
	

A P P L I E D & C O M P U T A T I O N A L M A T H E M A T I C S
C A L I F O R N I A I N S T I T U T E O F T E C H N O L O G Y

m a i l c o d e 9 - 9 4 · p a s a d e n a , c a 9 1 1 2 5 	

Technical Report No. 2011-02
August 2011

LARGE-SCALE PCA WITH SPARSITY CONSTRAINTS

CLÉMENT J. PROBEL AND JOEL A. TROPP
	

Large-Scale PCA with Sparsity Constraints

Clément J. Probel
École des Mines

Paris, France
clement.probel@mines-paristech.fr

Joel A. Tropp
California Institute of Technology

Pasadena, CA 91125-5000
jtropp@cms.caltech.edu

Abstract

This paper describes a new thresholding technique for constructing sparse princi-
pal components. Large-scale implementation issues are addressed, and a mathe-
matical analysis describes situations where the algorithm is effective. In experi-
ments, this method compares favorably with more sophisticated algorithms.

1 Sparsity constraints in PCA

Principal component analysis (PCA) is a basic statistical method for decomposing data matrices.
The idea is to extract a small number of meta-variables, called principal components or factors, that
can be combined linearly to explain the responses of the subjects who have been surveyed. PCA is
usually accomplished by means of a truncated singular value decomposition (SVD).

Researchers often criticize PCA because it yields factors that include all the measured variables [1].
In practice, it is desirable to produce sparse factors, which involve a small subset of variables. The
plainest reason for preferring sparse factors is interpretability; it is difficult for the human mind to
penetrate a vast conspiracy of interacting variables. In other problems, using a small number of
variables may reduce monetary or time costs. For example, when modeling a financial market, we
might wish to explain most of the volatility using a small collection of assets because trading charges
scale with the diversity of a portfolio. The paper [2] describes clustering and feature selection
applications; see [3, Sec. 1] for a variety of others.

Statistical theory provides a sound reason for enforcing sparsity. PCA is sensitive to measurement
noise, so the estimated factors are not reliable when many measured variables participate. For
modern data sets, in which the number of variables vastly exceeds the number of subjects, factors
computed using standard PCA may be so noisy that they explain nothing [4, Thm. 1].

Sparsity-constrained principal component analysis (SC.PCA) attempts to address these concerns.
Suppose that X is an n × p data matrix whose rows index subjects and whose columns index
measured variables. The goal is to identify a subset of s variables that we can combine linearly
into k factors to explain the energy in the data matrix. We insist that these sparse factors form an
orthonormal family so each factor captures a different aspect of the data. Thus, we require s ≥ k.

Core to most approaches to SC.PCA is a combinatorial optimization that looks for a single sparse
factor [5, Sec. 2.1]. This formulation alloys the variational formula [6, Cor. III.1.2] of a top right
singular vector with a sparsity constraint. Formally, we seek a p-dimensional vector w that solves

max ‖Xw‖2 subject to ‖w‖2 = 1 and ‖w‖0 ≤ s. (1.1)
The notation ‖·‖q refers to the usual `q norm, and we introduce the convention that ‖·‖0 returns the
number of nonzero rows in a vector or matrix.

The problem (1.1) is computationally hard for worst-case instances [5, Sec. 2.1]. Therefore, it is
generally impossible to complete the optimization (1.1). Although the paper [7] offers techniques
for obtaining certificates of optimality for (1.1), we typically must relax our expectations and find
special cases where we can obtain reasonable sparse factors.

1

To construct a set of k sparse factors, most (but not all) earlier proposals rely on iterative deflation.
This technique constructs a sparse factor by attempting to solve (1.1), removes the contribution of
the computed factor from the data matrix, and then repeats the process. This approach tends to be
costly because it requires repeated optimization of (1.1).

Remarks. Our description of SC.PCA assumes that the desired outcome is a set of sparse factors
that involve as few total variables as possible. In contrast, many algorithms for SC.PCA allow each
sparse factor to involve different variables. When the columns of X are centered, SC.PCA can be
treated as a search for sparse factors that explain the maximum variance in the data. Thus, many
papers perform SC.PCA on the (empirical) covariance matrix; others study the correlation matrix.

1.1 Proposal

Let us express the problem of computing multiple sparse factors in terms of a single mathematical
program. This formulation combines the variational characterization of the top k right singular
vectors [6, Ex. II.1.13] with a sparsity bound. Formally, we want a p× k matrix W that optimizes

max ‖XW ‖F subject to W ∗W = Ik and ‖W ‖0 ≤ s. (1.2)
We have written ‖·‖F for the Frobenius norm and Ik for the k × k identity matrix. The equality
constraint requires the columns of W to form an orthonormal set. When s = k, this problem can
be solved efficiently. Owing to the sparsity constraint, the optimization problem (1.2) is computa-
tionally hard when s� k, but we have found theoretical evidence (beyond the scope of this paper)
that (1.2) with k � 1 should be easier to solve approximately than (1.1).

Section 2 proposes an algorithm, called SC.PCA by Joint Thresholding (SC.PCA.JT), for attempting
the optimization (1.2). The formulation (1.2) and the algorithm rely on several ideas.

1. We can obtain better sparse factors if we construct them simultaneously, rather than at-
tempting to produce them sequentially. This approach also requires less computation.

2. In practice, the right singular vectors of the matrix X contain a substantial amount of
information about which variables are significant. In particular, we argue that for many
types of data, the singular vectors of X exhibit joint decay.

3. On account of this decay, the identities of the key variables can be extracted from the right
singular vectors of the data matrix by a joint thresholding operation.

4. To compute the singular vectors of a very large data matrix efficiently, we propose to use a
new class of SVD algorithms based on randomized dimension reduction [8].

We argue that the SC.PCA.JT algorithm produces sparse factors that are comparable with or superior
to the output of earlier methods. Even so, the computational costs of our method are usually lower,
which makes the algorithm valuable for large-scale applications. We offer a mathematical analysis
that identifies situations where the method is effective, and we present evidence that data matrices
often meet these criteria. Finally, we summarize some preliminary numerical experiments with real
data that provide an empirical demonstration of the efficacy of SC.PCA.JT.

2 Large-scale SC.PCA

Figure 1 presents a high-level description of the SC.PCA.JT algorithm for approaching (1.2). The
algorithm selects variables by finding the largest rows of the matrix of k dominant singular vectors—
which is a joint thresholding operation. The final collection of k sparse factors is obtained by
computing the right singular vectors of the reduced data matrix. Although this procedure is simple
and effective, it does not appear in the literature. We remark that SC.PCA.JT extends the standard
simple thresholding method (k = 1), and it is inspired by the diagonal thresholding method [4].
Moghaddam et al. have emphasized the importance of Step 3 in their work [9]. Let us continue with
a discussion of implementation issues and a mathematical analysis of the algorithm.

2.1 Implementation Issues

The most expensive step in the SC.PCA.JT algorithm is easily Step 1, which requires us to obtain
k right singular vectors of the full data matrix. The approaches we consider for large data are

2

Input. An n× p matrix X; sparsity level s; number k of sparse factors.
Output. A p× k matrix W whose columns are jointly s-sparse factors.

1. Construct a p× k matrix V that solves

maxV ‖XV ‖F subject to V ∗V = Ik.

2. Identify a set S that indexes the s largest rows of V .

ri = ‖vi,:‖2 and S ∈ arg max
|I|≤s

∑
i∈I

ri.

3. Construct a p× k matrix W that solves

maxW ‖XPSW ‖F subject to W ∗W = Ik,

where PS is the orthogonal projector onto the coordinates listed in S.

Figure 1: SC.PCA BY JOINT THRESHOLDING (SC.PCA.JT)

practical because they access the data only through matrix–vector or matrix–matrix multiplication.
We mention several techniques and the situation where each is preferred.

Small data sets. For moderately sized data, classical dense methods [10, Sec. 8.6] are adequate
(svd in Matlab). The cost is on the order of min{n2p, np2} arithmetic operations.

Sparse data. When the data matrix is sparse, Krylov subspace methods (svds in Matlab) are often
effective [10, Sec. 9.4]. The nominal cost is on the order of k · nnz(X) + k2p operations.

General data, rapid spectral decay. For a (dense) matrix with a rapidly decaying singular spec-
trum, we recommend randomized algorithms that incorporate a fast transform; see [8, Sec. 4.6]
or [11]. The total cost of this approach is on the order of np log(k) + k2p operations.

General data, slow spectral decay. For a matrix whose singular spectrum decays slowly or not at
all, the most effective method is probably the randomized PCA algorithm [8, p. 9]; see also [12].
The cost is about k · nnz(X) + k2p operations.

In Step 3, we need to calculate singular vectors of the reduced data matrix XPS . Typically, the
reduced matrix is relatively small, so it is appropriate to apply dense methods at a cost of s2n. For
very large problems, it may be beneficial to use one of the other methods described above. The
remaining part of the computation, Step 2, is negligible in comparison with Steps 1 and 3. The
easiest implementation just computes and sorts the row norms with about np+ p log(p) operations.

2.2 Analysis of algorithm

The analysis of the SC.PCA.JT algorithm describes how its performance depends on properties of
the data matrix X . The proof is based on a simple numerical inequality [13, Lem. 7].

Lemma 2.1 Consider a weakly decreasing sequence {ai : i = 1, 2, 3, . . . } of nonnegative numbers.
For each positive integer s, we have the bound[∑

i>s
a2
i

]1/2
≤ 1

2
√
s

∑
i≥1

ai.

Proof. Since {ai} is weakly decreasing, we have the chain of inequalities[∑
i>s

a2
i

]1/2
≤
√
as ·

[∑
i>s

ai

]1/2
≤ 1√

s
·
[∑

i≤s
ai

]1/2 [∑
i>s

ai

]1/2
.

Invoke the geometric mean–arithmetic mean inequality to combine the two sums. �

By applying Lemma 2.1 to (the decreasing rearrangement of) the row norms of the matrix V com-
puted in Step 2 of the algorithm, we can bound the total energy that falls outside the largest rows.

3

Corollary 2.2 Consider a p × k matrix V . As in Step 2 of the SC.PCA.JT algorithm, compute the
sequence {ri : i = 1, 2, . . . , p} of row norms of V and the set S of the largest s rows. Then

‖PScV ‖F =
[∑

i/∈S
r2i

]1/2
≤ 1

2
√
s

∑
i≥1

ri.

The symbol PSc denotes the orthogonal projector onto the coordinates not listed in S.

The following result contains qualitative information about the issues that influence the performance
of the algorithm. We discuss the meaning below.

Theorem 2.3 (SC.PCA.JT Algorithm) Consider an n× p data matrix X . Define the quantity

R =
∑

i≥1
ri

where ri are the row norms of V obtained in Step 2. Then the output W of the algorithm verifies

‖XW ‖F ≥
[
1− R

2
√
s
· ‖X‖
‖XV ‖F

]
· ‖XV ‖F (2.1)

Proof. The nonzero rows of W are listed in the set S, so we have

‖XW ‖F = ‖XPSW ‖F ≥ ‖XPSV ‖F ,
where the inequality depends on the variational definition of W in Step 3 of the algorithm. To
continue, introduce the decomposition PS = I− PSc , and apply the lower triangle inequality.

‖XW ‖F ≥ ‖X(I− PSc)V ‖F ≥ ‖XV ‖F − ‖XPScV ‖F .
Invoke the standard operator norm bound, and then refer to Corollary 2.2 to discover that

‖XW ‖F ≥ ‖XV ‖F − ‖X‖ · ‖PScV ‖F ≥ ‖XV ‖F −
R

2
√
s
· ‖X‖ .

Factor this expression to complete the proof. �

The left-hand side ‖XW ‖F is the energy in the data that we can explain with the computed sparse
factors. The theorem compares this quantity with ‖XV ‖F, the energy captured by the best set of
k orthonormal factors. In particular, ‖XV ‖F exceeds the optimal value of (1.2). The SC.PCA.JT
algorithm misses some energy because of several phenomena.

1) Decay of singular vectors. The quantity R reflects how much the sorted row norms of V decay.

k ≤ R ≤
√
kp.

The left-hand inequality is in force when exactly k rows of V are nonzero; the right-hand inequality
applies if all p row norms are equal. Therefore, the SC.PCA.JT algorithm prefers when the energy
in V is concentrated in relatively few rows.

2) Decay of singular values. The norm ratio reflects the decay of the first k singular values of X .

1√
k
≤ ‖X‖
‖XV ‖F

≤ 1.

The left-hand inequality holds if the largest k singular values of X are the same; the right-hand
inequality holds if X has rank one. As a result, the SC.PCA.JT algorithm is most successful at
computing a set of k sparse factors when each of the k dominant right singular vectors of X explains
a lot of energy in the data.

3) Sparsity parameter. As the sparsity parameter s grows, the energy explained by the sparse
factors increases rapidly at first but the marginal improvement declines. For sufficiently large s, the
sparse factors explain essentially as much energy as the best nonsparse factors.

In summary, the ideal situation occurs when (i) the row norms of the matrix V decay; and (ii) the
first k singular values of X are comparable. In the next section, we argue that, in practice, the first
condition is often fulfilled. The second condition suggests that we should choose the number k of
factors by finding a knee in the sequence of singular values.

Remark. Related ideas yield a nonparametric analysis of the diagonal thresholding algorithm [4].

4

100 101 102 103 104
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Gene expression data:
Sorted row norms and sorted right singular vectors

Log rank

M
ag

ni
tu

de

Row norms (k=3)
Singular vectors (1,...,3)

100 101 102 103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Log rank

M
ag

ni
tu

de

Enron document−term data:
Sorted row norms and sorted right singular vectors

Row norms (k=15)
Singular vectors (1,...,15)

Figure 2: Individual and joint decay of singular vectors. The red lines show the individual decay
of the dominant singular vectors of X; the black lines mark the row norms of V , which capture the
joint decay of the singular vectors. [Left] Colon cancer gene expression data matrix (36 subjects ×
7457 genes). [Right] Enron document–term matrix (39861 documents × 28102 terms).

3 When singular vectors decay

We offer some empirical and theoretical evidence that many types of data matrices have decaying
singular vectors. Figure 2 displays the sorted components of the singular vectors of two data ma-
trices, along with the sorted row norms of the matrix V of k dominant right singular vectors for
an appropriate choice of k. In both cases, we see clear evidence of individual and joint decay. See
Section 5 for details about the data. To continue, we describe two distinct settings where some
theoretical analysis has been performed: (i) functional data and (ii) graph and network data.

3.1 Functional data

Functional data usually consists of point samples from a function defined on a Euclidean space. For
example, the ith row of the data matrix might tabulate noisy values from a function fi of a real
variable sampled on a uniform grid:

Xij = fi(j) + zij i = 1, . . . , n and j = 1, . . . , p.

Here, zij denote statistical errors. In many situations, we possess a priori information about the un-
derlying functions fi. For example, a sensor network measuring the evolution of a one-dimensional
temperature field would report snapshots of a slowly varying smooth function.

We can use our prior information to select an orthonormal basis that represents the functions ef-
ficiently. More precisely, we would like the transform coefficients to decay quickly when we sort
them in order of decreasing magnitude because a decaying vector is well approximated by a sparse
vector (the basic principle behind Lemma 2.1). Therefore, we transform the rows of the data ma-
trix before we apply the SC.PCA.JT algorithm. The field of computational harmonic analysis [14]
has developed detailed theory and algorithms that justify this approach. The work of Johnstone et
al. [4, 3] on SC.PCA relies on the same idea. Let us sketch two settings where the approach works.

1) Smooth functions. The Fourier coefficients of a smooth function decay at a rate connected with
the level of smoothness. Indeed, for a function f : [0, 1]→ R with m derivatives, we have∫ 1

0

∣∣f (m)(t)
∣∣2 dt =

∑∞

j=−∞
|cj |2 |j|2m where cj =

∫ 1

0

f(t) e−2πijt dt.

Since the high-frequency coefficients are weighted heavily, they must be small. Thus, the low fre-
quencies are usually best for representing a collection of smooth functions. Of course, an adaptive
choice of frequencies will typically be superior to a fixed choice.

5

2) Piecewise smooth functions. A function that is smooth between discontinuities has decaying
wavelet coefficients. Indeed, this type of function is well approximated by coarse-scale wavelets; the
fine-scale wavelets concentrate near the discontinuities and are comparatively less important. Thus,
a collection of piecewise smooth functions can be jointly represented by coarse wavelet components
with a few fine-scale coefficients for detail.

3.2 Networks and graphs

Extensive empirical research on networks and graphs has demonstrated that the sequence of node
degrees decays. In addition, the sequence of singular values of the adjacency matrix and the com-
ponents of the singular vectors also exhibit a decay pattern. See [15, Sec. 2] for an overview.

There is one setting where there is a clear theoretical link between combinatorial graph properties
and the eigenvectors of a related matrix. Consider a random walk on a connected, undirected graph.
The dominant left eigenvector of the transition matrix provides the stationary distribution of the ran-
dom walk, which is proportional to the degrees of the nodes. Therefore, when the node distribution
of the graph decays, so does the dominant left eigenvector of the transition matrix.

The Kronecker graph model [15, Sec. 3] provides a potential explanation for the observed decay in
the singular values and singular vectors of the adjacency matrix of a network. This approach forms
a network by assuming that the associations among large communities follow the same pattern as
the associations within a small “seed” community. The global adjacency matrix takes the form
A ⊗A ⊗ · · · ⊗A, where ⊗ denotes the Kronecker product. The singular vectors of the repeated
Kronecker product are simply repeated Kronecker products of the singular vectors of A. Thus,
when the singular vectors of A exhibit even a small amount of decay, this decay is amplified in the
singular vectors of the full network. A similar result holds for the singular values [15, Sec. 3.2.2]

4 Previous algorithms and theory

The literature contains a substantial number of algorithmic approaches to SC.PCA. These techniques
fall into several clear categories, which we arrange in increasing order of computational cost.

1) Thresholding. Simple thresholding selects variables associated with the largest entries of the
dominant singular vector of the data matrix. Diagonal thresholding [4] selects variables by iden-
tifying the largest-norm columns of the data matrix. The latter approach is very effective, but we
emphasize that it is inappropriate when the columns are standardized or have comparable norms!

2) Penalty methods. These approaches marry the variational characterization of a dominant eigen-
vector with a penalty constraint that promotes sparsity [1, 16, 17, 18]. Researchers have proposed
many algorithms that attempt the resulting nonconvex optimization. We have found that alternating
maximization [18] offers the best computational cost and quality of output.

3) Greedy approaches. The forward method successively identifies a new variable that offers the
greatest improvement and adds it to the active set [19, 9]. A faster approximate greedy algorithm
appears in [7]. There are also reverse and bi-directional greedy methods [9].

4) Semidefinite relaxation. The sparse singular vector problem (1.1) is relaxed to a semidefinite
program (SDP), and the cardinality constraint is replaced by an `1 bound on the semidefinite matrix
variable. The SDP is solved using Nesterov’s smoothing approach [5, 2] or the Burer–Monteiro
factorization approach [20].

5) Brute force. These algorithms perform an exhaustive evaluation of all subsets of variables,
perhaps using branch-and-bound techniques to reduce the cost of the search [19, 9].

Most theoretical work on SC.PCA starts from the premise that the data matrix is drawn from the
spiked covariance model. In its simplest incarnation, this model assumes that each row of the data
matrix is an independent realization of the random vector v∗ + σ2z∗, where v ∈ Rp is a fixed
s-sparse vector, σ2 is a variance parameter, and z ∈ Rp is a standard normal vector. In principle, the
goal of SC.PCA is to correctly identify the nonzero components of v from the noisy observations.

Researchers have developed asymptotic results when various estimators are applied to data from the
spiked covariance model. Johnstone and Lu [4] demonstrate that PCA is asymptotically inconsistent

6

3 4 5 6 7 8 9 10 11 12 13
20

25

30

35

40

45

50

55

60

65

70

Pit Props data:
Variance explained by k = 3 factors using s variables

Sparsity level (s)

Pe
rc

en
ta

ge
 o

f v
ar

ia
nc

e
ex

pl
ai

ne
d

[AGJL07] + defl

[ABG08] + defl
[WTH09] + defl

SC.PCA.JT

Optimal

Figure 3: Pit props. Fraction of energy captured by 3 sparse factors using a total of s variables.

when p/n → c > 0. They also develop consistency results for diagonal thresholding. Amini and
Wainwright [21] describe how the performance of algorithms depends on the quantities

θdiag =
n

s2 log(p− s)
and θsdp =

n

s log(p− s)
.

Diagonal thresholding (resp. semidefinite relaxation) asymptotically almost surely (a.a.s.) identifies
the support of v if and only if θdiag (resp. θsdp) is above a certain threshold. Furthermore, when θsdp

is below a fixed level, no algorithm can a.a.s. identify the support of v.

Since SC.PCA.JT is a thresholding technique, its performance for the spiked covariance model
resembles that of the diagonal thresholding method rather than the SDP method. Nevertheless, our
empirical studies indicate that we accrue little advantage by invoking sophisticated algorithms. This
observation suggests that the spiked covariance model does not capture key aspects of our data.

5 Preliminary numerical evidence

We have performed basic comparisons between the SC.PCA.JT algorithm and related methods for
some small and moderate data sets. We leave larger experiments for future work.

Pit props. The standard test case for SC.PCA is the 13 × 13 pit props correlation matrix [22].
We compute 3 sparse eigenvectors of total sparsity s using several methods. Figure 3 charts the
proportion of variance explained. SC.PCA.JT outperforms the other methods, including semidefinite
relaxation, almost uniformly. Note that diagonal thresholding does not apply to this example.

Gene expression data. We study the Notterman colon cancer dataset [23], which consists of expres-
sion levels of p = 7457 genes in each of n = 36 subjects, half cancerous. We center the expression
levels for each gene, and look for a small set of genes that explains the remaining variability. See
Figure 4 for the variance explained by each algorithm using k = 3 sparse factors, along with the
running times. The two thresholding algorithms are almost uniformly the most effective; diagonal
thresholding is slightly better for small s and SC.PCA.JT is slightly better for large s.

Enron document–term matrix. Finally, we applied SC.PCA.JT to the document–term matrix har-
vested from the Enron email database [24]. Figure 5 displays the energy explained by k dominant
sparse factors for various k, along with the singular values of the data matrix with the applicable
values of k marked; the red series corresponds with k = 15. Table 1 shows the most significant
terms in five dominant sparse factors computed with k = 15 and s = 500.

Summary. The outcome of this project is somewhat depressing because it suggests that simple
algorithms based on thresholding are not only faster but also more effective than fancier methods.
Note that the 1 − s−1/2 behavior predicted by Theorem 2.3 appears in the curves for all of the
algorithms, which indicates that this phenomenon may be intrinsic to the SC.PCA problem.

7

20 40 60 80 100 120 140 160 180 200

10

15

20

25

30

35

40

Gene expression data:
Variance explained by k = 3 factors with sparsity s

Sparsity level (s)

Pe
rc

en
ta

ge
 o

f v
ar

ia
nc

e
ex

pl
ai

ne
d

SC.PCA.JT
[JL04]
[WTH09] + deflation
[ABG08] + deflation

101 102

10−2

10−1

100

101

Gene expression data:
Running time for k = 3 sparse factors

Sparsity level (s)

C
P

U
−

tim
e

(s
ec

on
ds

)

Figure 4: Gene expression data. [Left] Fraction of variance captured by k = 3 factors with joint
sparsity s computed with several algorithms. [Right] Running times for algorithms in left panel.

0 10 20 30 40
0

500

1000

1500

2000

2500

3000
Singular values of document−term matrix

Rank

M
ag

ni
tu

de

0 100 200 300 400 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Sparsity level (s)

Fr
ac

tio
n

of
 e

ne
rg

y

Enron document−term matrix
Fraction of total energy expained by k factors over s terms

k = 21
k = 18
k = 15
k = 12
k = 9
k = 6
k = 3

Figure 5: Enron document–term matrix. Fraction of energy captured by k sparse factors for
various k. [Inset] Singular values of matrix with applicable values of k marked.

Factor 1: company power energy california electricity
Factor 2: company -power -energy -california firm fund round investor ...
Factor 3: company stock -davis -california -firm round ventures ...
Factor 4: texas game allowed yard defense team rank passing fantasy ...
Factor 5: pst columbia mid avista aquila

Table 1: Enron document–term matrix. Terms with the highest loadings in the five dominant
sparse factors obtained by SC.PCA.JT with k = 15 total factors and s = 500 total terms. Signs
indicate the signs of the loadings. Terms are ordered by global importance.

8

References
[1] I. T. Jolliffe, N. T. Trendafilov, and M. Uddin. A modified principal component technique based on the

LASSO. J. Compu. Graph. Statist., 12(3):531–547, Sep. 2003.

[2] R. Luss and A. d’Asprémont. Clustering and feature selection using sparse principal component analysis.
Optim. Engr., 11(1):145–157, Feb. 2010.

[3] D. Paul and I. M. Johnstone. Augmented sparse principal component analysis for high-dimensional data.
Technical report, Univ. California at Davis, 2007.

[4] I. M. Johnstone and A. Lu. Sparse principal components. Technical report, Stanford Univ., 2004.

[5] A. d’Asprémont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. Direct formulation for sparse PCA
using semidefinite programming. SIAM Rev., 49(3):434–448, 2007.

[6] R. Bhatia. Matrix Analysis. Number 169 in GTM. Springer, Berlin, 1997.

[7] A. d’Asprémont, F. Bach, and L. El Ghaoui. Optimal solutions for sparse principal component analysis.
J. Machine Learning Res., 9:1269–1294, Jul. 2008.

[8] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Stochastic algorithms
for constructing approximate matrix decompositions. ACM TR 2009-05, California Inst. Tech., Sep.
2009.

[9] B. Moghaddam, Y. Weis, and S. Avidan. Spectral bounds for sparse PCA: Exact and greedy algorithms.
In Neural Information Processing Systems, Vancouver, Dec. 2005.

[10] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins Univ. Press, Baltimore, MD, 3rd edition, 1996.

[11] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. A fast randomized algorithm for the approximation of
matrices. Appl. Comp. Harmon. Anal., 25(3):335–366, 2008.

[12] V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal component analysis. SIAM
J. Matrix Anal. Appl., 31(3):1100–1124, 2009.

[13] A. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. One sketch for all: Fast algo-
rithms for compressed sensing. In STOC ’07: Proc. 39th Ann. ACM Symp. Theory of Comput-
ing, San Diego, 2007. Available from http://www.acm.caltech.edu/˜jtropp/conf/
GSTV06-One-Sketch-complete.pdf.

[14] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, London, 2nd edition, 1999.

[15] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kronecker graphs: An
approach to modeling networks. Available from arXiv:0812.4905, Aug. 2009.

[16] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. J. Comput Graph. Statist.,
15:262–286, 2006.

[17] H. Shen and J. Z. Huang. Sparse principal component analysis via regularized low rank matrix approxi-
mation. J. Multivar. Anal., 99:1015–1034, 2008.

[18] D. M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with applications to sparse
principal components and canonical correlation analysis. Biostatist., 10(3):515–534, 2009.

[19] G. P. McCabe. Principal variables. Technometrics, 26(2):137–144, May 1984.

[20] R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical report,
INRIA, Sep. 2009.

[21] A. A. Amini and M. J. Wainwright. High-dimensional analysis of semidefinite relaxations for sparse
principal components. Ann. Statist., 37(5B):2877–2921, 2009.

[22] J. Jeffers. Two case studies in the application of principal components. Appl. Statist., 16:225–236, 1967.

[23] D. A. Notterman, U. Alon, A. J. Sierk, and A. J. Levine. Transcriptional gene expression profiles of
colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer
Res., 61:3124–3130, 2001. Data available from http://microarray.princeton.edu.

[24] A. Frank and A. Asuncion. UCI machine learning repository, Bag of Words data set, 2010.

9

