(t) + Nf (t)}

(b)
= η(t)Nw(t)

(c)
= (ρNl(t)+κNi(t))(Ij−(Nl(t)+Ni(t)))

N .(28)

Here (a) follows from the fact that I(t) is constant in the last three phases. (b) follows
from the definition of η(t) and the fact that Nw(t) ≤ N . (c) follows from (27).

From equation (9), the growth rate of legal users in Phase j is given by

dNl(t)

dt
=

{

CN + βNl(t), Nw(t) > 0,
0, Nw(t) = 0. (29)

The second equality follows from the fact that dNi

dt = 0 when there are no Wanters in the
system (from (28)) and I(t) is constant. Let U(t) be the total copies of the content in the
system. Then, U(t) = Nl(t) + Ni(t).

Note that the growth rate Nl(t) is at least equal to CN when Nw(t) > 0. In that case,
it can be shown that CN × (Tj − Tj−1) > (I(Tj) − I(Tj−1)), if I(0) <

√
N , which is in fact

true by assumption. This means that every interested user generated in any one of the last
three phases can be served within that phase itself. Furthermore, Lemma 4 shows that no
Wanters are left unserved after Phase 1. Therefore, we can conclude that

Nl(Tj) + Ni(Tj) = U(Tj) = I(Tj) = Ij. (30)

The same arguments hold true forf N̄l(t), i.e,

N̄l(Tj) + N̄i(Tj) = Ū(Tj) = I(Tj) = Ij. (31)

Now, we claim that,

Nl(Tj) ≥ N̄l(Tj), (32)

and the equality holds when β = 0.
The proof is as follows: We can derive dNi

dU and dN̄i

dŪ
from the pair of equations (28), (29)

and (24), (25) respectively. Then, it can be shown that

dNi

dU
|Ni=x,U=y ≤

dN̄i

dŪ
|N̄i=x,Ū=y, (33)

and the equality holds when β = 0. Note that the range space of functions U(t) and Ū(t)
are identical; in fact they are equal to [I(Tj−1), I(Tj)] in Phase j which follows from (30)
and (31). Furthermore, recall that the initial values of Ni(T1) and N̄i(T1) are equal by



definition. Hence, the conclusion is, Ni(Tj) ≤ N̄i(Tj). Then, the claim in (32) is true from
the facts that Nl(Tj) = I(Tj) − Ni(Tj) and N̄l(Tj) = I(Tj) − N̄i(Tj).

Our objective is to derive an expression of N̄l(t). Then, evaluate the expression at
t = Tj in order to obtain a lower bound on the number of legal users at the end of each
Phase j. Let τ̄j be the time such that Ū(τ̄j) = Ij. This event happens within Phase j itself
(from (31)). i.e, τ̄j ∈ (Tj−1, Tj]. In addition, N̄w(t) = 0 when t ∈ (τ̄j, Tj]. Adding (25) and
(24), for t ∈ (Tj−1, τ̄j], we get,

dŪ

dt
=

(

(β + ρ)N̄l(t) + κN̄i(t)
) (Ij − (N̄l(t) + N̄i(t)))

N
(f)
= κŪ(t)

Ij − Ū(t)

N
.

(f) follows from the fact that ρ + β = κ and the definition of Ū(t) in Phase j. The above
differential equation is in the form of a standard Riccatti equation, and it’s solution can be
written as

Ū(t) =
Nθ2,j

κ
+

N∆θj/κ

1 + bje−∆θj(t−Tj−1)
, (34)

where ∆θj = θ1,j − θ2,j. θ1,j, θ2,j and bj are given by equations (23) and respectively.
Let ∆τ̄j = τ̄j − Tj−1. Recall that τ̄j is the solution of the equation Ū(τ̄j) = Ij. Hence,

from the above result, we get,

τ̄j − Tj−1 =
1

∆θj
ln





√

1 + 4CNN
κI(Tj)2

+ 1 − 2I(Tj−1)
I(Tj)

√

1 + 4CNN
κI(Tj)2

− 1 + 2I(Tj−1)
I(Tj)



 +
1

∆θj
ln





√

1 + 4CNN
κI(Tj)2

+ 1
√

1 + 4CNN
κI(Tj)2

− 1



 . (35)

The above expression yields the set of equations given by (22), by substituting I(Tj) from
the bass model. Now, applying the above expression in (25), for t ∈ (Tj−1, τ̄j], we get

dN̄l(t)

dt
= CN + βN̄l(t)

Ij − (N̄l(t) + N̄i(t))

N
.

A lower bound on the solution of the above differential equation is provided by Lemma 11
in Appendix C. It can be shown that b exp(−∆θj∆τ̄j) << 1. Then τ̄j satisfies the condition
stipulated by that lemma and a lower bound on the number of legal at the end of Phase j
can be obtained by evaluating (49) at t = τ̄j, which yields N̄ j

l in (26). When β = 0, (49)
is an exact solution of the above differential equation, which completes the proof.

As mentioned in the statement of Lemma 6, the inequality is exact in the case of β = 0.
Additionally, in this case, the form of Nl(T4) simplifies.

Corollary 7 Let β = 0. In the presence of an inefficient, illicit P2P, the number of illegal
and legal users at the end of Phase 4 of the approximate Bass model is given by

Nl(T4) = Nl(T1) + CN

4
∑

j=2

∆τ̄j (36)

where Nl(T1) is given by Corollary 5.



Now that we have characterized the number of legal and illegal users at the end of
Phase 4 precisely, attaining the statement in Theorem 1 is accomplished by taking studying
the asymptotics of the results in Lemma 6 and Corollary 7.

To begin, recall from (10) that the revenue ratio is

R =
Nl(T4)

N
(1 − ε) ≥

N̄4
l

N
(1 − ε), (37)

where N̄4
l is recursively defined by (26) in terms of N̄1

l , N̄2
l and N̄3

l . From (37) and (26),
after following a few straightforward but lengthy algebraic steps, we can show that

R ∈ Ω

(

1 − ε

ln N

(

ln ln N + (ln N)1−N−ε
)

)

, if ε > 0 (38)

R ∈ Θ

(

ln ln N

ln N

)

, if ε = 0, (39)

when β = κ(1 − N−ε).

B Proof of Theorem 2

The proof of Theorem 2 parallels to that of Theorem 1; therefore, due to space constraints
we provide only a sketch of the proof in this section.

As in the case of Theorem 1, to prove Theorem 2, we go through a sequence of inter-
mediate results characterizing the number of legal/illegal users at the transition points of
the approximate Bass model.

To start, we characterize the number of legal and illegal users at the end of Phase 1.

Lemma 8 Let κ ∈ (CN

N , 1 − CN

N ). Then, in the presence of an efficient, illicit P2P, the
number of legal users at the end of Phase 1 satisfies

Nl(T1) ≥















I(T1) − ρN ln
(

N−I(0)+CN

N

)

if ρ = κ else

max

{

0, I(T1) −
ρN2

„

1−( N
ln NI(0))

(κ−ρ−1)
«

ln N(N−I(0))(1−β)

}

,
(40)

where the equality holds when ρ = κ.

The proof of this lemma parallels that of Lemma 4 used in the proof of Theorem 1; so,
due to space constraints, we omit it.

Given the characterization of the number of legal and illegal users at the end of Phase
1, we now move to Phases 2-4. Similarly to the case of inefficient illicit P2P, the differential
equations characterizing the growth of legals and illegals are hard to analyze. Hence,
we mimick the approach of the proof of Theorem 2 and define two processes N̄l(t) and
N̄i(t) that bound Nl(t) and Ni(t) and analyze these processes. Importantly, the bounding
processes are equivalent to the original processes when β = 0, i.e., the case of no revenue
sharing.

Let Ū(t) = N̄l(t) + N̄i(t). Further, define

dN̄l(t)

dt
= =

{

CN + βN̄l(t) N̄w(t) > 0,
0 N̄w(t) = 0.

(41)



where N̄w(t) = I(t) − Ū(t). Also, let N̄l(T1) be equal to the lower bound on the number
illegals at the end of Phase 1, derived by Lemma 8. Furthermore, in each phase, we choose
the growth rate of N̄i(t) as follows:
Phase 2 :

dN̄i(t)

dt
= I2 − Ū(t) = I2 − N̄l(t) − N̄i(t). (42)

Phase 3, 4 : For j = 3 and 4, let

dN̄i(t)

dt
=

{

ρN̄l(t) + κN̄i(t) I(Tj−1) ≤ Ū(t) ≤ I(Tj)
1+ρ ,

I(Tj) − N̄l(t) − N̄i(t)
I(Tj)
1+ρ ≤ Ū(t) ≤ I(Tj).

(43)

Finally, let N̄i(T1) = I(T1)−N̄l(T1). To state the results, we may need a bit more notation.
Let N̄1

1 = N̄l(T1) and for j = 2, 3 and 4, let

N̄ j
l =

(

N̄1
1 +

N

ln Nβ

)

eβ∆τ̄j −
N

ln Nβ
. (44)

Furthermore, ∆τ̄2 = 1
1+β ln

(

1 +
N

ln N
−I(T1)

G1

)

, ∆τ̄3 = 1
1+β ln

(

1 + Nρ
2(1+ρ)

H
−β
κ

3
G2

)

+ 1
κ ln (H3) ,

and ∆τ̄4 = 1
1+β ln

(

1 + Nρ
(1+ρ)

H
−β
κ

4
G3

)

+ 1
κ ln (H4) ,where Gj = β

1+β

(

N̄l(Tj) + N
ln Nβ

)

for j =

1, 2, 3 and Hi =

(

Ii
1+ρ

+ N
ln Nκ

Ii−1+
N

ln Nκ

)

. for i = 3, 4. Now, we characterize the number of legal users

and illegal users at the end of Phase 2 − 4 in the following lemma.

Lemma 9 Let β + ρ = κ and κ ∈ (CN

N , 1 − CN

N ). Then, in the presence of an efficient,
illicit P2P, the number of illegal users at the end of Phase j satisfies

Nl(Tj) ≥ N̄ j
l , (45)

and the equality holds when κ = ρ.

The proof of this lemma is too long to fit in the space provided, however its structure
parallels that of the proof of Lemma 6 in the proof of Theorem 1.

As mentioned in the statement of Lemma 9, the inequality is exact in the case of β = 0.
Additionally, in this case, the form of Nl(T4) simplifies.

Corollary 10 Let ρ = κ. Then, the number of legal users at the end of Phase 4 is given

by Nl(T4) = N̄l(T1) + CN

∑4
j=2 ∆τ̄j, where N̄l(T1) = I(T1) − ρN ln

(

N−I(0)+CN

N

)

.

Now that we have characterized the number of legal and illegal users at the end of
Phase 4 precisely, attaining the statement in Theorem 2 is accomplished by taking studying
the asymptotics of the results in Lemma 9 and Corollary 10.

From (10), the fractional revenue ratio is

R =
Nl(T4)

N
(1 − ε) ≥

N̄4
l

N
(1 − ε). (46)



From Lemma 8, Lemma 9, Corollary 10 and equation (44) we can show that

R ∈ Ω

(

(1 − ε)

ln N

(log N)1−N−ε − 1

1 − N−ε

)

, if ε > 0 (47)

R ∈ Θ

(

ln ln N

ln N

)

if ε = 0. (48)

when ρ = κN−ε and β = κ(1 − N−ε), which completes the proof.

C Technical lemmas

Lemma 11 Consider a differential equation given by dy
dt = CN + βy

N (I−U(t)) where U(t) =
Nθ2

κ + N∆θ/κ
1+be−∆θ(t−T ) .Also, assume that y(T ) is given. Then for all t − T > ln b

∆θ , the solution
to the above differential equation satisfies the inequality

y(t) ≥ y(T )
(

1+b
d

)
β
κ e(−q1(t−T )) + CN

(

b
d

)
β
κ e(−q1(t−T ))

(

e(q1
ln b
∆θ )

q1
− 1

q1

)

1b≥1 (49)

+CN

(

1
d

)
β
κ e(−q1(t−T ))

(

e(q2∆τj)
q2

− e(q2
ln b
∆θ )

q2
1b≥1

)

− CN

(

1
d

)
β
κ e(−q1(t−T )) 1

q2
(1 − 1b≥1),

where d = (b + exp(∆θ(t − T ))), q1 =
(

βθ2

κ − βI
N

)

and q2 = βθ1

κ − βI
N and 1b≥1 = 1 if b ≥ 1

and zero otherwise. Furthermore, for β = 0, equality holds.

Proof. A general solution to the above differential equation is

y(t) =

∫

CN exp(
∫

Pdt) + M
∫

Pdt
(50)

where P (t) = − β
N (I − U(t)). Taking the integral of P (t), we can show that CNe

R

Pdt =

CNB(t) exp
(

βθ2

κ − βIt
N

)

t, where B(t) = (1 + (1/b) exp(∆θ(t − T )))
β
κ . For b ≥ 1, we can

lower bound B(t) as

B(t) ≥

{

1 t ≤ ln b
∆θ + T

(

1
b

)
β
κ exp

(

β
κ∆θ(t − T )

)

t > ln b
∆θ + T.

(51)

On the other hand, if b < 1,

B(t) ≥
(

1

b

)
β
κ

exp

(

β

κ
∆θ(t − T )

)

, ∀t. (52)

Let us define A(t) as A(t) =
∫

CNe
R

Pdtdt. From the bound on B(t), we can show that,
for t > ln b

∆θ + T ,

A(t) ≥ CNe(q1T ) exp(q1
ln b
∆θ )

q1
1b≥1 + CNe(q1t)

(

1
b

)
β
κ

exp(β∆θ
κ

(t−T ))
q2

− CNe(q1T )
(

1
b

)
β
κ

exp(q2
ln b
∆θ )

q2
1b≥1.

where 1b≥1 is the indicator function of the event b ≥ 1. We obtain M from the initial
conditions, then apply the above result in (50) to get (49). For β = 0, (51) and (52) hold
equality, which completes the proof.


