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1. Introduction 
Energy consumption is placing ever greater 
demands on most computing tasks, and 
multimedia is no exception.  Current electronics 
can reduce its energy consumption by reducing 
the speed at which operations are performed, at 
the expense of a degraded user experience. Many 
techniques have been proposed for managing this 
trade-off, and a rigorous theoretical underpinning 
is beginning to emerge [1]--[9]. 
 
This letter will describe recent results for a “very 
soft real-time” setting, which does not impose 
deadlines on individual tasks, but seeks to 
minimize the weighted sum of energy 
consumption and average delay of each task, as 
done in [1]--[6].  This is suitable for, say, 
compressing multiple incoming video streams to 
disk; the average delay must be kept small to 
limit the memory requirements of the 
uncompressed video, but no specific deadlines 
are imposed. In this context, good performance 
for a given average load is possible by selecting 
the processing speed to depend only on the 
current number of uncompleted tasks. 
 
This raises questions of how well the best speed 
scaling algorithms can minimize the energy plus 
delay, how the choice of speeds interacts with 
the choice of task scheduling, how sophisticated 
the hardware support must be, and whether 
optimizing this objective causes any undesirable 
side-effects.  These will be discussed in turn. 
 
2. Efficiency:  Dynamic speed scaling 
The most flexible model of speed scaling is of a 
system that can run at any arbitrary speed, but 
consumes more energy when running at a higher 
speed. Speed scaling decisions must be made in 
real time.  The quality of an algorithm can be 
measured by comparing it with a hypothetical 
algorithm which has the benefit of perfect 
prescience, and knows the sizes and arrival times 
of all tasks which will ever occur.  The 
maximum ratio of the cost incurred by the actual 
algorithm to that incurred by the optimal 
hypothetical algorithm is called the “competitive 
ratio”. 
  

In order to balance the cost of delay and the cost 
of energy, a natural approach is to set the speed 
such that these costs are equal, which we call 
“energy proportional” speed scaling.  This turns 
out [2][3] to be within a constant factor of 
optimal with respect of competitive ratio. 
 
Until recently, it was only known that the 
prescient algorithm was no more than three times 
as good as  energy-proportional speed scaling, 
meaning that its competitive ratio is between 1 
and 3. It has recently been shown [2] that 
energy-proportional speed scaling has a 
competitive ratio of exactly 2, when used with 
the optimal task scheduler, “SRPT” [10].  
Moreover, it was shown that no other algorithms, 
from a wide class, can guarantee better 
performance. When used with a suboptimal 
Processor Sharing (PS) scheduler, the 
competitive ratio of energy-proportional scaling 
is again independent of the number of jobs [2].  
This is in contrast to the performance without 
speed scaling, and suggests that the choice of 
scheduler becomes less important when speed 
scaling is allowed. 
 
Although real algorithms cannot know what 
work will arrive in future, they can often benefit 
from statistical workload models.  Specifically, 
when work comes from multiple sources, it can 
often be modeled as a Poisson process, which is 
only slightly more bursty than periodic 
workloads. 
 
The optimal speed scaling for PS in this case was 
shown in [11] to have a form similar to energy-
proportionality, provided that the power 
consumed increases polynomially with the 
speed.  The optimal speeds for the optimal SRPT 
scheduler are difficult to calculate, but  [2] shows 
that the speeds which are optimal for PS also 
work well for SRPT; in fact, both systems have a 
constant competitive ratio in the worst case, 
without making any assumptions about the 
workload.  It is uncommon for such worst-case 
bounds to exist for algorithms optimized for 
statistical workloads, and is made possible in this 
case since the optimum is close to energy-
proportionality. 
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3. Simplicity: Static power-aware speeds 
It can be costly to change the processing speed 
too frequently, and designing a system to work at 
a single speed can reduce hardware complexity.  
This makes it interesting to see how well a 
system can perform if it always operates at a 
single speed, or sleeps when it is idle. 
 
When the tasks are scheduled using processor 
sharing and the workload is Poisson of a known 
average rate, it was proven in [11] that this 
simple scheme performs within a factor of 2 of 
the optimal (non-prescient) dynamic scheme, and 
numerical results suggest that it is actually 
within around 10% of the performance. 
 
The optimal SRPT scheduler is again much 
harder to study.  In [2], an approximately optimal 
scheme was studied.  The speeds were calculated 
separately using “heavy traffic” and  “light 
traffic” approximations, and the slower of the 
two speeds is the appropriate choice.  The more 
difficult heavy-traffic case built on recent results 
for the mean delay under SRPT from [12].  The 
optimal strategy depends on how heavy the tail 
of the task size distribution is; that is, on how 
likely very large tasks are.  If the variance of the 
task sizes is infinite, then the optimal speeds 
depend only on the average load, while if the 
variance is finite then the optimal speeds also 
depend on the relative frequencies of large and 
small jobs.  As for PS scheduling, this can be 
proven to give delay+energy performance within 
a constant factor of the optimal dynamic scheme, 
and numerical results indicate that very little is 
lost. 
 
4. Robustness 
Although static speeds can perform well when 
the load is what they were designed for, they can 
perform very poorly at lower or higher loads, or 
if work is more bursty than the Poisson model. 
 
This is in stark contrast to the stochastically 
optimal speed scaling rules for SRPT and PS.  
As mentioned above, these schemes achieve 
within a constant factor of the performance of 
the hypothetical prescient algorithm for arbitrary 
workloads, including non-Poisson loads and 
loads with a different average amount of work 
arriving per second.  (This constant factor 
depends on the load for which the speeds were 
optimized, but not on the actual workload 
experienced.)  This shows that the main benefit 
from the increased complexity of dynamic speed 

scaling is robustness, rather than improved 
performance under expected conditions. 
 
A different tradeoff can be achieved when the 
workload is known to be Poisson (i.e., slightly 
bursty), but the average rate is not known.  
Setting the speed to equal the number of 
unfinished tasks is a robust strategy, in the sense 
that it does not rely on knowledge of the average 
load.  However, it was shown in [11] that if the 
power consumption is quadratic in the speed, 
then this algorithm has exactly the same cost as 
if a static speed had been chosen specifically for 
this particular load.  That is, the result is 
provably within a factor of 2 of the optimal (non-
prescient) scheme, and typically very much 
closer.  However, this scheme can perform 
arbitrarily poorly when arrivals are more bursty 
than Poisson. 
 
5. Fairness 
If speeds are changed dynamically, then some 
tasks are run faster than others.  This is not a 
problem if all tasks have an equal chance of 
being run quickly, but in practice some tasks are 
more likely to be run quickly than others.  In 
particular, the tasks which are run quickly are 
those which are run when there are many tasks 
present in the system.  These tend to be those 
tasks which are already treated well by the 
scheduler: If only one task is present, then the 
scheduler plays no role; it is when many tasks 
are present that biases in the scheduler take 
effect.  For example, SRPT prefers to run short 
tasks ahead of long tasks, and speed scaling 
introduces a further bias against large tasks. 
 
Using power-aware static speeds gives equal 
performance to all tasks, and results in fairness, 
but does not provide robustness against 
uncertainties in traffic. Processor sharing also 
treats all active tasks equally, and remains fair 
even when dynamic speed scaling is used.  
 
6. Conclusions 
Even delay-sensitive systems can save energy by 
running at low speeds during periods of low 
load.    Techniques have been developed which 
provide provable efficiency, robustness and 
fairness guarantees.  Any pair of these attributes 
can be achieved, but no current algorithm is able 
to provide all three. 
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