

IEEE COMSOC MMTC E-Letter

http://www.comsoc.org/~mmc/ 1/3 Vol.5, No.1, January 2010

Power and Speed Scaling to Trade Efficiency, Simplicity, Robustness and Fairness
Lachlan L. H. Andrew, (Swinburne, Australia), Minghong Lin (Caltech),

Ao Tang (Cornell) and Adam Wierman (Caltech)
landrew@swin.edu.au, {mhlin, adamw}@caltech.edu, atang@ece.cornell.edu

1. Introduction
Energy consumption is placing ever greater
demands on most computing tasks, and
multimedia is no exception. Current electronics
can reduce its energy consumption by reducing
the speed at which operations are performed, at
the expense of a degraded user experience. Many
techniques have been proposed for managing this
trade-off, and a rigorous theoretical underpinning
is beginning to emerge [1]--[9].

This letter will describe recent results for a “very
soft real-time” setting, which does not impose
deadlines on individual tasks, but seeks to
minimize the weighted sum of energy
consumption and average delay of each task, as
done in [1]--[6]. This is suitable for, say,
compressing multiple incoming video streams to
disk; the average delay must be kept small to
limit the memory requirements of the
uncompressed video, but no specific deadlines
are imposed. In this context, good performance
for a given average load is possible by selecting
the processing speed to depend only on the
current number of uncompleted tasks.

This raises questions of how well the best speed
scaling algorithms can minimize the energy plus
delay, how the choice of speeds interacts with
the choice of task scheduling, how sophisticated
the hardware support must be, and whether
optimizing this objective causes any undesirable
side-effects. These will be discussed in turn.

2. Efficiency: Dynamic speed scaling
The most flexible model of speed scaling is of a
system that can run at any arbitrary speed, but
consumes more energy when running at a higher
speed. Speed scaling decisions must be made in
real time. The quality of an algorithm can be
measured by comparing it with a hypothetical
algorithm which has the benefit of perfect
prescience, and knows the sizes and arrival times
of all tasks which will ever occur. The
maximum ratio of the cost incurred by the actual
algorithm to that incurred by the optimal
hypothetical algorithm is called the “competitive
ratio”.

In order to balance the cost of delay and the cost
of energy, a natural approach is to set the speed
such that these costs are equal, which we call
“energy proportional” speed scaling. This turns
out [2][3] to be within a constant factor of
optimal with respect of competitive ratio.

Until recently, it was only known that the
prescient algorithm was no more than three times
as good as energy-proportional speed scaling,
meaning that its competitive ratio is between 1
and 3. It has recently been shown [2] that
energy-proportional speed scaling has a
competitive ratio of exactly 2, when used with
the optimal task scheduler, “SRPT” [10].
Moreover, it was shown that no other algorithms,
from a wide class, can guarantee better
performance. When used with a suboptimal
Processor Sharing (PS) scheduler, the
competitive ratio of energy-proportional scaling
is again independent of the number of jobs [2].
This is in contrast to the performance without
speed scaling, and suggests that the choice of
scheduler becomes less important when speed
scaling is allowed.

Although real algorithms cannot know what
work will arrive in future, they can often benefit
from statistical workload models. Specifically,
when work comes from multiple sources, it can
often be modeled as a Poisson process, which is
only slightly more bursty than periodic
workloads.

The optimal speed scaling for PS in this case was
shown in [11] to have a form similar to energy-
proportionality, provided that the power
consumed increases polynomially with the
speed. The optimal speeds for the optimal SRPT
scheduler are difficult to calculate, but [2] shows
that the speeds which are optimal for PS also
work well for SRPT; in fact, both systems have a
constant competitive ratio in the worst case,
without making any assumptions about the
workload. It is uncommon for such worst-case
bounds to exist for algorithms optimized for
statistical workloads, and is made possible in this
case since the optimum is close to energy-
proportionality.

IEEE COMSOC MMTC E-Letter

http://www.comsoc.org/~mmc/ 2/3 Vol.5, No.1, January 2010

3. Simplicity: Static power-aware speeds
It can be costly to change the processing speed
too frequently, and designing a system to work at
a single speed can reduce hardware complexity.
This makes it interesting to see how well a
system can perform if it always operates at a
single speed, or sleeps when it is idle.

When the tasks are scheduled using processor
sharing and the workload is Poisson of a known
average rate, it was proven in [11] that this
simple scheme performs within a factor of 2 of
the optimal (non-prescient) dynamic scheme, and
numerical results suggest that it is actually
within around 10% of the performance.

The optimal SRPT scheduler is again much
harder to study. In [2], an approximately optimal
scheme was studied. The speeds were calculated
separately using “heavy traffic” and “light
traffic” approximations, and the slower of the
two speeds is the appropriate choice. The more
difficult heavy-traffic case built on recent results
for the mean delay under SRPT from [12]. The
optimal strategy depends on how heavy the tail
of the task size distribution is; that is, on how
likely very large tasks are. If the variance of the
task sizes is infinite, then the optimal speeds
depend only on the average load, while if the
variance is finite then the optimal speeds also
depend on the relative frequencies of large and
small jobs. As for PS scheduling, this can be
proven to give delay+energy performance within
a constant factor of the optimal dynamic scheme,
and numerical results indicate that very little is
lost.

4. Robustness
Although static speeds can perform well when
the load is what they were designed for, they can
perform very poorly at lower or higher loads, or
if work is more bursty than the Poisson model.

This is in stark contrast to the stochastically
optimal speed scaling rules for SRPT and PS.
As mentioned above, these schemes achieve
within a constant factor of the performance of
the hypothetical prescient algorithm for arbitrary
workloads, including non-Poisson loads and
loads with a different average amount of work
arriving per second. (This constant factor
depends on the load for which the speeds were
optimized, but not on the actual workload
experienced.) This shows that the main benefit
from the increased complexity of dynamic speed

scaling is robustness, rather than improved
performance under expected conditions.

A different tradeoff can be achieved when the
workload is known to be Poisson (i.e., slightly
bursty), but the average rate is not known.
Setting the speed to equal the number of
unfinished tasks is a robust strategy, in the sense
that it does not rely on knowledge of the average
load. However, it was shown in [11] that if the
power consumption is quadratic in the speed,
then this algorithm has exactly the same cost as
if a static speed had been chosen specifically for
this particular load. That is, the result is
provably within a factor of 2 of the optimal (non-
prescient) scheme, and typically very much
closer. However, this scheme can perform
arbitrarily poorly when arrivals are more bursty
than Poisson.

5. Fairness
If speeds are changed dynamically, then some
tasks are run faster than others. This is not a
problem if all tasks have an equal chance of
being run quickly, but in practice some tasks are
more likely to be run quickly than others. In
particular, the tasks which are run quickly are
those which are run when there are many tasks
present in the system. These tend to be those
tasks which are already treated well by the
scheduler: If only one task is present, then the
scheduler plays no role; it is when many tasks
are present that biases in the scheduler take
effect. For example, SRPT prefers to run short
tasks ahead of long tasks, and speed scaling
introduces a further bias against large tasks.

Using power-aware static speeds gives equal
performance to all tasks, and results in fairness,
but does not provide robustness against
uncertainties in traffic. Processor sharing also
treats all active tasks equally, and remains fair
even when dynamic speed scaling is used.

6. Conclusions
Even delay-sensitive systems can save energy by
running at low speeds during periods of low
load. Techniques have been developed which
provide provable efficiency, robustness and
fairness guarantees. Any pair of these attributes
can be achieved, but no current algorithm is able
to provide all three.

References

IEEE COMSOC MMTC E-Letter

http://www.comsoc.org/~mmc/ 3/3 Vol.5, No.1, January 2010

 [1] Susanne Albers and Hiroshi Fujiwara.
Energy-efficient algorithms for flow time
minimization, in ACM Transactions on
Algorithms, v.3, 2007.

[2] Lachlan L. H. Andrew, Minghong Lin and
Adam Wierman. Optimality, fairness and
robustness in speed scaling designs. In ACM
SIGMETRICS, New York, NY, USA, 2010.
ACM.

[3] Nikhil Bansal, Ho-Leung Chan and Kirk
Pruhs. Speed scaling with an arbitrary power
function. In ACM-SIAM Syposium on Discrete
Algorithms, 2009

[4] Nikhil Bansal, Kirk Pruhs and Cliff Stein.
Speed scaling for weighted flow time. In ACM-
SIAM Symposium on Discrete Algorithms, 2007

[5]Ho-Leung Chan, Jeff Edmonds, Tak-Wah
Lam, Lap-Kei Lee, Alberto Marchetti-
Spaccamela and Kirk Pruhs. Nonclairvoyant
Speed Scaling for Flow and Energy, In
Symposium on Theoretical Aspects of Computer
Science, 2009

[6] Nikhil Bansal, Ho-leung Chan, Tak-wah Lam
and Lap-kei Lee. Scheduling for speed bounded
processors. In International Colloquium on
Automata, Languages and Programming, 2008

[7] Frances Yao, Alan Demers and Scott
Shenker. A scheduling model for reduced CPU
energy. In Proceedings of the IEEE Syposium on

Foundations of Computer Science, 1995.

[8] Kirk Pruhs, Patchrawat Uthaisombut and
Gerhard Woeginger. Getting the best response
for your erg. In ACM Trans. Algorithms, 2008.

[9] Susanne Albers. Energy-Efficient
Algorithms: Algorithmic solutions can help
reduce energy consumption in computing
environs. Communications of the ACM, 2010.

[10] Linus E. Schrage and Louis W. Miller. The
Queue M/G/1 with the Shortest Remaining
Processing Time Discipline. In Operations
Research, 1966.

[11] Adam Wierman, Lachlan L. H. Andrew and
Ao Tang. Power-Aware Speed Scaling in
Processor Sharing Systems, In IEEE INFOCOM,
pages 2007—22015, Rio de Janeiro, Brazil, Apr
2009.

[12] Minghong Lin, Adam Wierman and Bert
Zwart. The average response time in a heavy-
traffic SRPT queue. In Workshop on
MAthematical performance Modeling and
Analysis, 2010.

