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Designing Statistical Estimators That Balance
Sample Size, Risk, and Computational Cost

John J. Bruer, Joel A. Tropp, Volkan Cevher, and Stephen R. Becker

Abstract—This paper proposes a tradeoff between compu-
tational time, sample complexity, and statistical accuracy that
applies to statistical estimators based on convex optimization.
When we have a large amount of data, we can exploit excess sam-
ples to decrease statistical risk, to decrease computational cost, or
to trade off between the two. We propose to achieve this tradeoff
by varying the amount of smoothing applied to the optimization
problem. This work uses regularized linear regression as a case
study to argue for the existence of this tradeoff both theoretically
and experimentally. We also apply our method to describe a
tradeoff in an image interpolation problem.

Index Terms—Convex optimization, image interpolation, regu-
larized regression, resource tradeoffs, smoothing methods, statis-
tical estimation.

I. MOTIVATION

M ASSIVE data presents an obvious challenge to statis-
tical algorithms. We expect that the computational ef-

fort needed to process a data set increases with its size. The
amount of computational power available, however, is growing
slowly relative to sample sizes. As a consequence, large-scale
problems of practical interest require increasingly more time to
solve. This creates a demand for new algorithms that offer better
performance when presented with large data sets.
While it seems natural that larger problems require more ef-

fort to solve, Shalev-Shwartz and Srebro [1] showed that their
algorithm for learning a support vector classifier actually be-
comes faster as the amount of training data increases. This and
more recent works support an emerging viewpoint that treats
data as a computational resource. That is, we should be able to
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exploit additional data to improve the performance of statistical
algorithms.
We consider statistical problems solved through convex op-

timization and propose the following approach:
We can smooth statistical optimization problems more and

more aggressively as the amount of available data increases. By
controlling the amount of smoothing, we can exploit the addi-
tional data to decrease statistical risk, decrease computational
cost, or trade off between the two.
Our prior work [2] examined a similar time–data tradeoff

achieved by applying a dual-smoothing method to (noiseless)
regularized linear inverse problems. This paper generalizes
those results, allowing for noisy measurements. The result is
a tradeoff in computational time, sample size, and statistical
accuracy.
We use regularized linear regression problems as a specific

example to illustrate our principle. We provide theoretical and
numerical evidence that supports the existence of a time–data
tradeoff achievable through aggressive smoothing of convex op-
timization problems in the dual domain. Our realization of the
tradeoff relies on recent work in convex geometry that allows
for precise analysis of statistical risk. In particular, we recognize
the work done by Amelunxen et al. [3] to identify phase transi-
tions in regularized linear inverse problems and the extension to
noisy problems by Oymak and Hassibi [4]. While we illustrate
our smoothing approach using this single class of problems, we
believe that many other examples exist.

A. Related Work and Our Contributions
Other researchers have identified related tradeoffs. Bottou

and Bousquet [5] show that approximate optimization al-
gorithms exhibit a tradeoff between small- and large-scale
problems. Agarwal et al. [6] address a tradeoff between error
and computational effort in statistical model selection prob-
lems. Shalev-Shwartz et al. [7] establish a time–data tradeoff
in a binary classification problem. Berthet and Rigollet [8]
provide rigorous lower bounds for sparse PCA that trade off
computational efficiency and sample size. Daniely et al. [9]
formally establish a time–data tradeoff in learning halfspaces
over sparse vectors. Shender and Lafferty [10] identify a
tradeoff by introducing sparsity into the covariance matrices
of ridge regression problems. See [11] for a review of some
recent perspectives on computational scalability that lead to
time–data tradeoffs. Our work identifies a distinctly different
tradeoff than these prior works.
Our approach bears most similarity to that of Chandrasekaran

and Jordan [12]. They use an algebraic hierarchy of convex re-
laxations to achieve a time–data tradeoff for a class of denoising
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problems. The geometric intuition they develop also motivates
our current work. In contrast, we use a continuous sequence of
relaxations based on smoothing and provide practical examples
that are different in nature.

B. Roadmap to a Time–Data Tradeoff
In Section II, we present the regularized linear regression

model. In Section III, we highlight recent work that establishes
a geometric opportunity for a time–data tradeoff. In Section IV,
we discuss the role of smoothing in solving convex optimiza-
tion problems and describe a computational opportunity for
a time–data tradeoff. We use a dual-smoothing scheme in
Section V to seize both opportunities and create a time–data
tradeoff. In Section VI and VII we provide theoretical and nu-
merical evidence of this tradeoff for sparse vector and low-rank
matrix regression problems. We then use our approach to
achieve a time–data tradeoff for an image interpolation problem
in Section VIII.

II. REGULARIZED LINEAR REGRESSION
In this section, we describe the regularized linear regression

problem that we use as a case study to illustrate our time–data
tradeoff.

A. The Data Model
Assume that we have a data set

comprising samples , where the are the inputs, and
the are the responses of a statistical model. We call
the sample size, and we consider the case where . Given a
vector of parameters , we relate the inputs and responses
through the linear equation

(1)

where the th row of is the input , the th entry
of is , and the entries of are independent,
zero-mean random variates. The goal of the regression problem
is to infer the underlying parameters from the data.

B. Prediction Error and Statistical Risk
Let be an estimate of the true vector . We evaluate the

accuracy of this estimate using the notion of prediction error.
The average squared prediction error of an estimate is

(2)

For a given measurement matrix and parameter vector in
the data model (1), we call the statistical risk of the
estimator.
Without knowing the true parameters , we cannot compute

this quantity. We can, however, measure how closely the esti-
mate relates the inputs to the (noisy) observations in our given
data set by computing

(3)

The quantity is an estimate of . In the regression
setting, this is the (normalized) residual sum of squares; we will
call it the empirical risk.

C. The Regularized Linear Regression Problem
In linear regression, it is common to require that minimize

the empirical risk. In our case, however, we have fewer samples
than the number of parameters (i.e., ), and so we instead
solve

(4)

where the proper convex function is a
regularizer, and is the maximal empirical risk we will
tolerate. The following sections illustrate the potential for a
time–data tradeoff in solving this optimization problem.

III. A GEOMETRIC OPPORTUNITY

In this section, we discuss how sample size affects the ro-
bustness of the regularized regression problem (4) to noise. The
connection leads to a geometric opportunity for a time–data
tradeoff.

A. Descent Cones and Statistical Dimension
Before we can introduce the relevant result, we must provide

two definitions.
Definition III.1 (Descent Cone): The descent cone of a proper

convex function at the point is the
convex cone

The descent cone comprises the directions that de-
crease locally at . We quantify the “size” of this convex cone
using the notion of statistical dimension.
Definition III.2 (Statistical Dimension [3, Def. 2.1]): Let

be a closed convex cone. Its statistical dimension is
defined as

where has independent standard Gaussian entries, and
is the projection operator onto .
The quantity plays a critical role in the behavior

of the regularized linear regression problem (4).

B. A Phase Transition
Amelunxen et al. [3] proved that, under certain randomized

data models with noiseless measurements, the regularized linear
regression problem (4) undergoes a phase transition when the
number of samples equals . Oymak and Hassibi
[4] characterized the stability of this phase transition in the pres-
ence of noise. Their work considers the formulation

(5)

which is equivalent to (4) for some choice of the parameter
. We present a restatement of their result here using our

notational conventions.
1) Fact III.3 (The Phase Transition for Regularized Linear

Regression [4, Thm. 3.3]): Assume that the measurement ma-
trix is chosen according to the Haar measure on the ensemble
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Fig. 1. A geometric opportunity. Panel (a) illustrates the sublevel set and descent cone of a regularizer at the point . Panel (b) shows a relaxed regularizer
with larger sublevel sets. The shaded area indicates the difference between the descent cones of and at . Fact III.3 shows how this difference in the size of
the descent cones translates into a difference in statistical accuracy. We may compensate for this loss of statistical accuracy by choosing a relaxation that allows
us to solve the optimization problem faster.

of matrices in with orthonormal rows. In particular, this
requires . For such ameasurementmatrix, let
be a (random) observation vector with NORMAL .
Let (which depends on and ) be a minimizer of (5).

Set . Let denote the average squared
prediction error (2) and denote the empirical risk (3) of
. Then there exist constants such that
• Whenever ,

with probability .
• Whenever ,

with probability .
The probabilities are taken over .
Notice that this result indeed describes a phase transition at

. When the number of samples is smaller
than this quantity, the worst-case statistical risk is simply the
noise power , and the regularized linear regression problem
has no robustness to noise. That is, as the number of samples in-
creases towards the phase transition, the statistical accuracy of
the solution does not improve. After crossing the phase transi-
tion, however, additional samples decrease the worst-case risk
at the rate .
Additionally, the result gives us guidance in choosing the pa-

rameter in our formulation of the regularized linear re-
gression problem (4). If we have a reasonable estimate of the

noise power , we use the worst-case expected empirical risk
and set

and therefore we set

(6)

Remark III.4: Fact III.3 considers partial unitary measure-
ment matrices . Oymak and Hassibi also present numerical
experiments that exhibit similar behavior when has indepen-
dent standard Gaussian entries. While the location of the phase
transition remains the same, the choice of the parameter in
the regression problem (4) then depends on the spectrum of .

C. A Geometric Opportunity
Chandrasekaran and Jordan [12] argue that enlarging convex

constraint sets can make corresponding statistical optimization
problems easier to solve. These geometric deformations, how-
ever, create a loss of statistical accuracy. In the presence of large
amounts of data, they argue that one could tune the relaxation
to trade off between statistical and computational performance.
We see a similar opportunity in the regularized linear regres-

sion problem and illustrate it in Fig. 1. By enlarging the sublevel
sets of the regularizer , we increase the statistical dimension of
the descent cone of at . Fact III.3 tells us that the solution
to the regression problem with the relaxed regularizer will
have higher risk. If, however, the relaxed regularizer results in
a problem that is easier to solve computationally, then we have
a tradeoff between sample size, computational time, and statis-
tical accuracy.
While our work builds on the geometric motivation of [12],

we employ an entirely different approach to realize the tradeoff.
They use a discrete sequence of relaxations based on an alge-
braic hierarchy, while we propose a continuous sequence of re-
laxations based on a dual-smoothing technique.
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IV. A COMPUTATIONAL OPPORTUNITY

In this section, we discuss the computational benefit of
smoothing optimization problems, and we show how smoothing
in the dual domain can reduce the computational cost of solving
the regularized linear regression problem.

A. Convexity and Smoothness
Let us start with two definitions we will need throughout the

remainder of this section. We measure the convexity of a func-
tion using the notion of strong convexity.
Definition IV.1 (Strong Convexity): A function

is -strongly convex if there exists a positive constant such
that the function

is convex.
Higher values of the constant correspond to “more convex”

functions.
We measure the smoothness of a function using the Lips-

chitz constant of its gradient .
Definition IV.2 (Lipschitz Gradient): A function

has an -Lipschitz gradient if there exists a positive constant
such that

for all vectors .
Lower values of the Lipschitz constant correspond to

smoother functions .

B. The Benefit of Smoothness
We focus on first-order methods—iterative algorithms that

only require knowledge of the objective value and a gradient
(or subgradient) at any given point—to solve the regularized
linear regression problem (4). Nemirovski and Yudin [13] show
that the best achievable convergence rate for such an algorithm
that minimizes a convex objective with a Lipschitz gradient is

iterations, where is the numerical accuracy. Nes-
terov [14] provides an algorithm achieving this rate, the first of
a class of algorithms known as accelerated gradient methods.
For a unified framework describing these algorithms and their
convergence properties, see [15].
Common choices of regularizer in (4), such as the norm,

are nonsmooth. Nesterov [16] provides a method to approxi-
mate some nonsmooth objectives with smooth ones. He shows
that a specific class of first-order methods can then solve the
smoothed problem at a faster convergence rate, albeit with
some approximation error. Beck and Teboulle [17] generalize
Nesterov’s approach.
While applying a primal smoothing method to the regularized

linear regression problem (4)may seem attractive, the geometric
opportunity described in the previous section relies critically on
the nonsmoothness of the regularizer . Indeed, if we smooth
by any amount, its descent cones become halfspaces, and we

lose all control over their size. We instead consider a method
to smooth the dual of the optimization problem. This technique
preserves the geometric opportunity while allowing for a com-
putational speedup.

C. The Dual Problem
The properties of smoothness and convexity relate to each

other through duality. We present a variation of a result in [18].
1) Fact IV.3 (The Duality Between Convexity and Smoothing

[18, Prop. 12.60]): If the proper closed convex function
is -strongly convex, then its convex

conjugate is differentiable and is
-Lipschitz, where .

As the convexity of the function increases, so does the
smoothness of its conjugate . In order to see how we may
exploit this duality between convexity and smoothing, we must
first derive the Lagrangian dual of the regularized linear regres-
sion problem.
We replace the regularizer in the regularized linear regres-

sion problem (4) with a -strongly convex function to obtain
new estimators of the form

(7)

The dual problem is then

where we used the fact that is a conic con-
straint, and the second-order cone is self-dual. Since ,
we can eliminate the dual variable to obtain the unconstrained
problem

(8)
Note that the dual function is not smooth. We can, however,
rewrite it as the composite function

(9)

where is the convex conjugate of . We use the strong con-
vexity of the regularizer to show that has a Lipschitz gra-
dient, and so this is really a decomposition of the dual function

into smooth and nonsmooth components. In partic-
ular, we have the following lemma.
Lemma IV.4: Let be the regularizer

in the regression problem (7). Assume that is coercive (i.e.,
as ) and -strongly convex. Then

the function as in (9) has gradient

where
(10)

Furthermore, is Lipschitz continuous with Lipschitz con-
stant at most .

Proof: As given in (9), we have that
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Algorithm 1. Auslender–Teboulle

Input: measurement matrix , observed vector , parameter
1: , ,
2: for do

3:
4:
5:
6:
7:

8: end for

where is the convex conjugate of . Since we have assumed
that is -strongly convex, Fact IV.3 tells us that is differ-
entiable. Indeed,

The coercivity and strong convexity of guarantee both that
the infimum is attained and that the minimizer is unique. There-
fore, , with as given by (10).
Furthermore, Fact IV-C.3 tells us that is Lipschitz con-

tinuous with parameter . Therefore,

for all .
We can now solve the composite dual problem (8) using an

accelerated gradient method [19], [15]. Provided that the reg-
ularized regression problem (7) is strictly feasible, then strong
duality holds for (7) and (8) by Slater's condition [20, Section
5.2.3]. Note that having full row rank is sufficient to guar-
antee strict feasibility. Therefore, if we solve the dual problem
(8) to obtain an optimal dual point , we may use (10) to find
the unique optimal primal point .

D. Example: Auslender–Teboulle
In Algorithm 1, we list an accelerated gradient method origi-

nally due to Auslender and Teboulle [21] and adapted by Becker
et al. [22] to the regularized regression problem. We use this al-
gorithm as an example to illustrate our time–data tradeoff, and
the following analysis could be performed for other iterative
methods. In particular, recent work by Tran-Dinh and Cevher
[23] provides a first-order primal–dual framework that contains
the necessary convergence guarantees on the primal feasibility
gap.
Note that Algorithm 1, line 5 is the solution to the composite

gradient mapping (see [19])

and the map Shrink is given by

We have the following bound on the feasibility gap of primal
iterates at each iteration .
Theorem IV.5 (Primal Feasibility Gap): Assume that the reg-

ularizer in the linear regression problem (7) is -strongly
convex. Apply Algorithm 1 to the corresponding dual problem
(8), and let be the optimal dual point. For any ,

(11)

See Appendix B for the proof. Note that the right-hand side
of the bound (11) becomes smaller as the strong convexity pa-
rameter increases (or equivalently, as the Lipschitz constant

decreases).
We can relate (11) back to the empirical risk (3) of by re-

calling that and ,
where is the sample size. Disregarding the impact of on the
size of the optimal point , this bound suggests that, as the con-
vexity of the regularizer increases, the number of iterations
sufficient for Algorithm 1 to converge to the preset empirical
risk target decreases.

E. A Computational Opportunity
The geometric opportunity in Section III suggests replacing

the regularizer in the regularized linear regression problem
(4) with a relaxed regularizer that is easier to optimize.
Theorem IV.5 suggests that choosing in (7) to be a strongly
convex approximation of is a suitable relaxation.
Becker et al. [22] previously explored replacing non-strongly

convex regularizers with strongly convex relaxations in order
to achieve computational speedups in conic optimization prob-
lems (including the regularized linear regression problem). In
their work, however, the amount of relaxation was chosen in an
ad hoc manner primarily to facilitate the use of accelerated gra-
dient methods. Instead, we propose to synthesize the above geo-
metric and computational opportunities into a tunable time–data
tradeoff, whereby we can choose the amount of relaxation in a
principled manner.

V. A TIME–DATA TRADEOFF
In this section, we show how to achieve a time–data tradeoff

by exploiting both the geometric and computational opportuni-
ties of the previous sections.

A. A Dual-Smoothing Method

In Section IV, we showed that if the regularizer in the regres-
sion problem (7) is strongly convex, then we may use an accel-
erated gradient method such as Algorithm 1 to solve the dual
problem (8). Many common regularizers such as the norm
are not strongly convex, and so we must provide an appropriate
relaxation method before applying Algorithm 1.
The procedure we use essentially applies Nesterov's primal-

smoothing method from [16] to the dual problem; see [22].
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Given a regularizer in (4), we introduce a family
of strongly convex majorants:

Clearly, is -strongly convex, and so wemay use any of these
relaxations as the objective in (7). Note that these majorants also
have larger sublevel sets, and their descent cones have larger
statistical dimension. They are indeed relaxations that allow us
to realize both the geometric and computational opportunities
of the previous two sections.

B. Computational Cost
To assess the computational cost of solving (8), we must

know two things: the number of iterations necessary for con-
vergence and the cost of each iteration. In practice, we terminate
Algorithm 1 when the relative primal feasibility gap

is smaller than some tolerance. Theorem IV.5 allows
us to bound the number of iterations sufficient to guarantee this
occurrence.
Corollary V.1 (Iteration Bound): Apply Algorithm 1 to solve

the smoothed dual problem (8), and let be the optimal dual
point. Assume that the measurement matrix has orthonormal
rows and that the noise vector in the data model (1) has dis-
tribution NORMAL , so that Fact III.3 applies. Set

, where ; cf. Equation (6). Ter-
minate the algorithm when the relative primal feasibility gap

. Then the number of iterations suffi-
cient for convergence satisfies the upper bound

Note that increasing the smoothing parameter will also
cause , and possibly , to increase. This suggests some limit
to the amount of dual-smoothing we may apply to the regular-
izer for any given sample size if we are to achieve a com-
putational speedup.
The particular choice of the original regularizer affects the

cost of each iteration only in Algorithm 1, line 4. Fortunately,
many regularizers of interest admit relatively inexpensive solu-
tions to this subproblem by way of their proximity operators;
we will see specific examples in the following sections. Pro-
vided that this step is indeed inexpensive, the dominant cost of
each iteration comes from calculating the matrix–vector prod-
ucts involving the measurement matrix . Therefore,
the dominant cost of each iteration is .
In particular, this suggests that the computational cost will

rise as if the smoothing parameter (and hence )
stays constant as the sample size increases. Increasing the
smoothing parameter is critical for achieving a speedup when
we have more samples.

C. Choosing a Smoothing Parameter
Choosing an appropriate value for the smoothing parameter
is vital. The result due to Oymak and Hassibi [4]—given as

Fact III.3—tells us both the number of samples required such
that the estimator (7) is robust to noise and how the statistical
error varies with the number of samples. We look at three

schemes for choosing that satisfy different goals. Taken
together, these schemes span the time–data tradeoff.
1) Constant Smoothing: The simplest method requires us to

choose a constant value of . Larger values of lead to larger
values of , the location of the phase transition.
Additionally, they lead to higher worst-case levels of statistical
risk. Therefore, we choose a relatively small value of , mini-
mizing the error introduced by the relaxation of the regularizer.
Let us call this baseline value and let . We
will reference these quantities in the following schemes. Under
this scheme, computational cost rises and statistical risk falls as
the sample size increases.
Remark V.2: It is important to note that the phase transition

occurs over a region of sample sizes. To avoid this area, we
specify a baseline number of measurements that is greater
than the baseline statistical dimension . Choosing
appears sufficient and conservative. For a further discussion of
the phase transition region, see [3] and the subsequent work [24]
with refined results.
2) Constant Risk: If the number of samples is greater than

the baseline sample size , that means we could relax the reg-
ularizer further—by increasing —while maintaining the base-
line level of risk. To do this, we choose the largest value of
such that

Note that this results in the lowest computational cost while
retaining robustness to noise (at a fixed level of risk).
3) A Tunable Balance: In reality, however, we will want

some compromise between these two schemes. The constant
smoothing scheme will become increasingly more expensive
computationally, and the constant risk scheme provides no sta-
tistical improvement as the number of samples grows.
The idea behind this balanced scheme is to increase the

smoothing parameter in a way such that both the computa-
tional cost and the risk decrease as the sample size increases.
We choose a scaling parameter and set to be the largest
value such that

(12)

Recall that under the constant smoothing scheme, the risk will
scale as , where is the number of samples. Under
the balanced scheme, however, we take the excess measure-
ments and have them effectively reduce the risk at the
rate . Note that choosing recovers the constant
smoothing scheme, while choosing recovers to the
constant risk scheme. The “best” choice of depends on the
priorities of the practitioner.

D. Connection to the Noiseless Problem
Our previous work [2] examined the case where the linear

measurements in the data model (1) contained no noise, i.e.,
when . In that case, we used a heuristic choice of the
smoothing parameter to effect a time–data tradeoff. The ap-
proach in this paper, however, lets us consider the noiseless
problem as simply a special case of the noisy version.
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Without noise in the measurements, we can recover the un-
known signal exactly. In other words, the recovered esti-
mate has zero statistical risk. Therefore, our tradeoff in com-
putational time, sample size, and statistical accuracy collapses
to one in time and sample size only. As such, we may use all of
the excess samples to reduce computational time, and we pay
no penalty in statistical risk. By choosing the smoothing pa-
rameter using the “constant risk” method above, we recover the
unknown signal faster than the “constant smoothing” method
without losing any accuracy. Note that we recover the noise-
less optimization problem and algorithm by choosing the max-
imum tolerated empirical risk in regularized regres-
sion problem (7).

E. The Time–Data Tradeoff

We summarize the tradeoff between time, data, and accuracy
as follows:
When we have excess samples in the data set, we can ex-

ploit them to decrease the statistical risk of our estimator or to
lower the computational cost through additional smoothing. A
tradeoff arises from the balance between these two competing
interests.
The following sections evidence the existence of this tradeoff

for particular examples. We emphasize, however, that the main
idea of combining these geometric and computational opportu-
nities to realize a tradeoff is more broadly applicable.

VI. EXAMPLE: SPARSE VECTOR REGRESSION

In this section, we examine a time–data tradeoff for sparse
vector regression problems.

A. The Dual-Smoothed Problem

Assume that the parameter vector in the data model
(1) is sparse. The norm serves as a convex proxy for sparsity,
so we choose it as the regularizer in the regression problem (4).
This problem is equivalent to the LASSO of Tibshirani [25].
We apply the dual-smoothing procedure from Section V-A to

obtain the relaxed regularizer

(13)

The corresponding primal problem (7) is equivalent to the
elastic net of Zou and Hastie [26]. The composite dual is given
by (9).
To apply Algorithm 1 to the dual-smoothed sparse vector re-

gression problem, we must calculate the primal iterate from
the current dual iterate (Algorithm 1, line 4). This step can
be written as

where SoftThresh is the map given component-wise by

This operation is inexpensive, and so the total cost of each iter-
ation in Algorithm 1 is operations.

B. Calculating the Statistical Dimension
In order to choose the smoothing parameter using

Section V-C, we need to be able to calculate the statistical
dimension of the descent cone of the relaxed regularizer at a
sparse vector . The following result provides an upper bound
on this quantity that depends only on the sparsity of and the
magnitude of its largest entry.
Proposition VI.1 (Statistical Dimension Bound for the Dual-

Smoothed Norm): Let be -sparse, and define the
normalized sparsity . Let be as in (13). Then

where is the function given by

The proof is substantially similar to that in [3]. In our case,
however, the resulting function depends on the magnitudes
of the nonzero entries of the vector . We use as the
upper bound for each entry in order to establish the proposition.
Therefore, our result is most accurate for signals that have
low dynamic range (i.e., the nonzero entries of have magni-
tude close to ). Note that , , and is
increasing. Furthermore, as we increase the smoothing param-
eter , the statistical dimension will increase for .
With this information, we can now examine the time–data

tradeoff resulting from the smoothing schemes presented in
Section V-C.

C. Numerical Experiment
In Fig. 2, we show the results of a numerical experiment

that reveals the time–data tradeoff enabled by the smoothing
schemes in Section V-C. See Appendix A for the methodolog-
ical details.
Most practitioners use a fixed smoothing parameter that

depends on the ambient dimension or sparsity but not on the
sample size. For the constant smoothing case, we choose the
smoothing parameter based on the recommendation
in [27] for the noiseless case. It is common, however, to see
much smaller choices of ; see [28], [29]. We compare this to
the constant risk case and our balanced method with .
We choose the scaling parameter simply as a demon-
stration. This serves to illustrate how additional samples allow
us the flexibility to trade off statistical accuracy and computa-
tional cost.
In the experiment, we fix both the ambient dimension

and the normalized sparsity . To test
each smoothing approach, we generate and solve 10 random
sparse vector regression problems for each value of the sample
size . Each problem
comprises a random measurement matrix with
orthonormal rows and a random sparse vector whose 2000
nonzero entries are . Both are chosen uniformly at random
from their respective sets. We use the baseline smoothing
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Fig. 2. Sparse vector regression experiment. The panels show (a) the average computational cost and (b) the estimated statistical risk over 10 random trials of
the dual-smoothed sparse vector regression problem with ambient dimension , normalized sparsity , and noise level for various
sample sizes . The red curve (circles) represents using a fixed smoothing parameter , the orange curve (diamonds) results from adjusting the smoothing
parameter to maintain the baseline risk, and the blue curve (crosses) uses the balanced scheme (12) with scaling parameter . For all schemes, the baseline
smoothing parameter , and the baseline sample size . The error bars indicate the minimum and maximum observed values. The dashed black
lines show the predicted risk based on Proposition VI.1 and Fact III.1 .

parameter and the baseline sample size ,
which is roughly . We stop Algorithm
1 when the relative primal feasibility gap is
less than , where is set according to (6). This condition
allows us to accurately predict the risk of the resulting estimator
by using Fact III.3.
In Fig. 2(a), we see that the total computational cost1 in-

creases with sample size under the constant smoothing scheme.
Meanwhile, the constant risk scheme displays a decrease in total
cost as the sample size increases. The balanced scheme, how-
ever, shows an initial drop in cost before rising again. This
shows the high cost of performing dense matrix multiplication
at each iteration. The balanced scheme ( ) smooths more
aggressively than the constant scheme, and so it achieves an
overall speedup. It, however, smooths less aggressively than
the constant risk scheme, and so it (like the constant smoothing
scheme) cannot overcome the high cost of the matrix multipli-
cations as the sample size grows.
Even so, the cost required for 38 000 samples under the con-

stant smoothing scheme is 3.8 higher than that of the bal-
anced scheme. Furthermore, the cost of the balanced scheme
with 38 000 samples is still less than the cost of the constant
smoothing scheme with 10 000 samples.
In order to determine whether the cost is worth paying, we

refer to Fig. 2(b) showing the risk as a function of sample size.
The constant risk scheme behaves as expected, and the constant
smoothing decreases risk the most as the sample size increases.
The risk in the balanced scheme decreases by a factor of 2.0
as the sample size grows from 10 000 to 38 000 samples.
While the risk under the balanced scheme is 1.8 the risk

under the constant smoothing scheme at a sample size of 38 000,
it requires roughly of the computational cost. Put another

1We compute total cost as , where is the number of iterations taken,
and is the dominant cost of each iteration.

way, as the balanced scheme moves from 10 000 samples to
38 000 samples, risk decreases by a factor of 2.0 and com-
putational cost decreases by 1.7 .
Note that the risk predictions (depicted by black dashed lines)

resulting from Fact III.3 and the statistical dimension calcu-
lation in Proposition VI.1 are quite accurate. This means that
given a fixed sample size and a target risk level, we can actually
calculate the necessary value of the smoothing parameter to
achieve that risk level.
We emphasize that we use the same algorithm to test all three

smoothing approaches, so the relative comparison between
them is meaningful. The observed improvement shows that we
have indeed identified a time–data tradeoff by smoothing.

VII. EXAMPLE: LOW-RANK MATRIX REGRESSION
In this section, we examine a time–data tradeoff for low-rank

matrix regression problems.

A. The Dual-Smoothed Problem
We may also use the data model (1) when the underlying

signal is a matrix. Let be the true matrix, and let
be a measurement matrix, where . Then

the observations are given by , where vec re-
turns the (column) vector obtained by stacking the columns of
the input matrix.
Assume that is low-rank. The Schatten 1-norm

—the sum of the matrix's singular values—serves as
a convex proxy for rank, and so we choose as
the regularizer in the regression problem (4). Toh and Yun
consider this natural extension to the LASSO in [30]. We apply
the dual-smoothing procedure from Section V-A to obtain the
relaxed regularizer

(14)
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Fig. 3. Low-rank matrix regression experiment. The panels show (a) the average computational cost and (b) the estimated statistical risk over 10 random trials
of the dual-smoothed low-rank matrix regression problem with ambient dimension , normalized rank , and noise level for
various sample sizes . The red curve (circles) represents using a fixed smoothing parameter , the orange curve (diamonds) results from adjusting the
smoothing parameter to maintain the baseline risk, and the blue curve (crosses) uses the balanced scheme (12) with scaling parameter . For all schemes,
the baseline smoothing parameter , and the baseline sample size . The error bars indicate the minimum and maximum observed values.

The relaxed primal problem is again (7), and the composite dual
is given by (9).
To apply Algorithm 1 to the dual-smoothed low-rank matrix

regression problem, we must calculate the primal iterate
from the dual iterate (Algorithm 1, line 4). This step can be
written as

where SoftThreshSingVal applies soft-thresholding to the sin-
gular values of a matrix, and mat is the inverse of the vec oper-
ator. Given a matrix and its SVD , we can
express SoftThreshSingVal as

where SoftThresh is simply the soft-thresholding operator on
vectors. The SVD of has cost
(for ). Since the number of measurements will
be larger than , the dominant cost of each iteration of
Algorithm 1 is still operations.

B. Calculating the Statistical Dimension

As in the sparse vector case, we must be able to compute
the statistical dimension of the descent cones of at a given
low-rank matrix . In the case where the unknown matrix is
square, the following result gives an upper bound on the sta-
tistical dimension depending on the rank of the matrix and the
magnitude of its largest singular value.
Proposition VII.1 (Statistical Dimension Bound for the Dual-

Smoothed Schatten 1-Norm): Let have rank , and
define the normalized rank . Let be as in (14). Then

where is the function given by

The proof is substantially similar to that in [3]. Their tech-
nique also provides a statistical dimension bound when the ma-
trix is non-square. In our case, the resulting function depends
on the magnitude of each of the nonzero singular values of .
To establish our proposition, we use the largest singular value

as an upper bound. Therefore, this result is most accurate
when all the nonzero singular values are close to . The be-
havior of is also similar to that of the sparse vector example.
With this information, we can now examine the time–data

tradeoff resulting from the smoothing schemes presented in
Section V-C.

C. Numerical Experiment
Fig. 3 shows the results of a substantially similar numerical

experiment to the one performed for sparse vector regression.
Again, current practice dictates using a smoothing parameter
that has no dependence on the sample size ; see [31], for ex-
ample. In our tests, we choose the baseline smoothing param-
eter recommended by [27]. As before, we compare
the constant smoothing, constant risk, and balanced
schemes. See Appendix A for the methodological details.
In this case, we use the ambient dimension

and set the normalized rank . We test each method with
10 random trials of the low-rank matrix regression problem for
each value of the sample size , 12 500, 15 000,

, 37 500. The baseline sample size corresponds
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Fig. 4. Image interpolation. The graph shows the observed Pareto frontier in our image interpolation experiment where we treat the sampling density and
computational time as the two resources that we trade off. The solid blue lines give the Pareto frontiers achieved by aggressively smoothing the problem as we
increase the sampling density . These frontiers correspond to three different accuracy levels of the reconstructed images given as a peak signal-to-noise-ratio
(PSNR). The dashed red line shows the frontier achieved for 32 dB PSNR accuracy with a fixed smoothing parameter as sampling density increases.
Our aggressive smoothing outperforms the constant smoothing by a large margin. The grid of images shows patches of: (a) the original image,
(b) the original image subsampled at , (c) the reconstructed image with and (32.1 dB PSNR), and (d) the reconstructed image with

and (32.2 dB PSNR). The shown reconstructions are of the same quality despite the differing values of .

roughly to , where is the true
random low-rank matrix.
The random measurement matrices are again partial unitary,

and the nonzero singular values of the random low-rank ma-
trices are 1. We solve each problem with Algorithm 1 using
the same relative primal feasibility gap tolerance of as the
stopping criterion. In this case, the statistical dimension bound
given in Proposition VII.1 overestimates the risk incurred by a
small amount. Therefore, we have not included the theoretical
risk levels in Fig. 3(b), but the calculations still have value in de-
termining an appropriate value of the scaling parameter and,
thereby, in computing the smoothing parameter .
In Fig. 3, we see the same qualitative behavior as in the sparse

vector case. The constant smoothing scheme decreases risk the
most over the range of sample sizes, but its cost continues to rise
as the number of samples increases. The constant risk scheme
provides the largest computational speedup but provides no im-
provement in statistical accuracy. The balanced method, how-
ever, achieves a reduction in total computational cost from

to while reducing risk by a factor
of . The observed speedup over the constant smoothing
scheme at is while incurring statistical risk
only greater.

VIII. EXAMPLE: IMAGE INTERPOLATION
In this section, we apply our tradeoff principle to an image

interpolation problem.

A. The Optimization Problem
We let be the matrix of pixel intensities of a grayscale

image, and we observe the vector of pixels , where
is the linear operator that returns a vector of specific pixels

from the original image. We assume that we know the oper-
ator , and therefore, we know the locations of the pixels being

subsampled. To reconstruct the full image from the subsampled
image, we solve

where is the two-dimensional discrete cosine transforma-
tion with vectorized output. We use TFOCS [32], [22] to solve
this dual-smoothed -analysis problem, and we use the Spot
Toolbox2 to implement the linear operators and .

B. Numerical Experiment

Fig. 4 shows the results of an image interpolation experiment
on a grayscale image of size . We solved the
interpolation problem for pairs of the sampling density
and smoothing parameter. At each iteration, we record the peak
signal-to-noise ratio (PSNR) of the current iterate , where

(15)

and is the original image of size . See
Appendix A for the methodological details.
The frontiers shown in solid blue lines indicate the Pareto

efficient allocations of sample size and computational time for
three different levels of PSNR. These allocations are achieved
by employing additional smoothing as the sampling density in-
creases. That is, as increases, we can increase the smoothing
parameter to achieve the same level of accuracy in the recon-
structed image faster. The dashed red line, on the other hand,
shows the result if we keep a constant smoothing parameter of

throughout the run of the experiment.

2http://www.cs.ubc.ca/labs/scl/spot/
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Without aggressive smoothing, the computational cost to
reach the desired level of accuracy is several times higher.
Indeed, for a reconstruction quality of 32 dB PSNR and a
sampling density of , using the smoothing parameter

is slower than using . This illustrates
the benefit of smoothing these optimization problems more and
more aggressively as the sampling density increases.

IX. CONCLUSION

The examples we have presented indeed show time–data
tradeoffs achieved through dual-smoothing. We believe that
our method can be used to show tradeoffs in other statistical
problems solved using convex optimization. The key is un-
derstanding precisely how manipulating the geometry of the
optimization problem affects the accuracy of the solution. This
allows for the determination of whether the speedup from
a computationally beneficial relaxation is worth the loss of
statistical accuracy. At the moment, this process may require
some amount of numerical experimentation. As the geometric
understanding of these optimization problems increases, how-
ever, we envision a richer theory of similar tradeoffs.

APPENDIX A
NUMERICAL METHODOLOGY

This section describes the numerical experiments presented
in Sections VI-C, VII-C, and VIII-B. All of the experiments dis-
cussed herein were performed on a 12-core workstation under
MATLAB 2014a and OS X 10.9.5.

Sparse Vector Regression:

The data for the sparse vector regression experiment
in Section VI-C were generated as follows. Fix the am-
bient dimension . For each of the smoothing
schemes described in Section V-C (using in
the balanced scheme) and each value of the sample size

, perform 10 trials of
this procedure, and average the results:
• Generate a sparse vector with 2000 nonzero entries
placed uniformly at random, each taking the value either

or independently with equal probability.
• Choose a measurement matrix uniformly
at random from the ensemble of matrices with
orthonormal rows (see [33] for the numerical details, as
some care must be taken to ensure the appropriate distri-
bution).

• Set the baseline smoothing parameter and the
baseline sample size , which is approximately

.
• Calculate the smoothing parameter according to the cur-
rent scheme and the resulting statistical dimension

.
• Set the parameter .
• Use the Auslender–Teboulle algorithm (Algorithm 1) to
solve the dual-smoothed sparse vector regression problem.

• Stop the algorithm when the relative primal feasibility gap
.

• Store the computational cost and the (average)
squared prediction error , where is the
final value of the primal iterate.

Low-Rank Matrix Regression:
The data for the low-rank matrix regression experiment in

Section VII-C were generated as follows. Fix the ambient di-
mensions . For each of the
smoothing schemes described in Section V-C (using in
the balanced scheme) and each value of the sample size

, perform 10 trials of this
procedure, and average the results:
• Generate a low-rank matrix , where the
are chosen uniformly at random from the ensemble of 200
10 matrices with orthonormal columns.

• Choose a measurement matrix uniformly
at random from the ensemble of matrices with
orthonormal rows.

• Set the baseline smoothing parameter and the
baseline sample size , which is approximately

.
• Calculate the smoothing parameter according to the cur-
rent scheme and the resulting statistical dimension

.
• Set the parameter .
• Use the Auslender–Teboulle algorithm (Algorithm 1)
to solve the dual-smoothed low-rank matrix regression
problem.

• Stop the algorithm when the relative primal feasibility gap
.

• Store the computational cost and the (average)
squared prediction error , where
is the final value of the primal iterate.

Image Interpolation:
The data for the image interpolation experiment in

Section VIII-B were generated as follows. We loaded a 16-bit
grayscale TIFF image of size into
MATLAB. For each sampling density

, we performed the following procedure for each of
the smoothing parameters :
• Choose an ordered subset of from the image uni-
formly at random.

• Using the Spot Toolbox, construct both the subsampling
operator that returns the random (ordered) subset of
pixels as a column vector and the 2D DCT op-
erator .

• Generate the subsampled observations by applying to
the image.

• Use the TFOCS solver to solve the
-analysis problem with parameters and . Set the

TFOCS options to tell the solver that .
Use the history feature of TFOCS to record the peak
signal-to-noise ratio (15) of each iterate, and set the solver
to stop after 200 iterations or when the observed PSNR is
greater than 40 dB.

• Record the time taken, the history of PSNRs, and the
number of iterations completed.
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APPENDIX B
PROOF OF THEOREM IV.5

This appendix provides the proof used to bound the feasibility
gap of the primal iterates as a function of the number of itera-
tions taken.
Proof of Theorem IV.5: Let be the dual function (9). De-

fine , , and , so that are
convex. By Lemma IV.4, the function has a Lipschitz contin-
uous gradient with parameter . Therefore, it has a quadratic
upper bound, and we find

for any . Note that this quantity is a composite gradient
mapping and, for our choice of , equals

Now since is -strongly convex in , it has the quadratic
lower bound

We then have

and so

By the definition of the Shrink operator, the dual iterate
may take on either of two values. When

. An application of the reverse triangle inequality and
some rearranging gives that

and so

Otherwise, the iterate takes the value

and we can compute

By the reverse triangle inequality, we have

the exact same bound as above. Therefore, we can conclude that
for all ,

where we use Lemma IV.4 to substitute for and .
The quantity on the right is bounded by the standard con-

vergence result for the Auslender–Teboulle algorithm (see [21,
Thm 5.2] and [15, Coro. 1]):

We rearrange terms and take the square root to complete the
proof.
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