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Abstract. This article surveys recent research on Non-Negative Matrix Factorization

(NNMF), a relatively new technique for dimensionality reduction. It is based on the idea

that, in many data-processing tasks, negative numbers are physically meaningless. The

NNMF technique addresses this problem by placing non-negativity constraints on the data

model. I discuss the applications of NNMF, the proposed algorithms and the qualitative

results. Since many of the algorithms suggested for NNMF seem to lack a firm theoret-

ical foundation, this article also surveys techniques for proving that iterative algorithms

converge. It concludes with a description of additional investigations which are presently

underway.
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1. Introduction

A basic technique in dimensionality reduction is Principal Component Analysis (PCA),

which calculates a set basis vectors that can be used to approximate high-dimensional data

optimally in the least-squares sense. The number of basis vectors is much smaller than

the number of dimensions, so encoding the data as linear combinations of the basis vectors

transforms it to a lower-dimensional space. This reduction can be used to improve the

tractability of data analysis algorithms, to discover features in the data or to find hidden

variables. See Jolliffe [1] for a survey.

One major problem with PCA is that the basis vectors have both positive and negative

components, and the data are represented as linear combinations of these vectors with pos-

itive and negative coefficients. The optimality of PCA can be traced back to constructive

cancelation of the signs. In many applications, the negative components contradict physical

realities. For example, the pixels in a grayscale image have non-negative intensities, so an

image with negative intensities cannot be reasonably interpreted.

To address this philosophical problem, several researchers suggested that the search for

a representative basis should be confined to non-negative vectors. Formally, this idea can be

interpreted as decomposing a non-negative matrix A into two non-negative factors V and H ,

i.e.

min
V≥0,H≥0

‖A− VH‖2
F . (1.1)

Hence the paradigm is called Non-Negative Matrix Factorization (NNMF). We assume that

V has far fewer columns than A has rows, so the approximation can succeed only if it

discovers latent structure in the data. Although NNMF is computationally intensive, the

last ten years have seen several efforts at implementing it for various purposes.

2. Non-Negative Matrix Factorization

In this section, we shall summarize the development of NNMF in several different research

communities. This survey is by no means comprehensive, but it addresses the most important

work.

2.1. Work of Paatero. The idea of non-negative matrix factorization can be traced

back to a 1994 paper of Paatero and Tapper [2]. Their goal was to perform factor analysis

on environmental data, which problem involves finding a small number of root causes that

explain a large set of measurements. Each factor is a positive combination of some elementary

variables. In real circumstances, a factor is present (in which case it has a certain positive

effect) or it is absent (in which case it has no effect). Therefore, it often makes sense to

constrain the factors and their influences to be non-negative.
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The problem can be posed formally. Suppose that the columns of A are the measurements,

the columns of V are the factors and the rows of H are the influences of each factor (called

scores). Use W to denote the weight associated to each element, which indicates the level of

confidence in that measurement. Paatero and Tapper advocate optimizing the functional

‖W · (A− VH)‖2
F subject to V ≥ 0 and H ≥ 0.

Here, · denotes the Hadamard (also known as the Schur or elementwise) product, and the

inequalities are also elementwise.

Paatero and Tapper originally proposed using a constrained alternating least squares

algorithm (ALS) to solve the problem [2]. This method fixes V and solves the optimization

with respect to H . Then it reverses the roles of the variables and repeats the process ad

infinitum. The algorithm is initialized with different random matrices in an effort to obtain a

global optimum. de Leeuw argues that ALS algorithms converge since they steadily decrease

the objective function [3], but this convergence is not in the usual mathematical sense.

Paatero subsequently invented several other algorithms for attacking the optimization.

His second algorithm, PMF2, may be viewed as a version of the alternating method with

a plethora of ad hoc modifications, which complicate the implementation enormously [4].

Later, Paatero presented a more general method, called the Multilinear Engine, for finding

multi-factor models with non-negativity constraints [5]. In these models, the approximant

VH is replaced by a longer product of matrices. The program uses a modified conjugate

gradient algorithm to solve the optimization problem.

By now, Paatero’s community has generated an extensive body of work on non-negative

factor analysis, which is impossible to review here. These papers share several shortcomings

from the present point of view. First, they concentrate on a specific application of NNMF,

so it is not clear how relevant they are to the wider body of applications. Second, the

algorithms they use are frequently Byzantine, which precludes straightforward modification

for other domains. Third, they do not seem to prove that the algorithms converge or to

address the properties of the solutions which their algorithms yield. Indeed, it appears more

or less impossible to ascertain the theoretical complexity or convergence of their methods.

They make claims based primarily on empirical evidence.

2.2. Conic and Convex Coding. Independent of Paatero, Lee and Seung introduced

the concept of NNMF in a 1997 paper on unsupervised learning [6]. They begin by consider-

ing the following encoding problem. Suppose that the columns of V are fixed feature vectors

and that a is an input vector to be encoded. The goal is to minimize the reconstruction
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error

min
h

‖a− Vh‖2
2 .

Different learning techniques can be obtained from various constraints on the vector h. PCA

corresponds to an unconstrained minimization, while Vector Quantization (VQ) requires that

h equal one of the canonical basis vectors (i.e. a single unit component with the remaining

entries zero). Lee and Seung propose two techniques that compromise between PCA and

VQ. The first, convex coding, requires the entries of h to be nonnegative numbers which

sum to one. So the encoded vector is the best approximation to the input from the convex

hull of the feature vectors. The second, conic coding, requires only that the entries of h be

nonnegative. Then the encoded vector is the best approximation to the input from the cone

generated by the feature vectors.

Next, Lee and Seung consider how to find the best set of feature vectors for their new

coding strategies. This leads them to the matrix approximation problem (1.1), where the

columns of A contain training examples and V has far fewer columns that A. For both convex

and conic coding, they require V and H to be nonnegative. In addition, for convex coding,

they force the column sums of V and the row sums of H to equal one.

To solve their minimization problems, they suggest an alternating projected gradient

method. In other words, fix V ; perform a step of gradient descent with respect to H ; then

zero all the negative components of H . Reverse the roles of the variables and repeat. For

the convex coding problem, they also introduce a penalty function into the minimization

to maintain the row and column sums. The algorithms are executed multiple times with

random starting points in an effort to locate a global optimum.

Using these algorithms, they found that convex coding discovers locally linear models of

the data, while conic coding discovers features in the data. Their paper did not provide any

proof of convergence, nor did it consider other types of algorithms which might apply.

2.3. Learning Parts of Objects. Lee and Seung subsequently developed simpler algo-

rithms for computing the factorization [7]. One algorithm attempts to minimize the Frobe-

nius norm of the residual, while the second attempts to minimize a modified Kullback-Liebler

divergence. Both are based on multiplicative update rules, which amount to optimally-scaled

gradient descents. As usual, the procedures are applied multiple times with different starting

points. Lee and Seung provide proofs that both multiplicative update rules converge to local

minima of the respective objective functions, and they claim that these rules are significantly

faster than the algorithms of [6]. Nevertheless, each optimization requires several hours of

computer time on a Pentium II. Ease of implementation is the only clear advantage over the

other algorithms described here.
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Using these new algorithms, Lee and Seung performed more extensive experiments [8].

When the columns of the input matrix were images of faces, NNMF produced basis vectors

which correspond to facial features, such as eyes, ears and mustaches. When the columns of

the input matrix were word counts from documents, NNMF produced basis vectors which

correspond to semantic categories. Moreover, the factorization was able to distinguish sepa-

rate meanings of homonyms by placing the same word in multiple categories. In both cases,

the feature vectors were highly sparse.

3. Behavior of Iterative Algorithms

Many of the iterative techniques we have discussed lack convergence proofs, or they

converge only in a weak sense. I have been interested in demonstrating when alternating

minimization algorithms converge in the usual mathematical sense. To that end, I have also

surveyed the literature on convergence of optimization algorithms.

3.1. Majorization Algorithms. A function G(h, h′) is called an auxiliary function for

F (h) if G(h, h) = F (h) and G(h, h′) ≥ F (h). These functions are useful on account of the

following lemma.

Lemma 3.1. If G is an auxiliary function for F , then F is non-increasing under the

update hk+1 = arg minh G(h, hk).

Moreover, the sequence formed by iterative application of this update rule converges to

a local minimum of F .

The method, such as it is, involves choosing an objective function and finding an auxiliary

function for that objective function. The associated majorization algorithm involves repeated

minimization of the auxiliary function, as described in the lemma. This technique is used

most famously to prove the convergence of the EM algorithm [9]; Lee and Seung use it as

well [7]. The main problem is that finding appropriate auxiliary functions is an art, and it

may not be possible to frame an arbitrary algorithm as a majorization algorithm.

3.2. Algorithmic Mappings. A very general approach was developed by Zangwill for

analyzing mathematical programming techniques [10]. It is based on the concept of a point-

to-set mapping, a function that maps a single point to a collection of points. An algorithm

is an iterative process associated with an collection of point-to-set maps {Ak}. Given an

initial point z1, the algorithm generates a sequence of points which satisfy zk+1 ∈ Ak(zk). In

words, any point in Ak(zk) is an appropriate successor to zk.

Under mild conditions, Zangwill shows that an algorithm whose iterates systematically

decrease an auxiliary function will converge in a weak sense. Specifically, any convergent
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subsequence of iterates converges to a fixed point of the algorithm. This does not imply that

the entire sequence of iterates converges in norm, the usual mathematical sense of the word.

Subsequently, Zangwill’s work has been extended. Under additional conditions, it can

be shown that the sequence of iterates either converges or has a continuum of accumulation

points [3]. This result is much better, but it still falls short of a full convergence proof.

3.3. Alternating Projections. A surprising number of algorithms can be cast as alter-

nating minimizations. Given a function of two variables, such as a metric, these procedures

perform a constrained minimization of that function with respect to one variable while hold-

ing the other variable fixed. Then the minimization is performed again with the roles of

the variables reversed, etc. These techniques are frequently used when the one-variable

optimization problems have closed-form solutions or are otherwise tractable.

The first alternating minimization was introduced by von Neumann in 1933 as a technique

for finding the projection onto the intersection (or direct sum) of two subspaces of a Hilbert

space. He shows that projecting a point onto each subspace in turn would yield, in the limit,

the projection onto the intersection [11]. Independently, Diliberto and Straus introduced

an identical algorithm in 1951 for approximating bivariate continuous functions by a sum of

two univariate continuous functions [12]. Cheney and Light present an attractive treatment

of alternating projections in the Banach space setting [13]. The Hilbert space theory has

also been generalized to encompass algorithms which cyclicly project a point onto a finite

collection of subspaces. These algorithms generally yield the projection onto the intersection

of subspaces, but the rate of convergence is sometimes abysmal. The most recent work on

the subject appears in [14].

Another direction of generalization is from subspaces to convex sets. Cheney and Gold-

stein proved than an alternating minimization technique can find a pair of minimally distant

points from two closed convex sets of a Hilbert space under mild conditions on the sets [15].

Independently, Dykstra and Han invented a corrected alternating minimization algorithm

which can be used for arbitrary closed convex sets [16, 17]. An analysis of its convergence

appears in [18]. Csiszár and Tusnády offer results in more general metric settings [19]. They

show that an alternating minimization produces a global optimum whenever the objective

function and the constraint sets have certain geometric properties. They apply their the-

ory to the problem of finding a minimally divergent pair of probability distributions under

the Kullback-Leibler divergence [19]. For an extensive discussion on using cyclic projection

algorithms for finding a point in the intersection of convex sets, see [20].

Occasionally, alternating and cyclic minimizations are used in non-convex situations,

in which cases it is usually impossible to provide strong guarantees on the sequence of
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iterates [21, 22]. For example, Chu has proposed an alternating minimization algorithm

for producing a Hermitian matrix with given eigenvalues and diagonal entries, subject to

the majorization condition [21]. (Chu claims that his algorithm converges on the grounds

that it is a descent algorithm; this argument is specious.) Another specific example is a

technique for computing Welch-Bound-Equality sequences [22]. More generally, Cadzow has

discussed a class of algorithms that he calls composite property mappings [23]. Given a

finite collection of general sets in a metric space and an initial point, a composite property

mapping projects onto each set in turn in the hope of producing a point in the intersection

nearest to the initial point. Cadzow uses Zangwill’s theory to provide a partial convergence

proof. He remarks that his algorithms have never failed to converge in the usual sense.

Most recently, I have developed some methods which can be used to prove that descent

algorithms and alternating minimizations converge in the usual sense [24]. The conditions

are more demanding than Zangwill’s, but the conclusions are commensurately stronger.

4. Intended Contributions

My research group is presently making a comparison of different NNMF algorithms for

some traditional data-mining tasks. The tasks include dimensionality reduction for images

of faces, images of digits and document collections. The algorithms include Lee and Seung’s

multiplicative update rules and alternating least squares. We are interested in the quality

of the approximations produced rather than the time complexity of the techniques. My role

in this project is to provide strong convergence proofs for the algorithms we are considering

where these proofs are lacking [25].
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