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Abstract—Energy consumption imposes a significant cost for
data centers; yet much of that energy is used to maintain
excess service capacity during periods of predictably low load.
Resultantly, there has recently been interest in developing designs
that allow the service capacity to be dynamically resized to match
the current workload. However, there is still much debate about
the value of such approaches in real settings. In this paper, we
show that the value of dynamic resizing is highly dependent on
statistics of the workload process. In particular, both slow time-
scale non-stationarities of the workload (e.g., the peak-to-mean
ratio) and the fast time-scale stochasticity (e.g., the burstiness of
arrivals) play key roles. To illustrate the impact of these factors,
we combine optimization-based modeling of the slow time-scale
with stochastic modeling of the fast time scale.

I. INTRODUCTION

Energy costs represent a significant, and growing, fraction
of a data center’s budget. Hence there is a push to improve
the energy efficiency of data centers, both in terms of the
components (servers, disks, network [24], [6], [8], [14]) and
the algorithms [4], [11], [10], [22]. One specific aspect of data
center design that is the focus of this paper is dynamically
resizing the service capacity of the data center so that during
periods of low load some servers are allowed to enter a power-
saving mode (e.g., go to sleep or shut down).

The potential benefits of dynamic resizing have been a point
of debate in the community [18], [11], [25]. On one hand,
it is clear that, because data centers are far from perfectly
energy proportional, significant energy is used to maintain
excess capacity during periods of predictably low load when
there is a diurnal workload with a high peak-to-mean ratio. On
the other hand, there are also significant costs to dynamically
adjusting the number of active servers. These costs come in
terms of the engineering challenges in making this possible
[13], [27], [5], as well as the latency, energy, and wear-and-
tear costs of the actual “switching” operations involved [7],
[11], [16].

The challenges for dynamic resizing highlighted above have
been the subject of significant research. At this point, many of
the engineering challenges associated with facilitating dynamic
resizing have been resolved, e.g., [13], [27], [5]. Additionally,
the algorithmic challenge of deciding, without knowledge of
the future workload, whether to incur the significant “switching
costs” associated with changing the available service capacity
has been studied in depth and a number of promising algo-
rithms have emerged [22], [3], [11], [15].

However, despite this body of work, the question of char-
acterizing the potential benefits of dynamic resizing has still
not been properly addressed.

The perspective of this paper is that, apart from engineering
challenges, the key determinant of whether dynamic resizing
is valuable is the workload, In particular, a key observation,

which is the starting point for our work, is that there are
two factors of the workload which provide dynamic resizing
potential savings:

(i) Non-stationarities at a slow time-scale, e.g., diurnal

workload variations.
(ii) Stochastic variability at a fast time-scale, e.g., the bursti-
ness of request arrivals.

To this point, we are not aware of any work characterizing
the benefits of dynamic resizing that captures both of these
features. There is one body of literature which provides
algorithms that take advantage of (i), e.g., [11], [10], [22],
[3]. This work tends to use an optimization-based approach to
develop dynamic resizing algorithms. There is another body
of literature which provides algorithms that take advantage of
(i), e.g., [15], [16]. This work tends to assume a stationary
queueing model with Poisson arrivals to develop dynamic
resizing algorithms.

The first contribution of the current paper is to provide an
analytic framework that captures both effects (i) and (ii). We
accomplish this by using an optimization framework at the
slow time-scale (see Section II), which is similar to that of
[22], and combining this with stochastic network calculus and
large deviations modeling for the fast time-scale (see Section
IIT), which allows us to study a wide variety of underlying
arrival processes. We consider both light-tailed models with
various degrees of burstiness and heavy-tailed models that
exhibit self-similarity.

Using this modeling framework, we are able to provide
both analytic and numerical results that yield new insight
into the potential benefits of dynamic resizing (see Section
IV). Specifically, we use trace-driven numerical simulations to
study (i) the role of burstiness for dynamic resizing, (ii) the
role of the peak-to-mean ratio for dynamic resizing, (iii) the
role of the SLA for dynamic resizing, and (iv) the interaction
between (i), (ii), and (iii). The key realization is that each of
these parameters are extremely important for determining the
value of dynamic resizing. In particular, for any fixed choices
of two of these parameters, the third can be chosen so that
dynamic resizing does or does not provide significant cost
savings for the data center. Thus, performing a detailed study
of the interaction of these factors is important. To that end,
Figures 10-12 provide concrete illustrations of which settings
of peak-to-mean ratio, burstiness, and SLAs dynamic resizing
is and is not valuable.

There are some interesting facts about these parameters
individually that our case studies uncover. Two important
examples are the following. First, while one might expect
that increased burstiness provides increased opportunities for
dynamic resizing, it turns out the burstiness at the fast time-
scale actually reduces the potential cost savings achievable via



dynamic resizing. Second, it turns out the impact of the SLA
can be quite different depending on whether the arrival process
is heavy- or light-tailed. In particular, as the SLA becomes
more strict, the cost savings possible via dynamic resizing
under heavy-tailed arrivals decreases quickly; however, the
cost savings possible via dynamic resizing under light-tailed
workloads is unchanged.

In addition to detailed case studies, we provide analytic
results that support many of the insights provided by the nu-
merics. In particular, Theorems 1 and 2 provide monotonicity
and scaling results for dynamic resizing in the case of Poisson
arrivals and heavy-tailed, self-similar arrivals. Due to page
limitation, all proofs are omitted in the paper and the full
verion is available as the technical report [28].

II. SLow TIME-SCALE MODEL

In this section and the one that follows, we introduce our
model. We start with the “slow time-scale model”. This model
is meant to capture what is happening at the time-scale of the
data center control decisions, i.e., at the time-scale which the
data center is willing to adjust its service capacity. For many
reasons, this is a much slower time-scale than the time-scale at
which requests arrive to the data center. We provide a model
for this “fast time-scale” in the next section.

A. The Workload

At this time-scale, our goal is to provide a model which
can capture the impact of diurnal non-stationarities in the
workload. To this end, we consider a discrete-time model such
that there is a time interval of interest which is evenly divided
into “frames” k € {1,...,K}. In practice, the length of a
frame could be on the order of 5-10 minutes, whereas the
time interval of interest could be as long as a month/year. The
mean arrival rate to the data center in frame k is denoted by A,
and non-stationarities are captured by allowing different rates
during different frames. Although we could allow \j to have
a vector value to represent more than one type of workload as
long as the resulting cost function is convex in our model, we
assume \j to have a scalar value in this paper to simplify the
presentation. Because the request inter-arrival times are much
shorter than the frame length, typically in the order of 1-10
seconds, capacity provisioning can be based on the average
arrival rate during a frame.

B. The Data Center Cost Model

The model for data center costs focuses on the server costs
of the data center, as minimizing server energy consumption
also reduces cooling and power distribution costs. We model
the cost of a server by the operating costs incurred by an
active server, as well as the switching cost incurred to toggle
a server into and out of a power-saving model (e.g., off/on or
sleeping/waking). Both components can be assumed to include
energy cost, delay cost, and wear-and-tear cost. See [22]
and [21] for further discussion of the model.

Note that this model ignores many issues surrounding re-
liability and availability, which are key components of data
center service level agreements (SLAs). In practice, a solution
that toggles servers must still maintain the reliability and
availability guarantees; however this is beyond the scope of
the current paper. See [27] for a discussion.

The Operating Cost: The operating costs are modeled by
a convex function f(\;y), which is the same for all the
servers, where \; j, denotes the average arrival rate to server ¢
during frame k. The convexity assumption is quite general and
captures many common server models. One example, which
we consider in our numeric examples later, is to say that the
operating costs are simply equal to the energy cost of the
server, i.e., the energy cost of an active server handling arrival
rate \; x. This cost is often modeled using an affine function
as follows

f(Nik) =eo+eilig, (D

where ey and e; are constants [1], [6], [19]. Note that when
servers use dynamic speed scaling, if the energy cost is mod-
eled as polynomial in the chosen speed, the cost f(-) remains
convex. In practice, we expect that f(-) to be empirically
measured by observing the system over time.

The Switching Cost: The switching cost, denoted by S,
models the cost of toggling a server back-and-forth between
active and power-saving models. The switching cost includes
the costs of the energy used toggling a server, the delay in
migrating connections/data when toggling a server, and the
increased wear-and-tear on the servers toggling.

C. The Data Center Optimization

Given the cost model above, the data center has two control
decisions at each time: determining ny, the number of active
servers in every time frame, and assigning arriving jobs to
servers, i.e., determining \; ;. such that E?:kl)‘hk = A\. All
servers are assumed to be homogeneous with constant rate
capacity ¢ > 0. Modeling heterogeneous servers is also
possible, as in [21]; however we limit the discussion in this
paper to the homogeneous setting for clarity.

The goal of the data center is to determine nj and \; j to
minimize the cost incurred during [0, K], which is modeled as
follows:

K K
min > Y fAik) + B (nk —np-1)* 2)
k=1 i=1 k=1
0< Nig <Ak
s.t. YAk = Ak 3)
P(Dy, > D) <&,

where the final constraint is introduced to capture the SLA of
the data center. We use Dj, to represent the steady-state delay
during frame k, and (D, €) to represent an SLA of the form
“the probability of a delay larger than D must be bounded by
probability £”.

This model generalizes the data center optimization problem
from [22] by accounting for the additional SLA constraint.
The specific values in this constraint are determined by the
stochastic variability at the fast time-scale. In particular, we
derive (for a variety of workload models) a sufficient constraint

ng > Cr(D:E) such that
w
Cr(D,& _
nk_k(u’g):>IF’(Dk>D)§€. 4)

Here, p is the constant rate capacity of each server and
Ck(D,é) is to be determined for each considered arrival



model. One should interpret C(D, ¢) as the overall effective
capacity/bandwidth needed in the data center such that the
SLA delay constraint is satisfied within frame k.

Note that the new constraint is only sufficient for the original
SLA constraint. The reason is that Cj (D, &) is computed, in
the next section, from upper bounds on the distribution of the
transient delay within a frame.

With the new constraint, however, the optimization prob-
lem in (2) can be considerably simplified. Indeed, note that
ny is fixed during each time frame %k and the remaining
optimization for A;j is convex. Thus, we can simplify the
form of the optimization problem by using the fact that
the optimal dispatching strategy A7 is load balancing, i.e.,
A = A5, = ... = Ai/nyg. This decouples dispatching A},
from capaéity planning ny, and so Egs. (2)-(3) become: ’

K K

minz nef(A\e/ne) + 83 Z(nk —n—1)t (B
k=1 k=1

s.t. ng > 7Ck(D’é) .

Note that (5) is a convex optimization, since ny f(Ax/n)
is the perspective function of the convex function f(-).

Note that the key difference between the optimization above,
and that of [22], is the SLA constraint. It is this constraint
that provides a bridge between the slow time-scale and fast
time-scale models. Specifically, the fast time-scale model uses
large deviations and stochastic network calculus techniques to
calculate C (D, ).

D. Algorithms for Dynamic Resizing

Though the Data Center Optimization Problem described
above is convex, in practice it must be solved online, i.e., with-
out knowledge of the future workload. Thus, in determining
ng, the algorithm may not have access to the future arrival
rates \; for [ > k. This fact makes developing algorithms
for dynamic resizing challenging. However, progress has been
made recently [22], [23].

Deriving algorithms for this problem is not the goal of
the current paper. Thus, we make use of a recent algorithm
called Lazy Capacity Provisioning (LCP) [22]. We choose
LCP because of the strong analytic performance guarantees it
provides — LCP provides cost within a factor of 3 of optimal
for any (even adversarial) workload process.

LCP works as follows. Let (nf,,...,nk,) be the solution
vector to the following optimization problem

k k
minanf()\l/nl) + 62(”[ - nl71)+

=1 =1

Ci(D,&
s.t.anM , ng=20.
Similarly, let (ngl, e ,ngk) be the solution vector to the
following optimization problem
k k
min » ngf\/m) + B Y (m1 — )t
1=1 1=1
Ciy(D,&
s.t.mzM , ng=20.

Denote (n)? = max(min(n,b),a) as the projection of n into
the closed interval [a,b]. Then LCP can be defined using nf ,
and n,lf i as follows. Informally, LCP stays “lazily” between

the upper bound ng . and the lower bound nﬁ & in all frames.
Lazy Capacity Provisioning, LCP

Let nt¢F = (nfCP ... nLCT) denote the vector of active
servers under LCP. This vector can be calculated online using
the following forward recurrence relation:

k<0
1<k<K.

0,
”ﬁcp = { LOP\™ ook

(nk—l )nLy ’

k,k

Note that, in [22], LCP is introduced and analyzed for
the optimization from Eq. (5) without the SLA constraint.
However, it is easy to see that the algorithm and performance
guarantee extends to our setting. Specifically, the guarantees
on LCP hold in our setting because the SLA constraint can
be removed by defining the operating cost to be oo instead of
nif(Ak/nk) when ny, < Cr(D, €)/u.

A last point to highlight about LCP is that, as described,
it does not use any predictions about the workload in future
frames. Such information could clearly be beneficial, and can
be incorporated into LCP if desired, see [22].

III. FAST TIME-SCALE MODEL

Given the model of the slow time-scale in the previous
section, we now zoom in to give a description for the fast
time-scale model. By “fast” time-scale, we mean the time-scale
at which requests arrive, as opposed to the “slow” time-scale
at which dynamic resizing decisions are made by the data
center. To model the fast time-scale, we evenly break each
frame from the slow time-scale into “slots” ¢ € {1,...,U},
such that frame_length = U - slot_length.

We consider a variety of models for the workload process
at this fast time-scale, including both light-tailed models with
various degrees of burstiness, as well as heavy-tailed models
that exhibit self-similarity. In all cases, our assumption is that
the workload is stationary over the slots that make up each
time frame. ~

The goal of this section is to derive the value of Cj(D,¢)
in the constraint ng > CeDE) from Eq. (4), and thus
enable an interface between the fast and slow time-scales by
parameterizing the Data Center Optimization Problem from
Eq. (5) for a broad range of workloads.

Note that throughout this section we suppress frame’s sub-
script k for ng, \i, Ck, and Dy, and focus on a generic frame.

Our approach for deriving the SLA constraint for the Data
Center Optimization Problem is to first derive an ‘aggregation
property’ which allows the data center to be modeled as a
single server, and to then derive bounds on the distribution of
the transient delay under a variety of arrival processes.

A. An Aggregation Property

Note that, if the arrival process were modeled as Poisson
and job sizes were exponential, then an “aggregation property”
would be immediate, since the response time distribution only
depends on the load. Hence the SLA could be derived by con-
sidering a single server. Outside of this simple case, however,
we need to derive a suitable single server approximation.



The aggregation result that we derive and apply is formu-
lated in the framework of stochastic network calculus [9], and
so we begin by briefly introducing this framework.

Denote the cumulative arrival (workload) process at the data
center’s dispatcher by A(t). That is, foreachslott = 1,...,U,
A(t) counts the total number of jobs arrived in the time
interval [0,¢]. Depending on the total number n of active
servers the arrival process is dispatched into the sub-arrival
processes A;(t) with ¢ = 1,...,n. The cumulative response
processes from the servers are denoted by R;(t), whereas
the total cumulative response process from the data center
is denoted by R(t) = ), R;(t). All arrival and response
processes are assumed to be non-negative, non-decreasing,
and left-continuous, and satisfy the initial condition A(0) =
R(0) = 0. For convenience we use the bivariate extensions
A(s,t) := A(t) — A(s) and R(s,t) := R(t) — R(s).

The service provided by a server is modeled in terms of
probabilistic lower bounds using the concept of a stochastic
service process. This is a bivariate random process S(s,?)
which is non-negative, non-decreasing, and left-continuous.
Formally, a server is said to guarantee a (stochastic) service
process S(s,t) if for any arrival process A(t) the correspond-
ing response process R(t) from the server satisfies for all t > 0

R(t) > A% S(t) ©6)

where ‘x’ denotes the min-plus convolution operator, i.e., for
two (random) processes A(t) and S(s,t),

AxS(t) = ogit {A(s) + S(s,t)} . ()
We are now ready to state the aggregation property. The
proof is deferred to the technical report [28].

Lemma 1. Consider an arrival process A(t) which is dis-
patched to n servers. Each server i is work-conserving with
constant rate capacity | > 0. Arrivals are dispatched deter-
ministically across the servers such that each server i receives
a fraction % of the arrivals. Then, the system has service
process S(s,t) = nu(t — s), i.e., R(t) > AxS(t).

B. Arrival Processes

Now that we can reduce the study of the multi-server system
to the study of a single server system using Lemma 1, we can
move to characterizing the impact of the arrival process on the
SLA constraint in the Data Center Optimization Problem.

In particular, the next step in deriving the SLA constraint
n > CD:8) s 1o derive a bound on the distribution of the
delay at the virtual server with arrival process A(t) and service
process S(s,t) = C(D,&)(t — s), i.e.,

IF’(D(t) > D) <e. (8)
It is importation to observe that the violation probability &
holds for the fransient delay process D(t), which is defined
as D(t) :=inf {d : A(t — d) < R(t)}, and which models the
delay spent in the system by the job leaving the system, if
any, at time ¢. However, the violation probability ¢ is derived
so that it is time invariant, which implies that it bounds the
distribution of the stead-state delay D = lim;_,, D(t) as well.
Therefore, the value of C'(D,&) can be finally computed by
solving the equation € = £.

In the following, we follow the outline above to compute
C(D, ¢) for light- and heavy-tailed arrival processes. Interested
readers may refer to Figure 1 in the technical report [28],
which depicts examples of the three types of arrival processes
we considered in 1 frame.

1) Light-tailed Arrivals: We consider two examples of
light-tailed arrival processes: Poisson and Markov-Modulated
(MM) processes. The latter is particularly interesting since it
enables the adjustment of the burstiness level.

Poisson Arrivals: We start with the case of Poisson pro-
cesses, which are characterized by a low level of burstiness,
due to the independent increments property.

Let A(t) be a Poisson process with some rate A > 0, and
define

6* := sup {9 >0: A (e —1) < C’(D,s)} ) 9)

0

Then a bound on the transient delay process is given for all
t > 0 by (see [12])
P(D(t) > D) < e ¥ CPAD — | (10)

Solving for C'(D, £) by setting the violation probability ¢ equal
to £ yields the implicit solution

_ 1

Using the monotonicity of the function % (¢? —1) in 6 >
0, and setting K = —li%s, we immediately get the explicit
solution
C(D,&) = S (11)
" log(14+ K)©

The alternative to using Eq. (10) is to use an exact result
for the steady-state delay distribution at an M/D/1 queue. The
advantage of the bound from Eq. (10), however, is that it
readily leads to qualitative properties on the scaling of the
capacity C(D, &) (see Theorem 1); in addition, the bound is
tight as shown in [12]. For these reasons we shall use the
bound from Eq. (11) throughout.

Markov-modulated Arrivals: Consider now the case of
Markov-Modulated (MM) processes which, unlike the Poisson
processes, do not necessarily have independent increments.
The key feature for the purposes of this paper is that the
burstiness of MM processes can be arbitrarily adjusted.

We consider a simple MM processes with two states. Let a
discrete and homogeneous Markov chain z(s) with two states
denoted by ‘low’ and ‘high’, and transition probabilities pj,
and p; between the ‘low’ and ‘high’ states, and vice-versa,
respectively. Assuming that a source produces at some constant
rates A; > 0 and A, > )\; while the chain z(s) is in the ‘low’
and ‘high’ states, respectively, then the corresponding MM
cumulative arrival process is

t
A(t) = Z (Alj{x(s)z‘low/} + )\hI{x(s)=‘high/}) ; (12)

s=1

where [ {.g is the indicator function. The average rate of A(t)
is A= L)\ 4+ Bh_},.

prtpi Prtpi .

To adjust the burstiness level of A(t) we introduce the

parameter T := p% + i, which is the average time for
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the Markov chain z(s) to change states twice. We note that
the higher the value of T is, the higher the burstiness level
becomes (the time periods whilst x(s) spends in the ‘high’ or
‘low’ states get longer and longer).

To compute the delay bound let us construct the matrix

v(9) = ( (1—pp)e™ ) |

pref™
for some # > 0 and consider its spectral radius

(1= pr)ef™ + (1 — p)e™ + VA
2 )

where A = (1= p)e? — (1= p)e? ")+ dpy e+,
Let also

prefrn
(1 _ pl)ee)‘h

A(0) =

prefrn
AO) = (1 = pp)e?™’

The two terms are the ratios of the elements of the right-
eigenvector of the matrix W(6). Also, let

K(0) := max { PEOY

AO) — (1 — pp)e?™ }

1 _
0" :=sup {9 >0: glog)\(G) < C’(D,é)} .

Then a bound on the transient delay process immediately fol-
lows from the corresponding backlog bound (see [9], pp. 340)
because of the constant rate service assumption

P(D(t)> D) < K(67)e " PP = .

Setting the violation probability € equal to ¢ yields the implicit
solution B
L T
9D K0
C. Heavy-tailed and Self-similar Arrivals

C(D,e) = (13)

We now consider the class of heavy-tailed and self-similar
arrival processes. These processes are fundamentally different
from light-tailed processes in that deviations from the mean
increase in time and decay in probability as a power law, i.e.,
more slower than the exponential.

As a concrete example of heavy-tailed and self-similar
arrivals, consider the case of a source generating jobs in every
slot according to i.i.d. Pareto random variables X; with tail
distribution P (X; > z) = (x/b)~* for all x > b, where
1 < @ < 2. X has finite mean E[X] = ab/(a—1) and infinite
variance. The bound on the transient delay is then [20]

11—«
=,

1 a—1
ay «a
(a—1)log~y (-

IF’(D(t) > D) < K (C(D,&)D)

(282 5y

(14)

where K = inf c(b,s)

1<y<=—5x2

1000 E
800

S e00f 1

< 400} 1

200 b

0 1 L I ! L
0 100 200 300 400 500 600 700
Time frame k (10 mins)
(b) MSR

Illustration of the traces used for numerical experiments.

Setting the violation probability ¢ equal to &, we get the
implicit solution (let C'(+) := C(D, €))

inf 7 - =zD* b,
1<y< S {C(')al (C() =7A) logy =" }
15)
The alternative to using Eq. (14) is to use large deviations
results for the steady-state delay distribution [26]:

ba—l
C—-) «
where f(z) ~ g(x) stands for lim, ,o f(z)/g(z) = 1.
Such asymptotic approximations, however, can be inaccurate
for typical D of interest [2]. Hence, we limit our focus to
Eq. (14), which provides the state-of-the-art upper bound on

the delay distribution in non-asymptotic regimes, though the
same qualitative results follow when using Eq. (16).

(cD)'™

IE”(D > D) ~ (16)

IV. CASE STUDIES

Given the model described in the previous two sections, we
are now ready to explore the potential of dynamic resizing
in data centers, and how this potential depends on the inter-
action between non-stationarities at the slow time-scale and
burstiness/self-similarity at the fast time-scale. Our goal in this
section is to provide insight into which workloads dynamic re-
sizing is valuable for. To accomplish this, we provide a mixture
of analytic results and trace-driven numerical simulations in
this section.

It is important to note that the case studies that follow
depend fundamentally on the modeling performed so far in the
paper, which allows us to capture and adjust independently,
both fast time-scale and slow time-scale properties of the
workload. The generality of our modeling framework enables
thus a rigorous study of the impact of the workload on value
of dynamic resizing.

A. Setup

Throughout the experimental setup, our aim is to choose
parameters that provide conservative estimates of the case
savings from dynamic resizing. Thus, one should interpret the
savings shown as a lower-bound on the potential savings.

Model Parameters: The time frame for adapting the number
of servers nj is assumed to be 10 min, and each time slot
is assumed to be 1 s, i.e., U = 600. When not otherwise
specified, we assume the following parameters for the data
center SLA agreement: the delay upper bound D = 200ms,
and the delay violation probability & = 1073,

The cost is characterized by the two parameters of ey and ey,
and the switching cost 3. We choose units such that the fixed
energy cost is ey = 1. The load-dependent energy consumption
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is set to e; = 0, because the energy consumption of current
servers with typical utilization level is dominated by the fixed
costs [1], [6], [19]. Note that adjusting ey and e; changes the
magnitude of potential savings under dynamic resizing, but
does not affect the qualitative conclusions about the impact
of the workload. So, due to space constraints, we fix these
parameters during the case studies.

The normalized switching cost 5/eqg measures the duration a
server must be powered down to outweigh the switching cost.
Unless otherwise specified, we use = 6, which corresponds
to the energy consumption for one hour (six frames). This was
chosen as an estimate of the time a server should sleep so that
the wear-and-tear of power cycling matches that of operating
(71, [22].

Workload Information: The workloads for these experi-
ments are drawn from two real-world data center traces. The
first set of traces is from Hotmail, a large email service running
on tens of thousands of servers. We used traces from 8 such
servers over a 48-hour period, starting at midnight (PDT) on
Monday August 4 2008 [27]. The second set of traces is taken
from MSR Cambridge. The traced period was 1 week starting
from 5PM GMT on the 22nd February 2007 [27]. Thus, these
activity traces represent a service used by millions of users
and a small service used by hundreds of users. The traces are
normalized as peak load Apeqr = 1000, and are visualized in
Figure 1. Both sets of traces show strong diurnal properties and
have peak-to-mean ratios (PMRs) of 1.64 and 4.64 for Hotmail
and MSR respectively. Loads were averaged over disjoint 10
minute frames.

The traces provide information for the slow time-scale
model. To parameterize the fast time-scale model, we adapt
the workload based on the mean arrival rate in each frame,
i.e., \. To parameterize the MM processes, we take A\; = 0.5,
An = 2, and we adjust the burst parameter 7" while keeping
A fixed for each process. To parameterize the heavy-tailed
processes, we adjust the tail index o for each process, while
keeping the mean fixed at A. Unless otherwise stated, we fix
a=15and T =1

Comparative Benchmark: We contrast three designs: (i) the
optimal dynamic resizing, (ii) dynamic resizing via LCP, and
(iii) the optimal ‘static’ provisioning.

The results for the optimal dynamic resizing should be
interpreted as characterizing the potential of dynamic resizing.
But, realizing this potential is a challenge that requires both
sophisticated online algorithms and excellent predictions of
future workloads.'

The results for LCP should be interpreted as one example of
how much of the potential for dynamic resizing can be attained
with an online algorithm.

The results for the optimal static provisioning should be
taken as an optimistic benchmark for today’s data centers,
which typically do not use dynamic resizing. We consider the
cost incurred by an optimal static provisioning scheme that
chooses a constant number of servers that minimizes the costs
incurred based on full knowledge of the entire workload. This
policy is clearly not possible in practice, but it provides a very
conservative estimate of the savings from right-sizing since it
uses perfect knowledge of all peaks and eliminates the need
for overprovisioning in order to handle the possibility of flash
crowds or other traffic bursts.

B. Results

Our experiments are organized to illustrate the impact of
a wide variety of parameters on the cost savings attainable
via dynamic resizing. The goal is to understand for which
workloads dynamic resizing can provide large enough cost
savings to warrant the extra implementation complexity.

The Role of Burstiness: A key goal of our model is to
expose the impact of burstiness on dynamic resizing, and so
we start by focusing on that parameter. Recall that we can
vary burstiness in both the light-tailed and heavy-tailed settings
using 7" for MM arrivals and o for heavy-tailed arrivals.

A priori, one may expect that burstiness can be beneficial
for dynamic resizing, since it indicates that there are periods of
low load during which energy may be saved. However, this is

"Note that short-term predictions of workload demand within 24 hours can
be quite accurate [17], [19].
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not actually true since resizing decisions must be made at the
slow time-scale while burstiness is a characteristic of the fast
time-scale. Thus, burstiness is actually detrimental for dynamic
resizing, since it means that the provisioning decisions made
on the slow time-scale must be made with the bursts in mind,
which results in an larger number of servers needed to be
provisioned for the same average workload. This effect can
be seen in Figures 2 and 3, which show the optimal dynamic
provisioning as « and 7" vary. Recall that burstiness increases
as « decreases and T’ increases.

The larger provisioning created by increased burstiness
manifests itself in the cost savings attainable through dynamic
capacity provisioning as well. This is illustrated in Figure
4, which shows the cost savings of the optimal dynamic
provisioning as compared to the optimal static provisioning
for varying o and T" as a function of the switching cost 3.

Interestingly, though Figure 4 shows that the potential of
dynamic resizing is limited by increased burstiness, it turns out
that the relative performance of LCP is not hurt by burstiness.
This is illustrated in Figure 5, which shows the percent of
the optimal cost savings that LCP achieves. Importantly, it is
nearly perfectly flat as the burstiness is varied.

The Role of the Peak-to-Mean Ratio: The impact of the
peak-to-mean ratio on the potential benefits of dynamic re-
sizing is quite intuitive: if the peak-to-mean ratio is high,
then there is more opportunity to benefit from dynamically
changing capacity. Figure 6 illustrates this well-known effect.
The workload for the figure is generated from the traces by
scaling A, as A = ¢(Ag)7, varying + and adjusting ¢ to keep
the mean constant.

In addition to illustrating that a higher peak-to-mean ratio
makes dynamic resizing more valuable, Figure 6 also high-
lights that there is a strong interaction between burstiness and
the peak-to-mean ratio, where if there is significant burstiness
the benefits that come from a high peak-to-mean ratio may be
diminished considerably.

The Role of the SLA: The SLA plays a key role in the
provisioning of a data center. Here, we show that the SLA
can also have a strong impact on whether dynamic resizing is
valuable, and that this impact depends on the workload. Recall
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that in our model the SLA consists of a violation probability
€ and a delay bound D. We deal with each of these in turn.

Figures 7 and 8 highlight the role the violation probability
€ has on the provisioning of nj; under the optimal dynamic
resizing in the cases of heavy-tailed and MM arrivals. Interest-
ingly, we see that there is a significant difference in the impact
of £ depending on the arrival process. As & gets smaller in
the heavy-tailed case the provisioning gets significantly flatter,
until there is almost no change in nj over time. In contrast, no
such behavior occurs in the MM case and, in fact, the impact
of £ is quite small. This difference is a fundamental effect of
the “heaviness” of the tail of the arrivals, i.e., a heavy tail
requires significantly more capacity in order to counter a drop
in €.

This contrast between heavy- and light-tailed arrivals is
also evident in Figure 9, which highlights the cost savings
from dynamic resizing in each case as a function of &.
Interestingly, the cost savings under light-tailed arrivals is
largely independent of £, while under heavy-tailed arrivals the
cost savings is monotonically increasing with £.

When is Dynamic Resizing Valuable?: Now, we are finally
ready to address the question of when (i.e., for what work-
loads) is dynamic resizing valuable. To address this question,
we must look at the interaction between the peak-to-mean
ratio and the burstiness. Our goal is to provide a concrete
understanding of for which (peak-to-mean, burstiness, SLA)
settings the potential savings from dynamic resizing is large
enough to warrant implementation. Figures 10-12 focus on
this question. Our hope is that these figures highlight that a
precursor to any debate about the value of dynamic resizing
must be a joint understanding of the expected workload
characteristics and the desired SLA, since for any fixed choices
of two of these parameters (peak-to-mean, burstiness, SLA),
the third can be chosen so that dynamic resizing does or does
not provide significant cost savings for the data center.

Starting with Figure 10, we see a set of curves for different
levels of cost savings. The interpretation of the figures is that
below (above) each curve the savings from optimal dynamic
resizing is smaller (larger) than the specified value for the
curve. Thus, for example, if the peak-to-mean ratio is 2 in the
Hotmail trace, a 10% cost savings is possible for all levels of
burstiness, but a 30% cost savings is only possible for o >
1.5. However, if the peak-to-mean ratio is 3, then a 30% cost
savings is possible for all levels of burstiness. It is difficult to
say what peak-to-mean and burstiness settings are “common”
for data centers, but as a point of reference, one might expect
large-scale services to have a peak-to-mean ratio similar to
that of the Hotmail trace, i.e., around 1.5-2.5; and smaller
scale services to have peak-to-mean ratios similar to that of
the MSR trace, i.e., around 4-6. The burstiness also can vary
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widely, but as a rough estimate, one might expect o to be
around 1.4-1.6.

Of course, many of the settings of the data center will
effect the conclusions illustrated in Figure 10. Two of the most
important factors to understand the effects of are the switching
cost, 3, and the SLA, particularly &.

Figure 11 highlights the impact of the magnitude of the
switching costs on the value of dynamic resizing. The curves
represent the threshold on peak-to-mean ratio and burstiness
necessary to obtain 20% cost savings from dynamic resizing.
As the switching costs increase, the workload must have
a larger peak-to-mean ratio and/or less burstiness in order
for dynamic resizing to be valuable. This is not unexpected.
However, what is perhaps surprising is the small impact played
by the switching cost. The class of workloads where dynamic
resizing is valuable only shrinks slightly as the switching cost
is varied from on the order of the cost of running a server for
10 minutes (5 = 1) to running a server for 3 hours (5 = 18).

Interestingly, while the impact of the switching costs on the
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Fig. 12. Characterization of burstiness and peak-to-mean ratio necessary for
dynamic resizing to achieve 20% cost reduction as a function of the SLA, &.

value of dynamic resizing is small, the impact of the SLA
is quite large. In particular, the violation probability £ can
dramatically affect whether dynamic resizing is valuable or
not. This is shown in Figure 12, on which the curves represent
the threshold on peak-to-mean ratio and burstiness necessary
to obtain 20% cost savings from dynamic resizing. We see
that, as the violation probability is allowed to be larger, the
impact of the peak-to-mean ratio on the potential of savings
from dynamic resizing disappears; and the value of dynamic
resizing starts to depend almost entirely on the burstiness of
the arrival process. The reason for this can be observed in
Figure 7, which highlights that the optimal provisioning ny
becomes nearly flat as & increases.

Supporting Analytic Results: To this point we have focused
on numerical simulations, and further we provide analytic
support for the behavior we observed in the experiments
above. In particular, the following two theorems characterize
the impact of burstiness and the SLA (D, &) on the value of



dynamic resizing under Poisson and heavy-tailed arrivals. The
proofs are given in the technical report [28].

Theorem 1. The service capacity constraint from Eq. (11)
increases as the delay constraint D or the violation probability
€ decrease. It also satisfies the scaling law

_ D~ 1loge~!
C(D,g) =0 _
(D:¢) (logw-llogs-l))

as D™ 'loge™! — .

This theorem highlights that as & decreases and/or D de-
creases C'(D, €), and thus the cost of the optimal provisioning,
increases. This shows that the observations made in our
numeric experiments hold more generally. Perhaps the most
interesting point about this theorem, however, is the contrast
of the growth rate with that in the case of heavy-tailed arrivals,
which is summarized in the following theorem.

Theorem 2. The implicit solution for the capacity constraint
from Eq. (15) increases as the delay constraint D or the
violation probability € decrease, or the value of o decreases.
It also satisfies the scaling law

- L \E

as ED*1 — 0 for any given o € (1,2).

a7

A key observation about this theorem is that the growth rate
of C(D, &) with € is much faster than in the case of the Poisson
(polynomial instead of logarithmic). This supports what is
observed in Figure 9. Additionally, Theorem 2 highlights the
impact of burstiness, a, and shows that the behavior we have
seen in our experiments holds more generally.

V. CONCLUSION

Our goal in this paper is to provide new insight into the
debate about the potential of dynamic resizing in data centers.
Clearly, there are many facets of this issue relating to the
engineering, algorithmic, and reliability challenges involved in
dynamic resizing which we have ignored in this paper. These
are all important issues when trying to realize the potential of
dynamic resizing. But, the point we have made in this paper is
that when quantifying the potential of dynamic resizing it is of
primary importance to understand the joint impact of workload
and SLA characteristics.

To make this point, we have presented a new model that
captures the impact of SLA characteristics in addition to both
slow time-scale non-stationarities in the workload and fast
time-scale burstiness in the workload. This model allows us to
provide the first study of dynamic resizing that captures both
the stochastic burstiness and diurnal non-stationarities of real
workloads.
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