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Abstract. Compressed Sensing is a new paradigm for acquiring the compressible signals that arise
in many applications. These signals can be approximated using an amount of information much
smaller than the nominal length of the signal. Traditional approaches acquire the entire signal and
process it to extract the information. The new approach acquires a small number of nonadaptive
linear measurements of the signal and uses sophisticated algorithms to determine its information
content. Emerging technologies can compute these general linear measurements of a signal at unit
cost per measurement.

This paper exhibits a randomized measurement ensemble and a signal reconstruction algorithm
that satisfy four requirements:
(1) The measurement ensemble succeeds for all signals, with high probability over the random

choices in its construction.
(2) The number of measurements of the signal is optimal, except for a factor polylogarithmic in

the signal length.
(3) The running time of the algorithm is polynomial in the amount of information in the signal

and polylogarithmic in the signal length.
(4) The recovery algorithm offers the strongest possible type of error guarantee. Moreover, it is

a fully polynomial approximation scheme with respect to this type of error bound.
Emerging applications demand this level of performance. Yet no other algorithm in the literature
simultaneously achieves all four of these desiderata.
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1. Introduction

Compressed Sensing is a new paradigm for acquiring signals, images, and other types of com-
pressible data. These data have the property that they can be approximated using much less
information than their nominal dimension would suggest. At present, the standard approach to
signal acquisition is to measure a complete copy of the signal and then process it to extract the
important information. For example, one typically measures an image in the pixel basis and then
applies JPEG compression to obtain a more efficient representation. Instead, the new approach
collects a small number of carefully chosen (but nonadaptive) linear measurements that condense
the information in the signal. Sophisticated algorithms are used to approximately reconstruct the
signal from these measurements.

Some exciting new technological applications are driving the theoretical work on Compressed
Sensing. In these applications, it is possible to compute general linear measurements of the signal
with unit cost per measurement. Therefore, the acquisition cost is proportional to the number of
signal measurements that we take. (This setting stands in contrast with the digital computation
of a dot product component by component.)

In traditional signal acquisition models, measurements of the signal have a straightforward inter-
pretation. On the other hand, Compressed Sensing uses measurements that have no real meaning.
In particular, there is no simple map from measurement data back to the signal domain. As a result,
we are also very concerned about the time it takes to reconstruct signals from measurements.

Scientists and engineers are developing technologies where the computational model of Com-
pressed Sensing applies. They are building cameras [TLW+06, WLD+06], analog-to-digital con-
verters [DWB05, LKM+06, KLW+06], and other sensing devices [ZPB06, ZBSG05] that can obtain
a general linear measurement of a signal at unit cost. Compressive imaging cameras use a digital
micro-mirror array to optically compute inner products of the image with pseudorandom binary
patterns. The image is digitally reconstructed from the projections. Popular media have showcased
this application. See Business Week (Oct. 16, 2006) and The Economist (Oct. 28, 2006).

In fact, certain types of Compressed Sensing devices are already widespread, namely CT and
MRI scanners. The detector in a Computed Tomography (CT) scanner takes a number of snapshots
or profiles of an attenuated X-ray beam as it passes through a patient. The profiles are used to
reconstruct a two-dimensional image. Each snapshot of the X-ray beam is, in essence, the line
integral of the X-ray beam through the patient (i.e., an inner product).

1.1. Desiderata for Compressed Sensing. Our premise is that, if one measures a highly com-
pressible signal, it is pointless to reconstruct a full-length copy of the signal because it will include
a huge number of small, noisy components that bear no information. Instead, a recovery algorithm
should directly identify those few components of the signal that are significant. The algorithm
should output this compressed representation directly, and its runtime should be roughly propor-
tional to the size of the representation.

Let us be more formal. We are interested in acquiring signals in Rd that are well approximated
by sparse signals with m nonzero components, where m � d. The measurement process can be
represented by an n × d matrix Ψ, where n is roughly proportional to m rather than d. Each
signal f yields a sketch v = Ψf . The recovery algorithm uses the sketch and a description
of the measurement matrix to construct a signal approximation f̂ that has only O(m) nonzero
components. We want the measurements and the algorithm to satisfy the following properties:

(1) One (randomly generated) measurement matrix Ψ is used to measure all signals. With high
probability over the random choices in its construction, it must succeed for all signals.

(2) The number of measurements is nearly optimal, namely n = m polylog(d).
(3) The algorithm must run in time poly(m, log d).
(4) Given the sketch of an arbitrary input signal, the algorithm must return a nearly optimal

m-term approximation of that signal.
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1.2. Our results. We present a linear measurement procedure that takes a near-optimal number
of measurements of a signal. We also present HHS Pursuit,1 a fully polynomial approximation
scheme that uses these measurements to construct a sparse estimate of the signal with an optimal
error bound. Moreover, this algorithm is exponentially faster than known recovery algorithms that
offer equivalent guarantees.

This section states our major theorem and two important corollaries. We establish these results
in Section 4 (and the appendices). We discuss the error bounds in Sections 1.3 and 1.4. Section
1.5 provides a comparison with related work.

Given a signal f , we write fm to denote the signal obtained by zeroing all the components of f
except the m components with largest magnitude. (Break ties lexicographically.) We refer to fm

as the head of the signal; it is the best approximation of the signal using at most m terms with
respect to any monotonic norm (such as `p). The vector f −fm is called the tail of the signal since
it contains the entries with small magnitude.

Theorem 1. Fix an integer m and a number ε ∈ (0, 1). With probability at least 0.99, the random
measurement matrix Ψ has the following property. Suppose that f is a d-dimensional signal, and
let v = Ψf be the signal sketch. Given m, ε, and v, the HHS Pursuit algorithm produces a signal
approximation f̂ with O(m/ε2) nonzero entries. The approximation satisfies∥∥f − f̂

∥∥
2
≤ ε√

m
‖f − fm‖1 .

The signal sketch has size (m/ε2) polylog(d/ε), and HHS Pursuit runs in time (m2/ε4) polylog(d/ε).
The algorithm uses working space (m/ε2) polylog(d/ε), including storage of the matrix Ψ.

In particular, note that the algorithm recovers every m-term signal without error.
The first corollary shows that we can construct an m-term signal approximation whose `2 error is

within an an additive `1 term of the optimal `2 error. One can show that this corollary is equivalent
with the theorem.

Corollary 2. Let f̂m be the best m-term approximation to the output f̂ of HHS Pursuit. Then∥∥f − f̂m

∥∥
2
≤ ‖f − fm‖2 +

2ε√
m
‖f − fm‖1 .

This result should be compared with Theorem 2 of [CRT06], which gives an analogous bound
for the (superlinear) `1 minimization algorithm. A second corollary provides an `1 error estimate.

Corollary 3. Let f̂m be the best m-term approximation to the output f̂ of HHS Pursuit. Then∥∥f − f̂m

∥∥
1
≤ (1 + 3ε) ‖f − fm‖1 .

The error bound in Corollary 3 is more intuitive but substantially weaker than the bound in
Theorem 1. One may check this point by considering a signal whose first component equals m−1/4

and whose remaining components equal d−1. The `1 error bound holds even if an algorithm fails
to identify the first signal component, but the mixed-norm error bounds do not.

1.3. Compressible signals. A compressible signal has the property that its components decay
when sorted by magnitude. These signals arise in numerous applications because one can compress
the wavelet and Fourier expansions of certain classes of natural signals [DDDV98]. A common
measure of compressibility is the weak-`p norm, which is defined for 0 < p <∞ as

‖f‖w`p

def= inf{r : |f |(k) ≤ r · k−1/p for k = 1, 2, . . . , d}.

1The initials HHS stand for “Heavy Hitters on Steroids,” which reflects the strong demands on the algorithm.
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The notation |f |(k) indicates the kth largest magnitude of a signal component. When the weak-`p

norm is small for some p < 2, the signal can be approximated efficiently by a sparse signal because

‖f − fm‖1 ≤ m1−1/p ‖f‖w`p

Theorem 1 shows that the computed approximation f̂ satisfies the error bound∥∥f − f̂
∥∥

2
≤ ε m1/2−1/p ‖f‖w`p

.

In particular, when p = 1, the error decays like m−1/2.

1.4. Optimality of error bounds. The error guarantees may look strange at first view. Indeed,
one might hope to take (m/ε2) polylog(d) measurements of a signal f and produce an m-sparse
approximation f̂ that satisfies the error bound∥∥f − f̂

∥∥
2
≤ (1 + ε) ‖f − fm‖2 .

It has been established [GMS05] that this guarantee is possible if we construct a random measure-
ment matrix for each signal. On the other hand, Cohen, Dahmen, and DeVore have shown [CDD06]
that it is impossible to obtain this error bound simultaneously for all signals unless the number of
measurements is Ω(d).

The same authors also proved a more general lower bound [CDD06]. For each p in the range
[1, 2), it requires Ω(m(d/m)2−2/p) measurements to achieve∥∥f − f̂

∥∥
2
≤ Cp m1/2−1/p ‖f − fm‖p (1.1)

simultaneously for all signals. This result holds for all possible recovery algorithms. It becomes
vacuous when p = 1, which is precisely the case delineated in Theorem 1.

It is not hard to check that the number of measurements required by our algorithm is within a
polylogarithmic factor of the lower bound.

Proposition 4. Fix p in the range [1, 2). With m(d/m)2−2/p polylog(d) measurements, the HHS
Pursuit algorithm produces for every signal f an m-term estimate f̂ such that (1.1) holds.

1.5. Related work. The major difference between our work and other algorithms for Compressed
Sensing is that we simultaneously provide

(1) a uniform guarantee for all signals,
(2) a near-optimal number of measurements,
(3) a sublinear running time, and
(4) an optimal error bound.

We discuss these points in turn.
Typically, randomized sketches guarantee that “on each signal, with high probability, the al-

gorithm succeeds.” When the application involves adaptiveness or iteration, it is much better to
have a uniform guarantees of the form “with high probability, on all signals, the algorithm suc-
ceeds.” Most approaches to Compressed Sensing yield uniform guarantees. Exceptions include
work on Orthogonal Matching Pursuit (OMP) due to Tropp–Gilbert [TG06] and the algorithms of
Cormode–Muthukrishnan [CM06] that achieve the strongest error bounds.

A major selling point for Compressed Sensing is that it uses only m polylog(d) measurements to
recover an entire class of compressible signals. Candès–Romberg–Tao [CRT06] and Donoho [Don06]
have shown that a linear programming algorithm achieves this goal. The Chaining Pursuit algo-
rithm of the current authors [GSTV06] also has this property. On the other hand, the algorithms
of Cormode–Muthukrishnan that yield a uniform guarantee require Ω(m2) measurements [CM06].

The major advantage of our work is that most recovery algorithms for Compressed Sensing
have runtimes that are at least linear in the length of the input signal. In particular, the linear
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programming technique has cost Ω(d3/2). Cormode–Muthukrishnan have developed some sublinear
algorithms whose runtimes are comparable with HHS Pursuit [CM06]. The Chaining Pursuit
algorithm has running time m polylog(d), so it is even faster than HHS Pursuit.

Chaining Pursuit is the only algorithm in the literature that achieves the first three desiderata
[GSTV06]. The error bound in Chaining Pursuit, however, is of the form∥∥f − f̂

∥∥
w`1
≤ C ‖f − fm‖1 ,

where f̂ is the m-term signal estimate produced by the algorithm. Not only is this error bound
worse than the HHS error bound, but also Chaining Pursuit is not an approximation scheme.

1.6. Roadmap. The next three sections give an overview of our approach. Section 2 provides a
detailed description of the measurement matrix required by HHS Pursuit. Section 3 states the HHS
algorithm, along with implementation details and pseudocode. Section 4 shows how to draw the
corollaries from the main theorem, and it explains how the analysis of the algorithm breaks into
two cases. The bulk of the proof is deferred to the back matter. Appendices B and C analyze the
two cases in turn. Appendix D studies the behavior of the identification matrix in detail. Finally,
Appendix E studies the properties of the estimation matrix.

2. The Measurements

This section describes a random construction of a measurement matrix Ψ. Afterward, we explain
how to store and apply the matrix efficiently. For clarity, we focus on the case ε = 1. To obtain an
approximation scheme, we substitute m/ε2 for m, which increases the costs by (1/ε)O(1).

The matrix Ψ consists of two pieces: an identification matrix Ω and an estimation matrix Φ.
We view the matrix as a linear map that acts on a signal f in Rd to produce a two-part sketch.

Ψf =

Ω

Φ

f =

vid

vest

 .

The first part of the sketch, vid = Ωf , is used to identify large components of the signal quickly.
The second part, vest = Φf , is used to estimate the size of the identified components. Decoupling
the identification and estimation steps allows us to produce strong error guarantees.

2.1. Row tensor products. The identification matrix zeroes out many different subsets of the
signal components to isolate large components from each other, and then it computes inner products
between these restricted signals and a group testing matrix. We construct this restriction map by
applying several different restrictions in sequence. We introduce notation for this operation.

If q and r are 0–1 vectors, we can view them as masks that determine which entries of a signal
appear and which ones are zeroed out. For example, the signal q ◦ f is the signal f restricted
the components in q that equal one. (The notation ◦ indicates the Hadamard, or componentwise,
product.) The sequential restriction by q and r can be written as (r ◦ q) ◦ f . Given 0–1 matrices
Q and R, we can form a matrix that encodes sequential restrictions by all pairs of their rows. We
express this matrix using the row tensor product, as in [GSTV06, CM06].

Definition 5. Let Q be a q × d matrix and R an r × d matrix with rows {qi : 0 ≤ i < q} and
{rk : 0 ≤ k < r}, respectively. The row tensor product A = Q⊗r R is a qr × d matrix whose rows
are {qi ◦ rk : 0 ≤ i < q, 0 ≤ k < r}.
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A =


A(1)

A(2)

...

A(J)

 =


S(1) ⊗r R(1)

S(2) ⊗r R(2)

...

S(J) ⊗r R(J)

 where S(j) =


S

(j)
1

S
(j)
2

...

S
(j)
Tj

 and R(j) =


R

(j)
1

R
(j)
2

...

R
(j)
Uj


Figure 1. The structure of the isolation matrix A. See Section 2.2.2 for details.

2.2. The identification operator. The identification matrix Ω is a 0–1 matrix with dimensions
O(m log2(m) log(d/m) log2(d))×d. It consists of a combination of a structured deterministic matrix
and ensembles of simple random matrices. Formally, Ω is the row tensor product Ω = B ⊗r A.
The bit-test matrix B has dimensions O(log d) × d, and the isolation matrix A has dimensions
O(m log2(m) log(d/m) log d)× d.

2.2.1. The bit-test matrix. The matrix B is a deterministic matrix that contains a row of 1s ap-
pended to a 0–1 matrix B0. The matrix B0 has dimensions log2dde × d. Its kth column contains
the binary expansion of k. Therefore, the inner product of the ith row of B0 with a signal fT sums
the components of f that have bit i equal to one. The bit-test matrix with d = 8 is

B =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 .

In coding theory, B is called the parity check matrix for the extended Hamming code.

2.2.2. The isolation matrix. The isolation matrix A is a randomly constructed 0–1 matrix with a
hierarchical structure. It consists of O(log2 m) blocks A(j) labeled by j = 1, 2, 4, 8, . . . , J , where
J = O(m). See Figure 1.

Each block, in turn, has further substructure as a row tensor product of two 0–1 matrices:
A(j) = R(j) ⊗r S(j). The second matrix S(j) is called the sifting matrix, and its dimensions are
O(j log(d/j))×d. The first matrix R(j) is called the noise reduction matrix, and its dimensions are
O((m/j) log(m) log d)× d.

2.2.3. The sifting matrix. The purpose of the sifting matrix S(j) is to isolate about j distinguished
signal positions from each other. It is a random 0–1 block matrix, as shown in Figure 1. Each
submatrix of S(j) has dimensions O(j)× d, and the number of submatrices is Tj = O(log(d/j)).

The Tj submatrices are fully independent from each other. Each of the submatrices encodes a
O(j)-wise independent random assignment of each signal position to a row. The (i, k) entry of the
matrix equals one when the kth signal component is assigned to the ith row. Therefore, with high
probability, the componentwise product of the ith row of the matrix with f generates a copy of the
signal with d/O(j) components selected and the others zeroed out. For example,

S
(j)
t =

0 1 0 0 1 1 0
1 0 0 1 0 0 0
0 0 1 0 0 0 1

 .

This submatrix can also viewed as a random linear hash function from the space of d keys onto a
set of O(j) buckets.
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2.2.4. The noise reduction matrix. The purpose of the noise reduction matrix R(j) is to attenuate
the noise in a signal that has a single large component. It is also a random 0–1 block matrix, as
seen in Figure 1. Each submatrix R

(j)
u has dimensions O(

√
(m/j) log m)×d, and the total number

of submatrices Uj = O(
√

(m/j) log m log d).
The submatrices are fully independent from each other. Each one encodes a pairwise independent

assignment of each signal positions to a row. The (i, k) entry of the matrix equals one when the
kth signal component is assigned to the ith row, as in the sifting matrix. Each submatrix can be
viewed as a random linear hash function from d keys to O(

√
(m/j) log m) buckets.

2.3. The estimation matrix. The estimation matrix Φ is a randomly constructed matrix with
complex entries. Let λ = O(log4 d) and L = O(m

√
log m). Choose q ≥ λL. The estimation matrix

consists of q rows drawn independently at random from the d×d discrete Fourier transform (DFT)
matrix. The matrix Φ is scaled by q−1/2 so its columns have unit `2 norm.

2.4. Storage costs. The bit test matrix requires no storage as it is straightforward to generate as
needed. The isolation and estimation matrices can be generated from short pseudorandom seeds,
as needed.

The total storage for the estimation matrix is q log(d) = O(m
√

log m log5 d) because it takes log d
bits to store the index of each of the q rows drawn from the DFT matrix.

The total storage for the isolation matrix A is O(m log3 d), which is negligible compared with
the cost of the estimation matrix. To obtain the bound for the isolation matrix, we examine the
sifting matrices and the noise reduction matrices separately.

First, observe that each block S
(j)
t of the sifting matrix requires O(j log d) bits.2 Since there

are Tj = O(log(d/j)) independent blocks for each j, we have a space bound O(j log2 d) for S
(j)
t .

Summing over j = 1, 2, 4, . . . ,Cm, we find that the sifting matrices require O(m log2 d) bits.
Meanwhile, each block R

(j)
u of the noise reduction matrix requires O(log d) bits. There are

Uj = O(
√

m/j log m log d) blocks, giving a space bound O(
√

m/j log m log2 d) for R(j). Summing
on j, we see that the noise reduction matrices require space O(m1/2+o(1) log2 d).

2.5. Encoding time. The encoding time depends on the technology for computing measurements.
If we can compute inner products in constant time, the encoding time is proportional to the number
of measurements. This section focuses on the case where the cost is proportional to the minimal
sparsity of the vectors that appear in the inner product. This analysis plays a role in determining
the runtime of the algorithm.

We show that the time required to measure a signal f that has exactly one nonzero component
is O(m

√
log m log4(d)) word operations. This analysis implies a time bound for measuring a vector

with more nonzeros. The time (in word operations) to generate the estimation matrix Φ and to
multiply Φ by f dominates the time (in bit operations) to generate the identification matrix Ω
and to multiply Ω by f .

The time cost for measuring a nonzero component ` of a signal with the estimation operator Φ
is q = O(m

√
log m log4 d), assuming column ` of Φ has been computed. The (k, `) entry of Φ is

simply q−1/2 exp{−2πi tkω`/d}, which is computed from tk and ω` in a constant number of word
operations.

We now turn to the identification matrix Ω. Each of its columns contains roughly
√

m nonzeros,
so we can ignore the cost to apply the matrix. To generate a column of Ω, we form the sifting
matrices and noise reduction matrices and then compute their row tensor product. Afterward, we
form the row tensor product with the bit-test matrix. The total cost is O(m log4 d) bit operations,
as follows.

2We generate the random variables using a polynomial of degree j over a field of size around d. Without loss of
generality, we may assume that m and d are powers of two.
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To construct S
(j)
t , one can use a polynomial of degree O(j) over a field of size approximately d

to obtain O(j)-wise independent random variables. This step must be repeated Tj = O(log(d/j))
times, for a total of O(j log(d/j)) field operations over a field of size around d. Therefore, to
generate S(j) costs O(j log3 d) bit operations. To generate each R

(j)
u requires log d operations, so

the cost to generate R(j) is roughly
√

m, which is negligible. To build R(j) ⊗r S(j) from its factors
costs Tj ·Uj = O(

√
m log3 d), so it can also be ignored. Summing on j, we find that the bit time to

construct A is O(m log3 d) bit operations. The row tensor product with the bit-test matrix gives
an additional factor of O(log d) bit operations.

To summarize, the total time cost to use Ψ to measure a signal with k nonzero entries is
O(km polylog(d)). During the HHS Pursuit algorithm, we must encode a list L of O(m

√
log m) sig-

nals with one nonzero component each. The time cost for this encoding procedure is m2 polylog(d)
if we use the straightforward algorithm for matrix–vector multiplication.3

3. The HHS Algorithm

The HHS algorithm is an iterative procedure, where each iteration has several stages. The first
stage is designed to identify a small set of signal positions that carry a constant proportion of
the remaining energy. The second stage estimates the values of the signal on these components.
The third stage adds the new approximation to the old approximation and prunes it so that it
contains only O(m) nonzero components. The fourth stage encodes the new approximation using
the measurement matrix and subtracts it from the initial sketch to obtain a sketch of the current
residual signal. See Figure 2 for pseudocode. For brevity, we use the term spike to refer to the
location and size of a single signal component.

The algorithm also employs a preprocessing phase. The preprocessing step encodes the signal
with the Chaining Pursuit measurement matrix C and executes the Chaining Pursuit algorithm
to produce a good initial approximation ainit of the input signal. This initial approximation has
at most m nonzero components. We encode ainit with the HHS measurement matrix and subtract
it from the original chaining sketch Ψf to obtain a sketch s of the initial residual f − ainit. See
Figure 3 for pseudocode.

The `2 norm of the residual after preprocessing is proportional with m and the optimal `1 error
with m terms. This fact ensures the algorithm recovers sparse signals exactly and that it requires
only O(log m) iterations to reduce the error by a polynomial factor in m. The correctness of the
preprocessing phase follows from our previous work [GSTV06].

If we do not run the optional preprocessing step, then the initial residual sketch s and list L of
spike locations and values are Ψf and empty, respectively. In that case, one can run the algorithm
for O(log ∆) iterations, where ∆ = ‖f‖1 / ‖f − fm‖1 is the dynamic range of the problem.

3.1. Comparison with other sublinear algorithms. HHS Pursuit resembles a number of sub-
linear approximation algorithms in the literature [GSTV06, GMS05, CM06]. HHS Pursuit differs
from these other algorithms in the way it makes progress toward approximating the signal. The
other algorithms search for large spikes in a greedy fashion, and they cannot reject a spike once it
has been introduced into the approximation. HHS Pursuit, on the other hand, searches for collec-
tions of spikes that carry a lot of energy. This collection may include large spikes, or it may include
a relatively large number of small spikes. Spikes can be removed from the list during the course
of the algorithm if their values become small. This approach allows us to maintain a small list of
spikes that carries more and more of the signal energy.

3Note that encoding requires us to compute a partial discrete Fourier transform with unequally-spaced points on
the domain and codomain of the transform. We are not aware of any nontrivial algorithm for this problem, despite
the existence of faster algorithms [Bey95] for problems that are superficially similar.
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Algorithm: HHS Pursuit

Inputs: The number m of spikes, the HHS measurement matrix Ψ,
the initial sketch v = Ψf, the initial list L of m spikes,
the initial residual sketch s

Output: A list L of O(m) spikes

For each iteration k = 0, 1, . . . ,O(log m) {
For each scale j = 1, 2, 4, . . . ,O(m) {

Initialize L′ = ∅.
For each row of A(j) {

Use the O(log d) bit tests to identify one spike location
}
Retain a list L′j of the spike locations

that appear Ω(
√

m/j log m log(d/j) log d) times each
Update L′ ←− L′ ∪ L′j

}
Estimate values for the spikes in L′ by forming Φ†

L′sest

with Jacobi iteration
Update L by adding the spikes in L′

If a spike is duplicated, add the two values together
Prune L to retain the O(m) largest spikes
Encode these spikes with measurement matrix Ψ
Subtract encoded spikes from original sketch v to form

a new residual sketch s
}

Figure 2. Pseudocode for the HHS Pursuit algorithm

3.2. Implementation. The HHS Pursuit algorithm is easily implemented with standard data
structures. There are a few steps that require a short discussion. The Jacobi iteration is a standard
algorithm from numerical analysis. See Lemma 13 for details of the application here.

The bit tests also require explanation. Each row of the isolation matrix A effectively generates
a copy of the input signal with many locations zeroed out. The bit-test matrix calculates inner
products between its rows and the restricted signal. The bit tests attempt to use these numbers to
find the location of the largest entry in the restricted signal.

Suppose that the bit tests yield the following log2dde+ 1 numbers:

c, b(0), b(1), . . . , b(log2dde − 1).

The number c arises from the top row of the bit test matrix, so it is the sum of the components of
the restricted signal. We estimate a spike location as follows. If |b(i)| ≥ |c− b(i)|, then the ith bit
of the estimated location is zero. Otherwise, the ith bit of the estimated location is one. It is clear
that that the estimated location is correct if the restricted signal contains one large component,
and the remaining components have `1 norm smaller than the magnitude of the large component.

We encode the recovered spikes by accessing the columns of the identification and estimation
matrices corresponding to the locations of these spikes and then re-scaling these columns by the
spike values. Note that this step requires us to generate arbitrary columns.

3.3. Resource Requirements. In Section 2.4, we showed that we need space m polylog(d) to store
pseudorandom seeds from which columns of the measurement operator can be generated as needed,
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Algorithm: (Optional) Chaining Pursuit Preprocessing

Inputs: The number m of spikes, the Chaining measurement matrix C,
the Chaining sketch w = Cf, the HHS measurement matrix Ψ,
the HHS sketch v = Ψf

Outputs: A list L of m spikes, the residual sketch s

Run ChainingPursuit(m, w, C) to obtain a list L of m spikes
Encode the spikes in L using the HHS measurement matrix Ψ.
Subtract the encoded spikes from v to form the residual sketch s.

Figure 3. Pseudocode for Chaining Pursuit Preprocessing

in time m polylog(d) each. In Lemma 13, we review how to apply Φ†
L′sest via Jacobi iteration in time

m2 polylog(d). It follows that our algorithm requires m polylog(d) working space and m2 polylog(d)
time. Our algorithm becomes an approximation scheme by substituting m/ε2 for m. This increases
the space to (m/ε2) polylog(d/ε) and the overall time cost to (m2/ε4) polylog(d/ε).

4. Top-Level Analysis of the Iteration

This section describes, at the highest level, why HHS works. We establish the following result.

Theorem 6. Fix m. Assume that Ψ is a measurement matrix that satisfies the conclusions of
Lemmas 19 and 28. Suppose that f is a d-dimensional signal. Given the sketch v = Ψf , the
HHS Pursuit algorithm produces a signal f̂ with at most 8m nonzero entries. This signal estimate
satisfies ∥∥f − f̂

∥∥
2
≤ 20√

m
‖f − fm‖1 .

We give an overview of the proof in the next subsection. Let m and ε be fixed. Observe that we
can apply the theorem with m′ = m/ε2 to obtain a signal estimate f̂ with 8m′ terms that satisfies
the error bound ∥∥f − f̂

∥∥
2
≤ 20ε√

m
‖f − fm′‖1 .

The running time increases by a factor of (1/ε4) polylog(1/ε). This leads to Theorem 1.
Next, we establish Corollary 2. After running the algorithm, we can prune the final approxima-

tion f̂ to retain only its m largest terms f̂m. Calculate that∥∥f − f̂m

∥∥
2
≤

∥∥f̂ − f̂m

∥∥
2
+

∥∥f − f̂
∥∥

2

≤
∥∥f̂ − fm

∥∥
2
+

∥∥f − f̂
∥∥

2

≤ ‖f − fm‖2 + 2
∥∥f − f̂

∥∥
2

≤ ‖f − fm‖2 +
40ε√

m
‖f − fm′‖1

≤ ‖f − fm‖2 +
40ε√

m
‖f − fm‖1 .

The first and third inequalities follow from the triangle inequality. The second inequality holds
because f̂m is a best m-term approximation to f̂ . The fifth inequality holds because fm′ is a best
m′-term approximation to f , while fm is an approximation with fewer terms.

The proof of Corollary 3 is somewhat more involved, so we postpone it to Appendix A.
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4.1. The proof. Let f denote our target signal. The goal of the algorithm is to identify a small
set of signal components that carry most of the energy in the signal and to estimate the magnitudes
of those components well. We argue that, when our signal estimate is poor, the algorithm makes
substantial progress toward this goal. When our estimate is already good, the algorithm does not
make it much worse.

The Chaining Preprocessing step is designed to produce a good initial approximation so that
fewer iterations of the HHS algorithm are necessary to obtain an approximation of the required
quality. The output of the preprocessing step is a signal ainit that satisfies∥∥ainit

∥∥
0
≤ m and

∥∥f − ainit
∥∥

2
≤ m ‖f − fm‖1 .

These claims follow from Theorem 2 in [GSTV06], provided that m ≥ C log m for an absolute
constant C.

Let a denote our approximation to the signal f at the beginning of an iteration. The pruning
step of the algorithm ensures that we have the loop invariant ‖a‖0 ≤ 8m. We will abbreviate
p = 8m when it makes the argument clearer.

In a given iteration, the performance of the algorithm depends on the size of the residual.
In Appendix B, we establish that if the approximation is poor then the algorithm improves it
substantially. More precisely, assume that the current approximation a satisfies

‖f − a‖2 >
1√
m
‖f − fm‖1 . (Case 1)

Then one iteration produces a new approximation anew for which

‖f − anew‖2 ≤
1
2
‖f − a‖2 .

On the other hand, when the approximation is good, then the algorithm produces a new approx-
imation that is not too bad. Suppose that a satisfies

‖f − a‖2 ≤
1√
m
‖f − fm‖1 . (Case 2)

Then the next approximation anew satisfies

‖f − anew‖2 ≤
20√
m
‖f − fm‖1 .

We prove this result in Appendix C.
After 1.5 log2 m iterations, we claim that the algorithm produces a final approximation afin that

satisfies ∥∥f − afin
∥∥

2
≤ 20√

m
‖f − fm‖1 .

First, note that the condition (Case 1) must fail during some iteration or else∥∥f − afin
∥∥

2
≤

(
1
2

)1.5 log2 m ∥∥f − ainit
∥∥

1
≤ 1√

m
‖f − fm‖1 ,

which is a contradiction. In the subsequent iterations, one of two events must occur. Either

‖f − a‖2 ≤
1√
m
‖f − fm‖1 .

or else
1√
m
‖f − fm‖1 < ‖f − a‖2 ≤

20√
m
‖f − fm‖1 .

In both cases, the arguments above show that

‖f − anew‖2 ≤
20√
m
‖f − fm‖1 .
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Appendix A. Proof of the `1 error bound

In this appendix, we establish Corollary 3, the fact that the pruned output of HHS Pursuit also
satisfies an `1 error bound.

Corollary 3. Let f̂m be the best m-term approximation to the output f̂ of HHS Pursuit. Then∥∥f − f̂m

∥∥
1
≤ (1 + 3ε) ‖f − fm‖1 .

Proof. On input f , the output f̂ of the HHS algorithm satisfies∥∥f − f̂
∥∥

2
≤ ε√

m
‖f − fm‖1 . (A.1)

We partition {1, 2, 3, . . . , d} into two pieces as follows. Let H = supp(fm) ∪ supp(f̂m) and let Hc

denote the complement of H. We write f
∣∣
A

to denote the signal restricted to its components in a
set A. Now make a calculation:∥∥f − f̂m

∥∥
1

=
∥∥(f − f̂m)

∣∣
H

∥∥
1
+

∥∥(f − f̂m)
∣∣
Hc

∥∥
1

≤
∥∥(f̂ − f̂m)

∣∣
H

∥∥
1
+

∥∥(f − f̂)
∣∣
H

∥∥
1
+

∥∥(f − f̂m)
∣∣
Hc

∥∥
1

≤
∥∥(f̂ − fm)

∣∣
H

∥∥
1
+

∥∥(f − f̂)
∣∣
H

∥∥
1
+

∥∥(f − f̂m)
∣∣
Hc

∥∥
1

≤
∥∥(f − fm)

∣∣
H

∥∥
1
+ 2

∥∥(f − f̂)
∣∣
H

∥∥
1
+

∥∥(f − f̂m)
∣∣
Hc

∥∥
1

=
∥∥f − fm

∥∥
1
+ 2

∥∥(f − f̂)
∣∣
H

∥∥
1

≤
∥∥f − fm

∥∥
1
+ 2
√

2m
∥∥(f − f̂)

∣∣
H

∥∥
2

≤ ‖f − fm‖1 + 2
√

2 ε ‖f − fm‖1
< (1 + 3ε) ‖f − fm‖1 .

The first line follows from the fact that H and Hc are disjoint. We use the triangle inequality in
the second and fourth inequalities. In the third inequality, we use the fact that f̂m bests fm as an
m-term representation of f̂ , along with the fact that both f̂m and fm are supported on H. The
fifth line relies on the observation that f − f̂m = f = f − fm on Hc and the disjointness of H
and Hc. The sixth inequality depends on |H| ≤ 2m and Cauchy–Schwarz. The seventh inequality
removes the restriction to H and invokes the mixed-norm approximation bound (A.1). �

Appendix B. Case 1: Large Residual

Suppose that (Case 1) is in force at the beginning of an iteration. This section shows that the
iteration reduces the error in the approximation by a factor of two.

B.1. Signal Properties. This section describes some generic properties of signals that are impor-
tant in the analysis. First, we show that the `2 norm of the tail of a signal is much smaller than
the `1 norm of the entire signal.

Lemma 7. For any signal g, it holds that

‖g − gt‖2 ≤
1

2
√

t
‖g‖1 .

In particular, for g = f − fm, we have

‖f − fp‖2 ≤
1

2
√

7m
‖f − fm‖1

since p−m = 7m.
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Proof. Let µ denote the magnitude of the (t + 1)th largest entry of g. If µ = 0, the result clearly
holds. Otherwise, we can make the following calculation:

‖g − gt‖2
‖g‖1

≤
√
‖g − gt‖1 ‖g − gt‖∞
‖gt‖1 + ‖g − gt‖1

≤
√
‖g − gt‖1 · µ

tµ + ‖g − gt‖1

≤
√

tµ2

tµ + tµ

=
1

2
√

t
.

The last inequality holds because the function x 7→
√

bx/(c+x) achieves its maximum at x = c. �

When the condition (Case 1) holds, most of the energy in the signal is concentrated in its largest
components. Let r = f − a denote the residual signal. The number α is this lemma in a constant
that will be fixed later.

Lemma 8 (Heads and Tails). Suppose that (Case 1) is in force. Fix a number α ≥ 1, and let M
be the smallest power of two that exceeds

16α2m + 9m.

Then the following bounds hold.

‖r‖2 ≥ α ‖r − rM‖2 (B.1)

‖r‖2 ≥
α√
M
‖r‖1 . (B.2)

Proof. The loop invariant ‖a‖0 ≤ 8m implies that the total number of terms in the signal (a−fm)
is not more than 9m. Therefore, relation (Case 1) implies that

‖r‖2 = ‖f − a‖2 >
1√
m
‖(f − a) + (a− fm)‖1

≥ 1√
m
‖r − r9m‖1

=
3√
9m
‖r − r9m‖1 . (B.3)

because r9m is the best approximation to r = f − a using 9m terms. Next, apply Lemma 7 to the
residual tail g = r − r9m with t = 16α2m to obtain

‖r − r9m‖1 ≥ 2
√

16α2m ‖r − rM‖2 . (B.4)

Introduce this relation into (B.3) to reach

‖r‖2 ≥ 8α ‖r − rM‖2 .

This estimate implies (B.1).
To develop the second bound, use Cauchy–Schwarz to see that

3 ‖r‖2 ≥ 3 ‖r9m‖2 ≥
3√
9m
‖r9m‖1 .

Add this inequality to (B.3) and combine the `1 norms to obtain

4 ‖r‖2 ≥
3√
9m
‖r‖1 .
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On account that
√

M/9m > (4/3)α, we conclude that (B.2) holds. �

B.2. Identification. In Section D, we prove that the identification step generates a list L of signal
positions that satisfies

|L| = O(M
√

log M).
Now we argue that the signal positions in the list carry most of the energy in the residual signal.
This fact ensures that the iteration is making progress toward finding significant signal positions.
Moreover, it guarantees that the estimation step can accurately predict the values of the signal
positions listed in L.

Lemma 9 (Identification). Suppose that the condition (Case 1) holds. Then the identification step
creates a list L of signal positions such that∥∥r

∣∣
Lc

∥∥
2
≤ 4α−1 ‖r‖2

1√
M

∥∥r
∣∣
Lc

∥∥
1
≤ 4α−1 ‖r‖2 .

Proof. The parts of the residual that we miss fall into four categories. In the first three cases, we
show that we can simply disregard parts of the residual that have little energy. The fourth case
requires some serious work, and we defer the details until Section D.

Let H index the M components of the residual that are largest in magnitude, breaking any
ties lexicographically. We first consider the residual tail, which consists of the components in Hc.
Lemma 8 shows that ∥∥r

∣∣
Hc

∥∥
2
≤ α−1 ‖r‖2

1√
M

∥∥r
∣∣
Hc

∥∥
1
≤ α−1 ‖r‖2 .

We decrease the left-hand sides by restricting the residual to the smaller set of components Hc∩Lc.
Next, look at the small components of the residual indexed in H. Let H1 be the subset of

components in H that have magnitude no greater than M−1 ‖r‖1. Since H1 contains no more than
M components, ∥∥∥r

∣∣
H1

∥∥∥
2
≤

(
M · 1

M2
‖r‖21

)1/2

.

Turning to Lemma 8, we see that ∥∥∥r
∣∣
H1

∥∥∥
2
≤ α−1 ‖r‖2 .

For the remaining two parts, we require a few definitions. Let s be a power of two between 1
and M/2, and note that s takes log2 M values. We define the sth band of the residual to be the set

Bs =
{

i :
1
2s
‖r‖1 < |ri| ≤

1
s
‖r‖1

}
.

We say that the sth band is insignificant if∥∥∥r
∣∣
Bs

∥∥∥
2
≤ α−1√

log2 M
‖r‖2 . (B.5)

Otherwise, the sth band is significant.
Let H2 be the subset of H that lists components in the insignificant bands. Since that are at

most log2 M insignificant bands, ∥∥∥r
∣∣
H2

∥∥∥
2
≤ α−1 ‖r‖2 .
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Fourth, define H3 to be the subset of H that lists components in the significant bands that do
not appear in the list L. In Section D, we will prove that∥∥∥r

∣∣
H3

∥∥∥
2
≤ α−1 ‖r‖2 .

Adding up the contributions to the residual from H1, H2, and H3, we have∥∥∥r
∣∣
H1∪H2∪H3

∥∥∥
2
≤ 3α−1 ‖r‖2 .

To obtain the `1 norm estimate, note that |H1 ∪H2 ∪H3| ≤ |H| = M . Hence
1√
M

∥∥∥r
∣∣
H1∪H2∪H3

∥∥∥
1
≤

∥∥∥r
∣∣
H1∪H2∪H3

∥∥∥
2
≤ 3α−1 ‖r‖2 .

Add the contribution from Lc ∩Hc to each bound to complete the proof. �

B.3. Estimation. This section establishes that the estimation step produces an approximation b
to the residual r that lies relatively close to the residual, even though it contains O(M

√
log M)

nonzero entries.
First, we state two technical results that are essential to the proof. We discuss these results in

more detail in Section E.

Lemma 10 (Restricted Isometry). The estimation matrix Φ has the property that every |L|-column
submatrix A satisfies

1
2
‖x‖2 ≤ ‖Ax‖2 ≤

3
2
‖x‖2 .

for every vector x.

Lemma 11. The estimation matrix Φ has the property that

‖Φx‖2 ≤
3
2

[
‖x‖2 +

1√
M
‖x‖1

]
.

for every vector x.

Let L be the list of signal components generated by the identification step, and define ΦL to be
the estimation matrix restricted to these L columns. The estimation step uses an iterative algorithm
to apply the pseudoinverse Φ†

L to the estimation sketch sest = Φr. This yields an approximation
to the values of the signal on the set L.

Lemma 12. Suppose that the list L of coefficient positions satisfies the conclusions of Lemma 9.
Then the estimation step produces an approximation b of the residual r that satisfies

‖r − b‖2 ≤ 0.15 ‖r‖2 .

Proof. The ideal approximation bideal is calculated by restricting the estimation matrix to L and
applying its pseudoinverse to the current data:

bideal
∣∣
L

= Φ†
LΦr = r

∣∣
L

+ Φ†
LΦ(r

∣∣
Lc).

The vector bideal
∣∣
Lc is identically zero. It follows that∥∥r − bideal

∥∥
2
≤

∥∥r
∣∣
Lc

∥∥
2
+

∥∥∥Φ†
LΦ(r

∣∣
Lc)

∥∥∥
2
. (B.6)

Lemma 9 establishes ∥∥r
∣∣
Lc

∥∥
2
≤ 4α−1 ‖r‖2 . (B.7)

It remains to estimate the second norm on the right-hand side of (B.6).
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Lemma 10, the restricted isometry bound, shows that
∥∥Φ†

L

∥∥
2,2
≤ 2. Applying this bound, we

obtain ∥∥∥Φ†
LΦ(r

∣∣
Lc)

∥∥∥
2
≤ 2

∥∥Φ(r
∣∣
Lc)

∥∥
2
.

Next, bound the right-hand side via Lemma 11.∥∥∥Φ†
LΦ(r

∣∣
Lc)

∥∥∥
2
≤ 3

[∥∥r
∣∣
Lc

∥∥
2
+

1√
M

∥∥r
∣∣
Lc

∥∥
1

]
.

Introduce the estimates from Lemma 9 to reach∥∥∥Φ†
LΦ(r

∣∣
Lc)

∥∥∥
2
≤ 24α−1 ‖r‖2 . (B.8)

Substitute (B.7) and (B.8) into (B.6) to find∥∥r − bideal
∥∥

2
≤ 28α−1 ‖r‖2 .

There is an additional wrinkle that occurs because the algorithm uses an iterative procedure to
apply the pseudoinverse. As a result, the computed approximation b may be slightly worse than
the ideal approximation bideal. By performing a sufficient number of iterations, we can ensure that∥∥b− bideal

∥∥
2
≤ 2α−1 ‖r‖2 , (B.9)

whence ∥∥r − b
∥∥

2
≤ 30α−1 ‖r‖2 .

By choosing α to be a large enough constant, such as 200, we obtain the required estimate. �

Finally, we prove that we need only perform a small number of iterations of Jacobi’s algorithm
to apply the pseudoinverse Φ†

L = (Φ∗
LΦL)−1Φ∗

L to a vector and still achieve sufficient precision.

Lemma 13. To compute Φ†
L(Φr) with precision sufficient for Inequality (B.9) requires a constant

number of iterations of Jacobi’s algorithm. The cost of each iteration is equivalent to the cost of
applying Φ∗

LΦL to a vector.

Proof. Define x0 = 0. Jacobi’s algorithm defines a sequence by

xk = (I−Φ∗
LΦL)xk−1 + Φ∗

L(Φr).

The standard analysis of Jacobi’s algorithm shows that∥∥xk − bideal
∥∥

2
≤ ‖I−Φ∗

LΦL‖k
∥∥x0 − bideal

∥∥
2
.

According to Lemma 10, the norm of the iteration matrix is at most 0.75. It is easy to see from
the last proof that ‖bideal‖2 ≤ 2 ‖r‖2. Therefore,∥∥xk − bideal

∥∥
2
≤ 2α−1 ‖r‖2 .

after at most k = − log α/ log(0.75) iterations. �

B.4. Pruning. The estimation step produces an approximation b that is relatively close to r and
has a small number of nonzero components. The pruning step combines this approximation with
the previous approximation and extracts the most significant components to obtain a very sparse
new approximation to the input signal. We need to make sure that the new approximation reduces
the residual substantially.

More formally, the current residual is r = f − a where a is the current approximation to the
signal. We add the vector b to a to obtain an overall approximation c = a + b. The pruning step
computes a new signal approximation anew = cp, the best p-term approximation to c.
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Lemma 14. Suppose that the condition (Case 1) holds. The error in the pruned approximation cp

satisfies

‖f − cp‖2 ≤
1
2
‖f − a‖2 .

Proof. We make the following calculation.

‖f − cp‖2 ≤ ‖f − c‖2 + ‖c− cp‖2 .

Since cp is the best approximation to c using p terms, we increase the error by replacing it with
the p-sparse vector fp. So

‖f − cp‖2 ≤ ‖f − c‖2 + ‖c− fp‖2
≤ 2 ‖f − c‖2 + ‖f − fp‖2
= 2 ‖r − b‖2 + ‖f − fp‖2 . (B.10)

Lemma 12 bounds the first term and Lemma 7 bounds the second term, hence

‖f − cp‖2 ≤ 0.3 ‖r‖2 +
1

2
√

7m
‖f − fm‖1 .

Since condition (Case 1) is in force and (2
√

7)−1 < 0.2, we arrive at

‖f − cp‖2 ≤ (0.3 + 0.2) ‖f − a‖2 .

�

In summary, when condition (Case 1) obtains, an iteration of the algorithm reduces the `2 norm
of the residual by a factor of two.

Appendix C. Case 2: Small Residual

Suppose that (Case 2) is in force at the beginning of an iteration. This section shows that the
iteration produces a new approximation to the signal that is not much worse than the current
approximation.

C.1. Signal Properties. First, we establish a norm property of the residual r = f − a that is
important in the subsequent analysis.

Lemma 15. When condition (Case 2) is in force, then

‖r‖1 ≤ 6 ‖f − fm‖1 .

Proof. First, note that

‖f − a‖1 ≤ ‖f − fp‖1 + ‖fp − a‖1
≤ ‖f − fm‖1 + ‖fp − a‖1 . (C.1)

Since the vector (fp − a) has at most 2p nonzero components and p = 8m, it follows that

‖fp − a‖1 ≤
√

2p ‖fp − a‖2
≤ 4
√

m
[
‖f − fp‖2 + ‖f − a‖2

]
.

According to Lemma 7,

‖f − fp‖2 ≤
1

2
√

7m
‖f − fm‖1 .

Since (Case 2) holds,

‖f − a‖2 ≤
1√
m
‖f − fm‖1 .
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Introducing the last three bounds into (C.1), we obtain

‖f − a‖2 ≤
[
1 +

4
√

m

2
√

7m
+

4
√

m√
m

]
‖f − fm‖1 .

A numerical calculation shows that the bracket is no greater than 6, which completes the proof. �

C.2. Identification. Under (Case 2), the identification step may fail utterly in its quest to find
the largest components remaining in the residual. As we check in Section D, it still produces a list
L of signal positions that satisfies

|L| = O(M
√

log M).

This is the only property we require.

C.3. Estimation. We much ensure that the estimation step does not perform too badly. That is,
we must show that it does not yield such inaccurate estimates for the signal positions in L that the
subsequent approximation suffers. We can establish this fact using only the hypothesis that the
residual is small, the bound on the list size, and the properties of the estimation matrix.

Lemma 16. Suppose that condition (Case 2) is in effect. Then the estimation step produces an
approximation b of the residual r that satisfies

‖r − b‖2 ≤ 8.5 ‖r‖2 +
1√
m
‖f − fm‖1 .

Proof. As in Lemma 12, the ideal approximation bideal satisfies∥∥r − bideal
∥∥

2
≤

∥∥r
∣∣
Lc

∥∥
2
+

∥∥Φ†
LΦ(r

∣∣
Lc)

∥∥
2
. (C.2)

Since the list L is not too large, Lemma 10 yields
∥∥Φ†

L

∥∥
2,2
≤ 2. Apply this bound and use Lemma

11 to reach ∥∥r − bideal
∥∥

2
≤

∥∥r
∣∣
Lc

∥∥
2
+ 3

[∥∥r
∣∣
Lc

∥∥
2
+

1√
M

∥∥r
∣∣
Lc

∥∥
1

]
.

Drop the restriction to Lc, which increases all the norms on the right-hand side:∥∥r − bideal
∥∥

2
≤ ‖r‖2 + 3

[
‖r‖2 +

1√
M
‖r‖1

]
.

Since
√

M > 4
√

m, Lemma 15 and condition (Case 2) allow that

1√
M
‖r‖1 ≤

6
4
√

m
‖f − fm‖1 ≤ 1.5 ‖r‖2 .

We conclude that ∥∥r − bideal
∥∥

2
≤ 8.5 ‖r‖2 .

We are unable to compute bideal exactly with an iterative algorithm, but we may perform sufficient
iterations so that the calculated approximation b satisfies∥∥b− bideal

∥∥
2
≤ 1√

m
‖f − fm‖1 .

Apply the triangle inequality to complete the argument. �

Using an argument very similar to Lemma 13, we can show that a constant number of iterations
of Jacobi suffice to determine bideal within the required tolerance.
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C.4. Pruning. As before, the pruning step takes the overall approximation c = (a+b) and prunes
it to its largest p terms cp. This vector cp will become the new approximation anew. We must
check that this new approximation is not too poor.

Lemma 17. Suppose that condition (Case 2) is in force. The error in the pruned approximation
cp satisfies

‖f − cp‖2 ≤
20√
m
‖f − fm‖1 .

Proof. The argument is similar to the proof of Lemma 14. In particular, we have the analog of
(B.10):

‖f − cp‖2 ≤ 2 ‖r − b‖2 + ‖f − fp‖2 .

We use Lemma 16 to bound the first term and Lemma 7 to bound the second term, whence

‖f − cp‖2 ≤ 17 ‖r‖2 +
2√
m
‖f − fm‖1 +

1
2
√

7m
‖f − fm‖1 .

Since condition (Case 2) is in effect,

‖f − cp‖2 ≤
1√
m

[
19 +

1
2
√

7

]
‖f − fm‖1 .

Conclude by noting that the bracket is less than 20. �

Appendix D. Identification, in Detail

The identification matrix Ω = B ⊗r A is a complicated thing. We can best understand its
behavior by studying its pieces separately.

The isolation matrix A consists of log2 M blocks A(j), where j = 1, 2, 4, 8, . . . ,M/2:

A =


A(1)

A(2)

...

A(M/2)


The jth block is designed to identify coefficients from those significant bands that contain between
j and 2j signal components. The band can be considered as a set of distinguished components that
we want to find, and we need to ask how the identification matrix treats them.

Each block A(j) = R(j) ⊗r S(j) where S(j) is the sifting matrix and R(j) is the noise reduction
matrix. It is best to think about the action of the isolation matrix A(j) in two phases.

(1) First S(j) takes an input signal and generates a collection of output signals of the same length
by zeroing out different collections of components. The idea is that most of the distinguished
components will appear in an output signal that contains no other distinguished component.

(2) Then R(j) takes each of these signals and generates a further collection of output signals
by zeroing out additional subsets of components. The idea is that, in many of the output
signals, a distinguished component will survive, but the `1 norm of the other components
will be substantially reduced.

Afterward, the bit-test matrix B forms the inner product between each of its rows and each of
the numerous output signals. Whenever an output signal contains a distinguished component and
a small amount of noise, the log d bit tests allow us to determine the location of the distinguished
component correctly.
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D.1. High-Level Analysis of Identification. The bit test process can always identify the largest
component of a signal, provided that the `1 norm of the remaining components is not too large.
The following lemma is trivial.

Lemma 18 (Bit Tests). Suppose that g = δ + ν, where ‖δ‖0 = 1 and ‖ν‖1 ≤
1
2 ‖δ‖1. If we apply

bit tests to the signal g, then we correctly identify the location of the spike δ.

The `0 quasi-norm ‖·‖0 counts the number of nonzero components in its argument.
Let us consider a fixed collection I of components in a signal g, where j ≤ |I| < 2j. The next

result shows that A(j) succeeds in generating a lot of output signals where a large proportion of the
components in |I| are isolated from each other. Moreover, the `1 norm of the other components in
these signals is small in comparison with the total norm of the signal. The number ρ in this lemma
is a constant (depending only on α) that will be determined shortly.

Lemma 19. Except with probability O(d−1 log m), the random isolation operator A(j) satisfies
the following property. Let g be a signal, and let I be an arbitrary subset of {1, 2, . . . , d} with
j ≤ |I| < 2j. For at least (1− ρ) |I| of the components i ∈ I, then operator A(j) generates at least

O(
√

(M/j) log M log(d/j) log d)

signals of the form giei + ν where

‖ν‖1 ≤
1

4 |I|

√
j

M log2 M
‖g‖1 .

The proof of this result takes several long steps, so we postpone it to the sequel.

Lemma 20 (Significant Bands). Suppose that Bs is a significant band. Then the size |Bs| of the
band satisfies

s2

M log2 M
≤ |Bs| < 2s.

Proof. Fix a significant band Bs. Since the entries in Bs exceed (2s)−1 ‖r‖1, Markov’s inequality
shows that the size of Bs is less than 2s.

By definition of “significant,” we have a lower bound on the energy in the band, relation (B.5).
It is also clear that this energy is achieved with the fewest coefficients provided that each coefficient
has the maximal magnitude ‖r‖1 /s. That is,

|Bs|
‖r‖21
s2
≥ α−2

log M
‖r‖22 .

Rearranging this inequality, we have

|Bs| ≥
α−2s2

log M

(
‖r‖2
‖r‖1

)2

.

Lemma 8 provides a lower bound on the parenthesis. We conclude that

|Bs| ≥
α−2s2

log M

(
α√
M

)2

,

as advertised. �

Lemma 21 (Identifying Significant Bands). Let Bs be a significant band for which j ≤ |Bs| <
2j. The identification process finds at least (1 − ρ) |Bs| of the components in the band at least
O(

√
(M/j) log M log(d/j) log d) times each.
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Proof. Suppose that j ≤ |Bs| < 2j. Let i be one of the components in Bs for which the identification
operator A(j) generates a signal of the form riei + ν with

‖ν‖1 ≤
1

4 |Bs|

√
j

M log2 M
‖r‖1 .

Using the fact j ≤ |Bs| and the lower bound on the band size from Lemma 20, we have

‖ν‖1 ≤
1

4
√
|Bs|M log2 M

‖r‖1

≤ 1
4s
‖r‖1 .

By definition, the components in Bs have magnitude at least (2s)−1 ‖r‖1. Lemma 18 shows that
the bit tests succeed in identifying the location i from the signal riei + ν.

We conclude that the identification process succeeds in finding a (1 − ρ)-fraction of the indices
in Bs, and it lists each of these at least O(

√
(M/j) log M log(d/j) log d) times. �

Lemma 22 (Energy Loss). Select ρ = (4α2−7)−1. If the identification process misses no more than
a ρ-proportion of the components in each significant band, the total `2 norm of the lost components
is at most α−1 ‖r‖2.

Proof. Fix a band Bs. Using basic calculus, one can check that the worst-case scenario occurs when
(i) we miss fully ρ |Bs| components from this band, (ii) the missing components have the maximum
magnitude s−1 ‖r‖1, and (iii) the identified components have the minimum magnitude (2s)−1 ‖r‖1.
In this case, the ratio of the energy (i.e., sums of squares) in the missing components to the total
energy in the band satisfies

ρ |Bs| s−2 ‖r‖21
ρ |Bs| s−2 ‖r‖21 + (1− ρ) |Bs| (2s)−2 ‖r‖21

=
4ρ

3ρ + 1
.

Altogether, the energy in the significant bands is at least (1 − α−2) ‖r‖22. Therefore, the total
energy loss over all significant bands is at most

4ρ(1− α−2)
3ρ + 1

‖r‖22 .

If we select ρ = (4α2 − 7)−1, then it follows that the total energy loss is at most α−2 ‖r‖22. �

Lemma 23 (List Reduction). The final list of identified components contains O(M
√

log M) items.

Note that this result does not depend on the “success” of the identification process in finding
energy in the residual.

Proof. The matrix A(j) has a total of O(M log(M) log(d/j) log d) rows. The bit tests identify
one signal location per row of the matrix, so the identification process makes an initial list of
O(M log(M) log(d/j) log d) signal locations.

We only retain list items that appear Ω(
√

(M/j) log M log(d/j) log d) times. Therefore, the
total number of items that remain is O(

√
jM log M). Sum over j = 1, 2, 4, . . . ,M/2 to complete

the proof. �
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D.2. Sifting. Given a signal g and a set I of distinguished components with j ≤ |I| < 2j, we
establish that the sifting matrix S(j) succeeds in isolating most of these components from each
other, while reducing the norm of the other components somewhat.

Recall that the sifting matrix S(j) can be viewed as performing Tj independent trials, where
Tj = O(log(d/j)). The matrix has a hierarchical structure:

S(j) =


S

(j)
1

S
(j)
2

...

S
(j)
Tj

 .

Each submatrix S
(j)
t consists of N = O(j) rows, so the whole sifting matrix consists of O(j log(d/j))

rows.
We can think about the action of one submatrix S

(j)
t as

S
(j)
t : g 7→

[
h1 h2 . . . hN

]
.

That is, each input signal is mapped to a collection of output signals. Each component of the input
signal is randomly assigned to one output signal. The random variables that describe where the
components are sent only need to be O(j)-wise independent. This important point follows from
the fact that we only consider O(j) components at a time.

The first result shows that one trial of sifting is very likely to isolate all but a constant proportion
of the distinguished indices.

Lemma 24 (Sifting: One Trial). Let g be a signal, and let I ⊂ {1, 2, . . . , d} with j ≤ |I| < 2j.
Write k = |I|. Suppose we apply the random operator S

(j)
t to g. Except with probability e−1.7−ρk/5,

for at least (1− ρ)k of the indices i ∈ I, there is an output signal h of the form
(1) h = giei + ν
(2) ‖ν‖1 ≤

2
ρk ‖g‖1.

Proof. We can think of the sifting operator as assigning each of the k distinguished positions (balls)
to one of the N output signals (bins) uniformly at random. We hope that the balls are isolated
from one another. We will see that if the number of bins satisfies N ≥ max{10kρ−1, 850ρ−1}, then
the result holds.

For n = 1, 2, . . . , N , let Xn be the indicator variable for the event that the nth bin is empty,
and write X =

∑
Xn for the total number of empty bins. The symbols µ and σ2 will denote the

expectation and variance of X. To understand large deviations of X requires some effort because
the set of indicators {Xn} is not stochastically independent. Nevertheless, X satisfies a rather
strong tail bound.

Fact 25 (Theorem 6, [Jan94]).

P {X ≥ E X + a} ≤ exp
{
−σ2

((
1 +

a

σ2

)
log

(
1 +

a

σ2

)
− a

σ2

)}
.

This result is based on the surprising fact, due to Vatutin and Mikhailov [VM82], that X can be
expressed as a sum of independent indicators.

The content of our argument is to develop explicit bounds on the expectation and variance of
X, which will allow us to apply Janson’s result. By calculating the means and covariances of the
variables Xn, we determine that

µ = N

(
1− 1

N

)k
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and that

σ2 = N

(
1− 1

N

)k

+ N(N − 1)
(

1− 2
N

)k

−N2

(
1− 1

N

)2k

.

It is straightforward to develop an upper bound on the mean by deploying Taylor series:

µ < N

(
1− k

N
+

k2

2N2

)
= (N − k) +

k2

2N
.

The variance takes more work. First, regroup terms and factor to obtain

σ2 = N

(
1− 1

N

)k
[
1−

(
1− 2/N

1− 1/N

)k
]

+ N2

(
1− 2

N

)k
[
1−

(
(1− 1/N)2

1− 2/N

)k
]

.

We apply Bernoulli’s inequality (1 + x)k ≥ 1 + kx, which is valid for x ≥ −1, to obtain the bounds

1−
(

1− 2/N

1− 1/N

)k

≤ k

N(1− 1/N)

1−
(

(1− 1/N)2

1− 2/N

)k

≤ −k

N2(1− 2/N)
.

Combining these estimates, we reach

σ2 ≤ k

[(
1− 1

N

)k−1

−
(

1− 2
N

)k−1
]

.

The function h(x) = (1−x)k−1− (1−2x)k−1 is concave for x ∈ [0, 0.5], so the tangent line at x = 0
yields an overestimate. Since h(0) = 0 and h′(0) = k − 1, we have

σ2 ≤ k · h(1/N) ≤ k(k − 1)
N

<
k2

N
provided that N ≥ 2.

Depending on the size of k, we need to choose a different number N of bins to obtain the required
probabilities. First, assume that 0.2ρk > 1.7. In this case, we select N ≥ 10k/ρ, which yields the
following estimates on the mean and variance of X:

µ ≤ (N − k) + 0.05ρk

σ2 < 0.1ρk.

We invoke Fact 25 with the value a = 0.2ρk to reach

P {X > (N − k) + 0.25ρk} < e−0.4ρk < e−1.7−0.2ρk (D.1)

using 0.2ρk > 1.7.
This estimate allows us to bound the number Y of balls that fail to be isolated. It takes at least

(N−X) balls to fill the nonempty bins. The remaining (k−(N−X)) balls can be placed in no more
than (k−(N−X)) bins, where they will result in no more than Y = 2(k−(N−X)) = 2(X−(N−k))
collisions. Using the deviation bound (D.1), we conclude that

P
{

Y >
ρk

2

}
< e−1.7−0.2ρk.

Second, we assume that k is small. Precisely, consider the case where 0.2ρk ≤ 1.7. Now, select
N ≥ 100k2. The mean and variance of X satisfy

µ ≤ (N − k) + 0.005

σ2 ≤ 0.01
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Apply Fact 25 with the value a = 0.995 to reach

P {X ≥ (N − k) + 1} < e−3.6 < e−1.7−0.2ρk

using 0.2ρk ≤ 1.7. When X < (N −k)+1, the maximum number of bins are empty, and so all k of
the balls are isolated. Furthermore, we observe that the number N of bins required here satisfies
N ≤ 850ρ−1.

Finally, we need to argue that few of the output signals have a lot of noise. Let un denote the
`1 norm of the nth output signal. Since each position in the input signal g is assigned to exactly
one output signal,

∑
n un = ‖g‖1. By Markov’s inequality,

#
{

n : un ≥
2
ρk
‖g‖1

}
≤ ρk

2 ‖g‖1

∑
n

un =
ρk

2
.

In particular, no more than ρk/2 of the isolated balls can appear in a bin whose `1 norm exceeds
(2/ρk) ‖g‖1. Therefore, the total number of positions in I lost to collisions or noise is at most ρk

except with probability e−1.7−0.2ρk. �

The failure probability for one trial is not small enough to take a union bound over all possible
sets I. We perform Tj = O(log(d/j)) repeated trials to drive down the failure probability.

Lemma 26 (Sifting: All Trials). Except with probability exp(−j log d), the sifting operator S(j) has
the following property. Let g be an arbitrary signal, and let I ⊂ {1, 2, . . . , d} satisfy j ≤ |I| < 2j.
For some set of (1− ρ) |I| indices i ∈ I, there are at least 0.5Tj output signals h of the form

(1) h = giei + ν
(2) ‖ν‖1 ≤

2
ρk ‖g‖1.

Proof. Let g be a signal, and fix a set I ⊂ {1, 2, . . . , d} that contains k or more indices. Lemma 24
shows that each isolation trial succeeds for at least (1 − ρ) |I| of the distinguished indices, except
with probability p = e−1.7−0.2ρk. We repeat this experiment Tj times. Let Xt be the indicator
variable for the event that trial t fails, so E Xt ≤ p. Then the random variable X =

∑
Xt counts

the total number of trials in which ρk balls fail to be isolated, and its mean satisfies µ ≤ pTj .
Chernoff’s bound shows that

P {X > 0.5Tj} <

[
e

0.5Tj/(pTj)

]Tj

< e−0.2ρkTj

Choose Tj = 15ρ−1 log(ed/j), and use the fact that k ≥ j to obtain

P {X > Tj} < e−3j log(ed/j).

Next, we must count the total number of subsets of {1, 2, . . . , d} whose size is between j and
(2j − 1). It is well known that (

d

r

)
≤ er log(ed/r).

Therefore,
2j−1∑
r=j

(
d

r

)
≤

2j−1∑
r=j

er log(ed/r) ≤
∫ 2j

j
ex log(ed/x) dx,

which uses the fact that x 7→ x log(ed/x) is monotonically increasing. A crude estimate of the
integral suffices: ∫ 2j

j
ex log(ed/x) dx ≤ elog(ed/j)

∫ 2j

j
ex dx ≤ e2j log(ed/j).
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Finally, we take a union bound over all sets I with size between j and (2j−1) to obtain a failure
probability of

e2j log(ed/j) · e−3j log(ed/j) = e−j log(ed/j).

In other words, for every such I, the sifting matrix S(j) isolates at least (1−ρ) |I| of the distinguished
indices in at least half the trials. �

D.3. Noise Reduction. The noise reduction matrices R(j) are designed to take the output signals
containing isolated components and further attenuate the noise in those signals. Once again, the
matrix has a hierarchical structure:

R(j) =


R

(j)
1

R
(j)
2

...

R
(j)
Uj


Let us define r =

√
M/j and C = 80ρ−1

√
log2 M . Each of the submatrices consists of at least Cr

rows, and the number Uj of submatrices is at least Cr log d. Therefore, the total number of rows
in the noise reduction matrix R(j) is O((M/j) log(M) log d).

It is most convenient to think of the action of the submatrix R
(j)
t as

R
(j)
t : g 7→

[
h1 h2 . . . hN

]
.

where N = O(Cr) is the number of rows in the submatrix. Each submatrix assigns the positions of
the input signal randomly to one output signal. The proof shows that this assignment only needs
to be pairwise independent. Each of the submatrices, however, must be fully independent from the
others.

We establish that, if g contains a single distinguished component (a spike) plus noise, then a
large number of the output signals contain that spike along with a reduced amount of noise.

Lemma 27 (Noise Reduction). Except with probability d−1, the noise reduction matrix R(j) has
the following property. Let g be an input signal that satisfies

(1) g = δ + ν
(2) ‖δ‖0 = 1
(3) supp(δ) ∩ supp(ν) = ∅

Then there are at least 0.5Cr log d output signals h of the form h = δ + µ where

‖µ‖1 ≤
10
Cr
‖ν‖1 =

√
j

8ρ−1
√

M log2 M
‖ν‖1 .

Proof. Let g be a signal of the form g = δ + ν, where δ is a spike at position i. Consider the
submatrix X of R(j) constructed by extracting the rows of R(j) where the index i appears and
then removing the ith column. This submatrix contains exactly Cr log d rows and (d− 1) columns.
Let ν ′ be the vector ν without its ith component (which equals zero by hypothesis). Note that ν ′

has the same `1 norm as ν.
Let x be a column of X. The entries of x are independent binary random variables with mutual

expectation (Cr)−1 because each one comes from a different submatrix. Therefore,

E ‖x‖1 =
Cr log d

Cr
= log d.
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Chernoff’s bound shows that

P {‖x‖1 > 5 log d} ≤
[
e4

55

]log d

< d−3.

Applying the union bound over all (d− 1) columns of X,

P
{
‖X‖1,1 > 5 log d

}
≤ d−2.

Therefore, the number of output signals in which position i appears and where the noise is large
satisfies

#{n :
∣∣(Xν ′)n

∣∣ >
10 ‖ν ′‖1

Cr
} ≤ 0.1Cr

‖Xν ′‖1
‖ν ′‖1

≤ 0.5Cr log d.

Since position i appears in exactly Cr log d output signals, we discover that the number of output
signals where position i appears and the noise is less than (10/Cr) ‖ν‖1 is at least 0.5Cr log d.

So far, we have only established the result for a single spike location i. To complete the proof, we
perform a union bound over the d possible locations for the spike to obtain a final failure probability
of d−1. �

Combine Lemma 26 and Lemma 27 to obtain the announced Lemma 19.

Appendix E. The Estimation Matrix

In this section, we show that the estimation matrix Φ has the properties described in Lemmas
10 and 11. The first result appears in the work of Rudelson–Vershynin [RV06]. They shows that a
random row-submatrix of the discrete Fourier transform (DFT) matrix has the Restricted Isometry
Property (RIP).

Lemma 28. Let λ = O(log4 d). Choose q ≥ λL, and draw q rows independently at random from the
d× d discrete Fourier transform matrix, and rescale them by q−1/2. With fixed constant probability
(e.g., 0.99), the resulting matrix Φ has the property that each L-column submatrix A satisfies

1
2
‖x‖2 ≤ ‖Ax‖2 ≤

3
2
‖x‖2 .

The upper estimate in the RIP is essentially equivalent to the following result, which plays an
essential role in our analysis.

Lemma 29. Suppose that Φ is a matrix whose L-column submatrices satisfy the upper estimate of
Lemma 28. Then the following bound holds for every vector x.

‖Φx‖2 ≤
3
2

[
‖x‖2 +

1√
L
‖x‖1

]
.

Since M ≤ L, we also have the weaker estimate

‖Φx‖2 ≤
3
2

[
‖x‖2 +

1√
M
‖x‖1

]
.

Proof. Define the matrix norm
|||Φ||| = max

‖x‖2≤1
‖x‖0≤L

‖Φx‖2

and define the vector norm
‖x‖K = ‖x‖2 +

1√
L
‖x‖1 .
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We establish the result by proving that

‖A‖K→2 ≤ |||Φ||| (E.1)

where the operator norm
‖Φ‖K→2 = max

‖x‖K≤1
‖Φx‖2 .

Afterward, we invoke Lemma 28 to see that |||Φ||| ≤ 3/2.
Let Bq denote the unit ball in `d

q , and let BI
q be the unit ball in `q(I) where I ⊂ {1, 2, . . . , d}.

Define the convex body

S = conv
{⋃

|I|≤L
BI

2

}
.

Observe that the matrix norm |||·||| = ‖·‖S→2. Therefore, to verify (E.1), it suffices to show that
K ⊂ S. We do so by establishing the reverse inclusion for the polars, S◦ ⊂ K◦.

The norm with unit ball S◦ is
‖y‖S◦ = max

|I|≤L

∥∥y
∣∣
I

∥∥
2
.

Choose a vector y in the unit ball S◦, and let I be a set of L coordinates of y with greatest
magnitudes. Then

|yi| ≤
1√
L

for each i ∈ Ic.

Otherwise, |yi| > 1√
L

for each i ∈ I, which would imply ‖y‖S◦ ≥
∥∥y

∣∣
I

∥∥
2

> 1. To proceed, we
decompose

y = y
∣∣
I
+ y

∣∣
Ic .

It follows from this discussion that
∥∥y

∣∣
I

∥∥
2
≤ 1 and that

∥∥y
∣∣
Ic

∥∥
∞ ≤

1√
L
. In other terms,

y ∈ B2 +
1√
L

B∞.

But this set is the unit ball of K◦ because

‖x‖K = ‖x‖2 +
1√
L
‖x‖1

= ‖x‖B◦
2

+ ‖x‖√LB◦
∞

= ‖x‖(B2+ 1√
L

B∞)◦

and because polarity is an involution on norm balls. �


