
Distributed Optimization via Local Computation
Algorithms

Palma London, Niangjun Chen, Shai Vardi, Adam Wierman
Computing and Mathematical Sciences, California Institute of Technology

Pasadena, California
{plondon, ncchen, svardi, adamw}@caltech.edu

Abstract—We propose a new approach for distributed opti-
mization based on an emerging area of theoretical computer
science – local computation algorithms. The approach is fun-
damentally different from existing methodologies and requires
far less communication to compute the solution to a convex
optimization problem than existing techniques. We develop an
algorithm, LOCO, that given a convex optimization problem P
with m variables and a sparse linear constraint matrix with
n constraints, provably finds a solution as good as that of the
best online algorithm for P . Each node computes its own part of
the solution using O(log(n+m)) messages with high probability.
LOCO is robust to link failures and adaptive to dynamic settings.
In addition to analytic results, we show numerically that the per-
formance improvements over classical approaches for distributed
optimization are significant. LOCO uses orders of magnitude less
communication than existing distributed algorithms.

I. INTRODUCTION

The goal of this paper is to introduce a new, fundamentally
different approach to distributed optimization based on an
emerging area of theoretical computer science – local com-
putation algorithms (LCAs) [1]. This work, for the first time,
imports techniques from LCAs into the domain of distributed
convex optimization. The approach allows a large family of
problems to be solved using far less communication than
existing techniques require.

There are a wide variety of approaches for distributed
optimization, which broadly fall into the categories of dual
decomposition [2]–[4], primal decomposition [5], [6], and
consensus algorithms [7], [8]. See [9], [10] for a survey.

While these approaches are distributed, they are not local.
A local algorithm is one where a query about a small part of
a solution to a problem can be answered by communicating
with only a small neighborhood around the part queried.1

Neither dual decomposition nor consensus methods are local:
answering a query about a piece of the solution requires global
communication. Despite the significant work on distributed
algorithms for optimization, the problem of designing a dis-
tributed, local optimization algorithm is open.

This work introduces an algorithm, LOCO, (LOcal Convex
Optimization) that is both distributed and local. It requires
only a small amount of local communication, in contrast to
dual decomposition and consensus methods which require
global communication. While global dependencies exist in

1Local is an overloaded term in the literature. We refer to local in the sense
of [1]. See Subsection I-B for a more comprehensive definition and example.

the problem, our method enables us produce a high quality
solution while only observing local dependencies. Despite
requiring little communication, LOCO returns a solution that
is close to optimal. We provide worst-case guarantees on the
performance of LOCO with respect to the relative error and
communication complexity.

We consider general convex covering or packing problems
with linear constraints. Many problems in networked control
fall into this framework. Settings where multiple, distributed,
cooperative agents need to solve an optimization problem to
control a networked system are numerous and varied. Ex-
amples include management of content distribution networks
and data centers [11], [12], communication network protocol
design [13]–[15], trajectory optimization [16], [17], formation
control of vehicles [18], [19], sensor networks [20], [21],
control of power systems [22], [23], and management of
electric vehicles and distributed storage devices [24], [25].

We demonstrate LOCO’s performance on a canonical
convex optimization problem: network utility maximization
(NUM). This problem is a powerful tool for the design of dis-
tributed control policies [13], [26], [27]. The NUM framework
represents a control problem as a convex optimization problem
and seeks to maximize the aggregate utility of the individual
agents in the network. The utility functions of the agents can
be chosen in order to ensure maximal throughput, proportional
fairness, etc., as desired; see Section II for an overview. NUM
emerged in the context of the design of source rate control in
communication networks [13], [15], but has since been applied
in a wide array of applications, including optimization across
layers of communication protocol [27], [28], market design
and demand response in power systems [29], [30].

The nature of the NUM problem and the applications
mentioned above illustrate how well suited local computation
methods are for distributed optimization. For example, it
would be highly desirable that any local failure in a network
effect only part of an algorithm’s execution. With LOCO, this
is true; failures only affect a small number of nodes in the
neighborhood of the failure. In comparison, if a node in a
distributed system goes offline while a dual decomposition
algorithm is executing, the whole process is brought to a
halt. LOCO offers a robustness to network failures on a scale
that even decomposable algorithms like alternating method of
multipliers (ADMM) do not. Similarly, lag in a single edge
affects the computation of the entire solution in the former

setting, while most computations are not affected when the
computations are local. For example, consider Figure 1(a). If
the solution at source 1 is required, the only other sources
involved in the calculation are 2 and 3. If a dual decomposition
method was used, all the nodes in the graph would be involved
in the calculation of source 1’s part of the solution.

Another advantage of local computation is that it makes the
system robust to dynamic changes in the network. An arrival
of a new node in the network requires recomputing the entire
solution if the algorithm is not local, but requires only a few
local messages and computations if the algorithm is local. In
Figure 1(a), if source 4 is a newly arrived node, LOCO does
not need to recompute the solution to source 1, but existing
methods would require a recomputation of all the nodes.

A. Summary of Contributions

Our results are the following.
1) We develop an algorithm, LOCO, that is both distributed

and local, to solve general convex covering or packing
problems with linear constraints in a distributed manner.

2) We provide worst-case guarantees on the performance of
LOCO with respect to the relative error and the number
of messages it requires. Given a convex optimization
problem P with m variables and a sparse linear con-
straint matrix with n constraints, LOCO provably finds
a solution as good as that of the best online algorithm
for P . Each node computes its own part of the solution
using O(log(n+m)) messages with high probability.

3) We apply LOCO to a canonical optimization problem:
network utility maximization, and demonstrate numeri-
cally that the performance improvements over classical
approaches for distributed optimization are significant.

Due to space restrictions, we only consider the variant of
NUM that maximizes throughput, which amounts to solving
a distributed linear program. We focus on this case because
it is particularly well-studied and, in addition, the objective
function is linear, which in many cases is known to produce the
worst performance guarantee for online convex optimization
problems [31], [32]. In order to compare LOCO with exist-
ing methods, we perform a numerical experiment comparing
LOCO and ADMM. Other comparison methods are possible,
which we discuss in Section II. We show that LOCO requires
orders of magnitude less communication than ADMM.

B. Related literature

The key idea behind LOCO is an extension of recent
results on local computation algorithms. The LCA model
was formally introduced by Rubinfeld et al. [1], after many
algorithms within the framework had recently appeared in
distinct areas, e.g., [33]–[35]. LCAs have received increasing
attention in the years that followed as the importance of local,
distributed computing has grown with the increasing scale of
problems in distributed systems, the Internet of Things, etc.

Much of the focus of LCAs has, to this point, been on
graph problems such as matching, maximal independent set,
and coloring [36]–[39]. This paper extends the LCA literature

by moving from graph problems to general optimization
problems, which have not been studied in the LCA community
previously.

In particular, a key insight of the field is that online
algorithms can be converted into local algorithms in graph
problems with bounded degree (e.g., [38], [40]). Mansour et
al. [40] showed a general reduction from LCAs to online
algorithms on graphs with bounded degree. The key technical
contribution of our work is extending this technique to design
LCAs for convex programs.

The main idea behind LCAs is to compute a piece of the
solution to some algorithmic problem using only information
that is close to that piece of the problem (as opposed to the
complete global solution). More concretely, an LCA receives
a query and is expected to output the part of the solution
associated with the query. For example, an LCA for maximal
matching would receive as a query an edge, and its output
would be “yes/no,” corresponding to whether or not the edge
is part of the required matching. The two requirements are (i)
the replies to all queries are consistent with the same solution,
and (ii) the reply to each query is “efficient,” for some natural
notion of efficient.

For graph problems studied within the LCA framework, effi-
ciency criteria are typically the number of probes to the graph,
the running time and the amount of memory required [41]. In
contrast to previous work whose primary focus was probe,
time and space complexities, the efficiency criterion we use is
the number of messages or communication required, as this is
usually the expensive resource in distributed computing.

Distributed optimization is a field with a long history.
Beginning in the 1960s, approaches emerged for solving
large scale linear programs in a distributed manner. Early
approaches by Benders [3], Dantzig and Wolfe [4], [42],
and Everett [2], developed the ideas of dual decomposition.
These approaches can be generalized to nonlinear optimization
via the subgradient method [6], [43], [44]. Other approaches
include primal decomposition [5], [6], and consensus-based
schemes [7], [8], [10]. The application of these techniques to
NUM problems came with [13], [26], which apply the idea of
dual decomposition to NUM.

II. NETWORK UTILITY MAXIMIZATION

In order to illustrate the application of local computation
algorithms to distributed optimization, we focus on the classic
setting of network utility maximization (NUM). The NUM
framework is a general class of optimization problems that
has seen wide-spread application to distributed control in
domains from the design of TCP congestion control [13]–
[15], [26] to understanding of protocol layering as optimization
decomposition [27], [28] and power system demand response
[29], [30]. For a recent survey, see [45].

A. Model

The NUM framework considers a network containing a set
of sources S = {1, . . . ,m} and links L = {1, . . . , n} of
capacity cj , for j ∈ L. Source i ∈ S is characterized by

(Li, fi, xi, x̄i): a path Li ⊆ L in the network; a concave
utility function fi : R+ → R; and the minimum and maximum
transmission rates of source i.

The goal is to maximize the sources’ aggregate utility.
Source i attains a concave utility fi(xi) when it transmits at
rate xi along path Li, within the minimum and maximum rates
allowed. The maximization of aggregate utility is formulated
as follows,

max
x

m∑
i=1

fi(xi)

subject to ATx ≤ c
x ≤ x ≤ x̄,

where A ∈ Rm×n+ is defined as Aij = 1 if j ∈ Li and
0 otherwise. Choices of fi correspond to different network
goals. For example, setting fi(xi) = xi maximizes throughput;
fi(xi) = log(xi) achieves proportional fairness; fi(xi) =
−1/xi minimizes potential delay; these are common goals in
communication network applications [26], [46].

Our complexity results hinge on the assumption that the
constraint matrix A is sparse. The sparsity of A is defined
as max{α, β}, where α and β denote the maximum number
of non-zero entries in a row and column of A respectively.
Formally, we say that A is sparse if the sparsity of A is
bounded by a constant. This assumption usually holds in
network control applications since α is the maximum number
of sources sharing a link, which is typically small compared to
m, and β is the maximum number of links each source uses,
which is typically small compared to m.2

B. Distributed Algorithms for Network Utility Maximization

Given the NUM formulation above, the algorithmic goal
is to design a protocol that efficiently finds an approximately
optimal solution. If the network is huge, it is often beneficial
to distribute the solution, as performing the entire computation
on a single machine is too costly [15], [48].

There is a large body of work within the networked
control and communication networks literature that seeks to
design distributed optimization algorithms [13], [14], [27].
Dual decomposition algorithms are particularly prominent in
this setting. However, many such methods require a strictly
concave objective function [26], and cannot be applied to the
case of throughput maximization, i.e., linear fi, when NUM is
a linear program. In this paper we focus on the case of through-
put maximization because in many cases linear objectives
produce the worst performance guarantee for online convex
optimization problems [31], [32]. One prominent algorithm
that does apply in the case of throughput maximization is
ADMM, which was introduced by [49] and has found broad
applications in e.g., denoising images [50], support vector
machine [51], and signal processing [52]–[54]. As a result, we

2When α is large, many links will be congested and all sources will
experience greater delay, the routing protocol (IP) will start using different
links; also, due to the small diameter of the Internet graph [47], β is small
compared to m.

x1

x2

x3
t2

t3
t1

y1 y2 y3
y4

x1

x2
x4

x3

 x1 x2 x3 x4
y1 1 0 0 0
y2 1 1 0 0
y3 0 1 1 0
y4 0 0 1 1

y1
y2
y3
y4

0.3

0.4

0.1

(a)

(b)
	

(c)
	

(d)
	

0.2

x1
x2
x3
x4

x4

t4

Fig. 1: An illustration of LOCO on a toy graph with five
nodes. There are four sources, associated with primal variables
x1, x2, x3, x4, whose paths end in destinations t1, t2, t3, t4 re-
spectively. There are four links, associated with dual variables
y1, y2, y3, y4. The graph is depicted in (a); the constraint ma-
trix for NUM is given in (b); the bipartite graph representation
of the matrix in (c); and the dependency graph in (d). The
rank of each primal variable (source) is written in the node
representing the variable in the dependency graph. Shaded
nodes represent the query set S(x1) for source 1.

use ADMM as a benchmark for comparison in this paper. For
completeness, the application of ADMM to NUM is described
in the extended version of this paper [55].

C. Performance metrics

Distributed algorithms for NUM should perform well on
two measures. The first is message complexity: the number of
messages that are sent across links of the network in order to
compute the solution. When the algorithm uses randomization,
we want the message complexity to hold with probability at
least 1− 1

mγ , where where m is the number of vertices in the
network and γ > 0 can be an arbitrarily large constant. We
denote this by 1 − 1

polym . We do not bound the size of the
messages, but note that in both our algorithm and ADMM the
message length will be of order O(logm).

The second is the approximation ratio, which measures the
quality of the solution provided by the algorithm. Specifically,
an algorithm is said to γ-approximate a maximization problem
if its solution is guaranteed to be at least OPTγ , where OPT is
the value of the optimal solution. If the algorithm is random-
ized, the approximation ratio is with respect to the expected
size of the solution. We will compare the performance of
LOCO with iterative algorithms such as ADMM, for which
approximation ratio is not a standard measure. Thus in our
empirical results, comparison with the optimal solution is
made using relative error, defined in Section IV-A, which is
related to but slightly different from the approximation ratio.

III. LOCAL CONVEX OPTIMIZATION

In this section, we introduce our local algorithm for dis-
tributed convex optimization, LOcal Convex Optimization
(LOCO). In LOCO, every source in the network computes

its portion of a near optimal solution using a small number
of messages, without needing global communication. This is
in contrast to decomposition methods, e.g. ADMM, which are
global; they spread information necessary to find an optimal
solution throughout the whole network over a series of itera-
tions. LOCO has provable worst-case guarantees on both its
approximation ratio and message complexity, and improves on
the communication overhead of global decomposition methods
by orders of magnitude in practice.

A. An overview of LOCO

The key insight in the design and analysis of LOCO is that
any natural3 online optimization algorithm can be converted
into a local, distributed optimization algorithm. Note that the
resulting distributed algorithm is for a static problem, not
an online one. Further, after this conversion, the distributed
optimization algorithm has the same approximation ratio as
the original online optimization algorithm. Thus, given an
optimization problem for which there exist effective online
algorithms, these online algorithms can be converted into
effective local, distributed algorithms.

More formally, to reduce a static optimization problem to
an online optimization problem, we do the following. Let V
be the set of variables of an optimization problem P . Let
r : V → [0, 1] be a ranking function that assigns each
variable xi a real number between 0 and 1, uniformly at
random. We call r(xi) xi’s rank. Suppose that there is some
online algorithm ALG that receives variables sequentially and
must augment the current set of variables so as to satisfy all
constraints. Suppose furthermore that for each variable xi, we
find a small set of variables S(xi) (which we call xi’s query
set) that arrived before it. We can think of S(xi) as a localized
neighborhood around xi, or source i. Then, restricting the set
of variables of P to S(xi) results in ALG producing exactly
the same solution for the variables that are present in the
constraints involving the variables in S(xi). This is precisely
what our algorithm does: it generates a random order of arrival
for the variables, and for each variable xi, it constructs a set
S(xi) and simulates the online algorithm on it. An arbitrary
ordering could mean that these sets are very large for some
variables; to bound the size of these sets, we require that the
constraint matrix of P is sparse and that the order generated
is random. Pseudo-random orders suffice [38].

Concretely, there are two main steps in LOCO. In the first,
LOCO generates a localized neighborhood for each variable or
source. In the second, LOCO simulates an online algorithm on
the localized neighborhood. Importantly, the first step is inde-
pendent of the online algorithm, and the second is independent
of the method used to generate the localized neighborhoods.
Therefore, we can think of LOCO as a general methodology

3We require that the online algorithm have the following characteristic:
knowing the output of the algorithm for the “neighbors” of a query q that
arrived before q is sufficient to determine the output for q. We omit this
technicality from the theorem statements as the online algorithm we use, and
indeed all online algorithms for convex optimization that we are aware of, have
this property. For a more in-depth discussion, we refer the reader to [38].

that can yield a variety of algorithms. For example, we can
use different online algorithms for the second step of LOCO
depending on whether we consider a linear NUM problem or a
strictly convex NUM problem. More specifically, the two steps
work as follows and are described in Algorithm 1 below.

Step 1) Generating a localized neighborhood: For clarity,
we break the first step into three sub-steps, see also Figure 1.

Step 1a) Representing the constraint matrix as a bipartite
graph: A boolean matrix A can be represented as a bipartite
graph G = (L,R,E′) as follows. Each primal packing vari-
able xi, or equivalently each column of AT which correspond
to the sources in NUM, is represented by a vertex vi ∈ L.
Each dual covering variable yj , which correspond to the links
in NUM, by a vertex vj ∈ R. An edge (vi, vj) is in E′ if and
only if Aij = 1. Intuitively, edges represent which variables
appear in which constraints. Note that the maximum degree
of G is exactly the sparsity of A.

Step 1b) Constructing the dependency graph: We con-
struct the dependency graph H = (V,E) as follows. The
vertices of the dependency graph are the vertices of L; an
edge exists between two vertices in H if the corresponding
vertices in G share a neighbor. Intuitively, H represents the
“direct dependencies” between the primal variables; changing
the value of any variable immediately affects all constraints in
which it appears. The maximum degree of H is upper bounded
by the square of the sparsity of A.

Step 1c) Constructing the query set: In order to build
S(xi), the query set of xi, we generate a random ranking
function on the vertices of H , r : V → [0, 1]. Given the
dependency graph H and the ranking function r, we build the
query set using a variation of BFS on the vertices in H as
follows.

Initialize sets S = T = {xi}. Scan all of xi’s neighbors
and add them to both S and T . Now repeat the following
iteratively: for every vertex v ∈ T , scan all of v’s neighbors,
denoted N(v). For each w ∈ N(v), if r(w) ≤ r(v), add w
to S and to T . Once all of v’s neighbors have been checked,
remove v from T . Set T is used to keep track of vertices in
the BFS that have been added to the query set, but whose
neighbors have yet to been checked. Continue iteratively until
T is empty; no more vertices can be added to S (that is, for
every vertex v ∈ S all of its neighbors that are not themselves
in S have lower rank than v). If there are ties (i.e., two
neighbors w, v such that r(w) = r(v)), we tie-break by ID.
Any consistent tie breaking rule suffices [38].

Step 2) Simulating the online algorithm: Assume that we
have an online algorithm for the problem that we would like
to solve. We will internally simulate the execution of an online
algorithm, where we assume that the columns of AT and
components of the cost function, or equivalently the variables
xi, arrive online, in the order determined by the ranking func-
tion r. The NUM problem is a concave packing maximization

problem, so we require an online packing algorithm.4 In this
paper we use the online packing algorithm of Buchbinder and
Naor [56, chapter 14], for which we provide the pseudocode in
Appendix A. Depending on the type of optimization problem,
various other online algorithms are well suited [57], [58].

In order to compute the value of xi, source i considers its
query set, S(xi). The online algorithm solves a problem that
consists of only the variables contained in S(xi) along with
all the constraints in which those variables appear. For clarity,
call matrix ÂT ∈ Rn×|S(xi)| the matrix containing only the
columns of AT that correspond to the variables in S(xi). The
algorithm will have |S(xi)| iterations in total. Note that the
univariate non-negativity constraints do not arrive online and
are known initially.

At each step of the algorithm, a new variable xk, or equiva-
lently the k-th new column of ÂT and the k-th component of
the cost function, arrive online. The result will be a solution
for all the variables contained in S(xi). We return only the
component corresponding to xi. Claim 4 below shows that
xi’s value is identical to its value if the online algorithm was
executed on the entire program, with the variables arriving in
the order defined by r. In order to compute the entire solution
x ∈ Rm, the above steps are taken for all sources.

B. Analysis of LOCO

Our main theoretical result shows that LOCO can compute
solutions to convex optimization problems that are as good as
those of the best online algorithms for the problems using
very little communication. We then specialize this case to
throughput maximization in NUM. While we focus on NUM
in this paper, the following theorem and its proof applies
to a wider family of problems as well. Specifically, the
conversion from online to local outlined below can be used
more broadly for any class of optimization problems for
which effective online algorithms exist. Thus, improvements
to online optimization problems immediately yield improved
local optimization algorithms.

Theorem 1. Let P be a problem with a concave objective
function and linear inequality constraints, with m variables
and n constraints, whose constraint matrix has sparsity σ.
Given an online algorithm for P with competitive ratio
h(n,m), there exists a local computation algorithm for P with
approximation ratio h(n,m) that uses 2O(σ2) log (n+m)
messages with probability 1− 1/poly(n,m).

In particular, we have the following result, for NUM with
a linear objective function.

Theorem 2. Let P be a throughput maximization problem with
m variables, n constraints, and a sparse constraint matrix.
LOCO computes an O(log n) – approximation to the optimal
solution of P using O(log(n+m)) messages with probability
1− 1/ poly(n,m).

4Our framework applies to both packing maximization problems and the
dual covering minimization problem. We require an online algorithm that can
solve either problem. In the case of covering problems, constraints arrive
online, and in the case of packing, variables arrive online.

Proof of Theorem 2. Theorem 1, the the following Claim 4
and Lemma 5, setting B = 2 log(1 + n), imply Theorem 2.

Algorithm 1: LOCO (LOcal Convex Optimization)

Input: AT ∈ Rn×m, f ∈ Rm, c ∈ Rn

Step 1a) Construct bipartite graph G = (L,R,E′):
• vertices vi ∈ L for i = 1...m correspond to primal packing

variables xi (sources; columns of AT)
• vertices vj ∈ R for j = 1...n correspond to dual covering

variables yj (links)
• an edge (vi, vj) is in E′ if and only if Aij = 1

Step 1b) Construct dependency graph H = (V,E):
• vertices V = L
• add edges as follows:
for ∀vi, vk ∈ L do

E ← (vi, vk) if ∃{w : w ∈ N(vi) and w ∈ N(vk)}

Step 1c) Construct S(xi), the query set of xi:
• Generate a random ranking function on the vertices of H ,
r : V → [0, 1]

• Initialize S = T = {xi} and in the dependency graph H ,
∀v ∈ N(xi), if r(v) < r(xi), then S ← v, T ← v

while T is nonempty do
for ∀v ∈ T do

for ∀w ∈ N(v) do
if r(w) < r(v) then

S ← w, T ← w, T ← T \ v

Step 2) Run an online algorithm to solve for xi.

• Let matrix ÂT ∈ Rn×|S(xi)| be the matrix containing only
the columns of AT that correspond to variables in S(xi).

for k = 1...|S(xi)| do
kth column of ÂT and fk arrives
xk ← onlineAlgorithm(ÂT , fk)

The approximation ratio in Theorem 2 comes from the on-
line algorithm presented and analyzed in [56] (see Lemma 5).
The analysis of the online algorithm is for adversarial input;
therefore it is natural to expect LOCO to achieve a much better
approximation ratio in practice, as LOCO randomizes the order
in which the constraints “arrive”. It is an open question to
give better theoretical bounds for stochastic inputs, and if
such results are obtained they would immediately improve the
bounds in Theorem 2.

The core technical lemma required for the proof of Theo-
rem 1 is the following.

Lemma 3. Let G = (V,E) be a graph whose degree is
bounded by d and let r : V → [0, 1] be a function that
assigns to each vertex v ∈ V a number between 0 and 1
independently and uniformly at random. Let Tmax be the size

of the largest query set of G: Tmax = max{|Tv| : v ∈ V }.
Then, for λ = 4(d+ 1),

Pr[|Tmax| > 2λ · 15λ logm] ≤ 1

m2
.

The proof of Lemma 3 uses ideas from a proof in [38],
and employs a quantization of the rank function. Its proof
is deferred to the extended version of the paper [55]. The
following simple claim implies that the approximation ratio
of LOCO is the same as that of the online algorithm.

In addition to Lemma 3, the following claim and technical
lemma are needed to complete the proof of Theorem 2.

Claim 4. For any source i, the value of xi in LOCO’s output
is identical to its value in the output of the online algorithm.

Proof. We present a proof by induction. Variables arrive in
the order determined by r. For the base case, the variable with
the smallest rank clearly has the same value in LOCO and in
the online algorithm. For the inductive step, call xi’s rank ri.
Assume that the values of all of the variables whose rank is at
most ri−1 is the same under LOCO and the online algorithm.
Then by the inductive hypothesis, all of the neighbors of xi in
the dependency graph whose ranks are less than ri have the
same value under LOCO and the online algorithm. Variables
with ranks less than ri are the only values that the online
algorithm uses to set the value of xi. Hence, xi will be set to
have the same value as it would have if the online algorithm
were used to solve the original problem with all m variables.

The following lemma is a restatement of Theorem 14.1
in [56], adapted to throughput maximization.

Lemma 5. For any B > 0, there exists is a B-competitive
online algorithm to linearly-constrained NUM with n con-
straints; each constraint is violated by a factor at most
2 log(1+n)

B .

C. Contrasting LOCO and ADMM

LOCO fundamentally differs from dual ascent and dual de-
composition methods. Dual ascent methods iterate until global
optimality conditions are met. In order to check for global op-
timality, dual decomposition methods such as ADMM require
communication amongst all nodes in the distributed network
at each iteration.

LOCO operates in a completely different way. Once a node
gets information about its query set, the node performs a
local computation, only interacting with nodes in its query
set. LOCO executes for a predetermined number of iterations,
which is the size of the query set. This is in contrast to
ADMM; the number of iterations required is unknown a priori.

While LOCO does not compute the optimal solution, dual
decomposition style approaches will eventually converge to
the true optimal. However, LOCO will be near-optimal, as
we prove analytically above. The proven analytical bounds
for LOCO are based on worst-case adversarial input. We
show in Section IV-B that our empirical results outperform

the theoretical guarantees by a considerable margin. This is
partly because the ranking is done randomly rather than in an
adversarial fashion. We elaborate on this in Section IV.

Note that there is a difference in the form of the theoretical
guarantees for LOCO and dual ascent algorithms. Dual ascent
algorithms have global convergence rate guarantees. There is
no notion of global convergence in LOCO because each node
computes its own solution independently of the others. Instead,
LOCO has guarantees in terms of the approximation ratio.

IV. CASE STUDY

Here we present the results of a simulation study demon-
strating the empirical performance of LOCO on both synthetic
and real networks. The results highlight that an orders-of-
magnitude reduction in communication is possible with LOCO
as compared to ADMM, which we choose as a prominent
example of current approaches for distributed optimization.
For concreteness, our experiments focus our numeric results on
distributed linear programming, i.e., the case of linear NUM.
This is the NUM setting where one could expect LOCO to
perform the worst, given that linear functions are typically
the worst-case examples for online convex optimization algo-
rithms [31], [32].

A. Experimental setup

1) Problem Instances: For our first set of experiments, we
generate random synthetic instances of linear NUM. Let n =
m and define the constraint matrix A ∈ R(n×n) as follows.
Set Ãij = 1 with probability p and Ãij = 0 otherwise. Let
A = Ã + In to ensure each row of A has at least one non
zero entry.5 The vector c ∈ Rn is drawn i.i.d. from Unif[0, 1].
We set the minimum and maximum transmission rates to be
xi = 0 and x̄i = 1. Finally, for the rank function used by
LOCO we use a random permutation of the vertex IDs.6

For our second set of experiments, we use the real network
from the graph of Autonomous System (AS) relationships in
[59]. The graph has 8020 nodes and 36406 edges. In order to
interpret the graph in a NUM framework, we associate each
source with a path of links, ending at a destination node. To
do this, for each source i in the graph, we randomly select a
destination node ti which is at distance `i, sampled i.i.d. from
Unif[`− 0.5`, `+ 0.5`]. We repeat this for several values of `.
(The distance between two nodes is the length of the shortest
path between them.) Then, we designate the path Li to be the
set of links comprising the shortest path between the source
and the destination. The vectors c, x, and x̄ are chosen in the
same manner as for the synthetic networks.

2) Algorithm tuning: Our results focus on comparing
LOCO and ADMM. Running ADMM requires tuning four
parameters [48]. Unless otherwise specified, we set the relative
and absolute tolerances to be εrel = 10−4 and εabs = 10−2,

5Note that this matrix does not have constant sparsity; however this can
only increase the message complexity. Irregardless, it is possible to adapt the
theoretical results to hold for this data as well, using techniques from [38].

6For the purposes of our simulations, such a permutation can be efficiently
sampled, and guarantees perfect randomness. For larger n and m, it is possible
to use pseudo-randomness with almost no loss in message complexity [38].

0 5000 10000 15000
0

5

10

15
x 10

6

n

M
e
s
s
a
g
e
s

 ADMM 1
 ADMM 2

 LOCO Tot

 LOCO Max

 LOCO Avg

(a)

0 5000 10000 15000

10
0

10
2

10
4

10
6

10
8

n

M
e
s
s
a
g
e
s

 ADMM 1
 ADMM 2

 LOCO Tot

 LOCO Max

 LOCO Avg

(b)

1 1.5 2

x 10
−4

0

4

8

12
x 10

6

p

M
e

s
s
a

g
e

s

 ADMM 1
 ADMM 2

 LOCO Tot

 LOCO Max

 LOCO Avg

(c)

0.5 1 1.5 2

x 10
−4

10
0

10
2

10
4

10
6

10
8

p

M
e

s
s
a

g
e

s

 ADMM 1
 ADMM 2

 LOCO Tot

 LOCO Max

 LOCO Avg

(d)

Fig. 2: Illustration of the number of messages required by
ADMM and LOCO for the synthetic data set with results
averaged over 50 trials. Plots (a) and (b) vary n while fixing
sparsity p = 10−4, showing the results in linear-scale and log-
scale respectively. Plots (c) and (d) fix n = 103 and vary the
sparsity p, showing the results in linear-scale and log-scale
respectively.

the penalty parameter to be ρ = 1, and the maximum number
of allowed iterations to be tmax = 10000. This is done to
provide the best performance for ADMM: the parameters
are tuned in the typical fashion to optimize ADMM [48].
Running LOCO requires tuning only one parameter: B, which
governs the worst-case guarantee for the online algorithm used
in step 2. A smaller B gives a “better guarantee”, however
some constraints may be violated. Setting B = 2 ln(1 + n)
provides the best worst-case guarantee, and is our choice in
the experiments unless stated otherwise. In fact, it is possible
to tune B (akin to tuning ADMM) to specific data, as the
constraints are often still satisfied for smaller B. In Figure
4 (c), we show the improvement in performance guarantee by
tuning B, while keeping the dual solution feasible.

3) Metrics: For our numeric results, we evaluate ADMM
and LOCO with respect to the quality of the solution provided
and the number of messages sent.

To assess the quality of the solution we measure the relative
error, which is defined as |p

∗−pLOCO|
|p∗| , where p∗ is the optimal

solution. For problem instances of small dimension, one can
run an interior point method to check the optimal solution,
but this is too tedious for large problem sizes. In the large
dimension cases we consider, we regard p∗ to be ADMM’s
solution with small tolerances, such that the maximum number
of allowed iterations is never needed. Note that the relative
error is an empirical, normalized version of the approximation
ratio for a given instance.

To measure the number of messages used by each of

5 10 15 20
0

2

4

6

8
x 10

6

Average Path Length

M
e
s
s
a
g
e
s

ADMM
LOCO Tot
LOCO Max
LOCO Avg

(a)

5 10 15 20
10

0

10
5

10
10

Average Path Length

M
e

s
s
a

g
e

s

 ADMM
 LOCO Tot

 LOCO Max

 LOCO Avg

(b)

Fig. 3: Illustration of the number of messages required by
ADMM and LOCO for the real network data with n = 8020
and various average path lengths L(i).

the algorithms, we consider the following. For a distributed
implementation of ADMM, two sets of n variables are updated
on separate processors and reported to a central controller
which updates another variable (see [48, Chapter 7.1]). The
number of messages for a run of ADMM is twice the number
of sources in the NUM problem, multiplied by the number of
iterations required by ADMM. LOCO needs to use commu-
nication only to construct the query set; running the online
algorithm does not require any communication. Therefore, the
number of messages is proportional to the number of edges
with at least one endpoint in the query set (this is the number
of edges we need to send information over in order to construct
the query set, see e.g., [38] for more details). We note that the
number of messages depends both on the network topology
and the realization of the ranking function.

B. Experimental Results

We now describe our empirical comparison of the perfor-
mance of LOCO with ADMM.

Our first set of experiments investigates the communication
used by ADMM and LOCO, i.e., the number of messages
required. Figure 2 highlights that LOCO requires considerably
fewer messages than ADMM, across both small and large
n and varying levels of sparsity. More specifically, the fig-
ure shows that both the average and maximum amount of
communication needed to answer a query about a specific
piece of the solution under LOCO (LOCO Avg and LOCO
Max respectively) are substantially lower than for ADMM.
Further, even answering every query (LOCO Tot) requires only
the same order of magnitude as ADMM. The figure includes
ADMM with a tolerance εrel of 10−4 (ADMM 1) and 10−3

(ADMM 2). Even with suboptimal tolerance, which results
in fewer iterations, ADMM still requires orders of magnitude
more communication than LOCO.

Figure 3 shows the same qualitative behavior in the case of
the real network data. In particular, the number of messages
used is shown as a function of the average length of paths
in the AS topology. We see that LOCO greatly outperforms
ADMM for all tested average path lengths.

The improvement achieved by LOCO is possible because
the size of the query sets used are small compared to the

0 0.05 0.1 0.15 0.2
10

3

10
4

10
5

10
6

10
7

Relative Error

 M
e
s
s
a
g
e

s

ADMM
LOCO Tot
LOCO Max
LOCO Avg

(a)

0 0.05 0.1 0.15 0.2
10

3

10
4

10
5

10
6

10
7

Relative Error

 M
e
s
s
a
g
e

s

ADMM
LOCO Tot
LOCO Max
LOCO Avg

(b)

10 11 12 13 14
0

0.05

0.1

0.15

0.2

0.25

B

 R
e
la

ti
v
e
 E

rr
o
r

LOCO

(c)

Fig. 4: Comparison of the relative error and the number of messages required by LOCO and ADMM. Plots (a) and (b) show
the Pareto optimal curve for ADMM with a range of relative tolerances εrel ∈ {10−4, 10−1}. Plot (c) depicts how tuning B
effects the relative error. The right most point corresponds to B = 2 ln(1 + n).

number of sources. When n = 103, as in Figure 2, the number
of nodes in the largest query set (over all trials) was 60.

We note that the improvement in the amount of communi-
cation is achieved at a cost: LOCO does not precisely solve
the optimization, it only approximates the solution. When B
is set to its worst-case guarantee (Figure 2), the relative error
of LOCO ranges from 0.29 to 0.34.

Next we explore the tradeoff between message complexity
and relative error. Figures 4 (a) and (b) illustrate the Pareto
optimal frontier for ADMM: the minimal messages needed
in order to obtain a particular relative error. We tune the
parameters of ADMM and LOCO such that the algorithms
have comparable relative error while LOCO Tot and ADMM
require about the same number of messages. Unlike ADMM,
LOCO cannot trade off the number of messages used with
the relative error; LOCO corresponds to a single point in the
figures. This point is outside the Pareto frontier of ADMM.
Figure 4 (c) illustrates the impact of tuning B. Similarly to
ADMM, tuning B can significantly improve the relative error;
unlike ADMM, tuning B does not affect the communication
complexity.

V. CONCLUDING REMARKS

We introduced a new, fundamentally different approach for
distributed optimization based on techniques from the field
of local computation algorithms. In particular, we designed a
generic algorithm, LOCO, that constructs small neighborhoods
and simulates an online algorithm on them. Due to the fact
that LOCO is local, it has several advantages over existing
methods for distributed optimization. In particular, it is more
robust to network failures, communication lag, and changes
in the system. To illustrate the benefits of LOCO we consid-
ered throughput maximization. The improvements of LOCO
over ADMM in terms of communication in this setting are
significant.

We view this paper as a first step toward the investigation of
local computation algorithms for distributed optimization. In
future work, we intend to continue to study the performance
of LOCO in more general network optimization problems.
Further, it would be interesting to apply other techniques from
the field of local computation algorithms to develop algorithms

for other settings in which distributed computing is useful,
such as power systems and machine learning.

REFERENCES

[1] R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie, “Fast local computation
algorithms,” in Proc. 2nd Symposium on Innovations in Computer
Science (ICS), 2011, pp. 223–238.

[2] H. Everett III, “Generalized lagrange multiplier method for solving
problems of optimum allocation of resources,” Operations research,
vol. 11, no. 3, pp. 399–417, 1963.

[3] J. F. Benders, “Partitioning procedures for solving mixed-variables
programming problems,” Numerische mathematik, vol. 4, no. 1, pp. 238–
252, 1962.

[4] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear pro-
grams,” Operations Research, vol. 8, no. 1, pp. 101–111, 1960.

[5] L. S. Lasdon, Optimization theory for large systems. Courier Corpo-
ration, 1970.

[6] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[7] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,

“Convergence in multiagent coordination, consensus, and flocking,” in
Proc. of IEEE Conference on Decision and Control, 2005, pp. 2996–
3000.

[8] A. Nedić and A. Ozdaglar, “Convergence rate for consensus with
delays,” Journal of Global Optimization, vol. 47, no. 3, pp. 437–456,
2010.

[9] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Prentice Hall, 1989.

[10] A. Nedic and A. Ozdaglar, “Cooperative distributed multi-agent opti-
mization,” in Convex Optimization in Signal Processing and Communi-
cations, D. P. Palomar and Y. C. Eldar, Eds. Cambridge University
Press, 2010.

[11] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proceedings of IEEE INFOCOM,
2010, pp. 1–9.

[12] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
“Distributing streaming media content using cooperative networking,”
in Proceedings of workshop on Network and operating systems support
for digital audio and video. ACM, 2002, pp. 177–186.

[13] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for commu-
nication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, vol. 49, no. 3, pp. 237–
252, 1998.

[14] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”
IEEE Control Systems, vol. 22, no. 1, pp. 28–43, 2002.

[15] R. Srikant, The mathematics of Internet congestion control. Springer
Science & Business Media, 2012.

[16] Y. Guo and L. E. Parker, “A distributed and optimal motion planning
approach for multiple mobile robots,” in Robotics and Automation, 2002.
Proceedings. ICRA’02. IEEE International Conference on, vol. 3, 2002,
pp. 2612–2619.

[17] Y. Kuwata and J. P. How, “Cooperative distributed robust trajectory op-
timization using receding horizon milp,” IEEE Transactions on Control
Systems Technology, vol. 19, no. 2, pp. 423–431, 2011.

[18] I. Suzuki and M. Yamashita, “Distributed anonymous mobile robots:
Formation of geometric patterns,” SIAM Journal on Computing, vol. 28,
no. 4, pp. 1347–1363, 1999.

[19] R. L. Raffard, C. J. Tomlin, and S. P. Boyd, “Distributed optimization
for cooperative agents: Application to formation flight,” in Proc. of IEEE
Conference on Decision and Control, vol. 3, 2004, pp. 2453–2459.

[20] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in
Proc. of IEEE Conference on Decision and Control, 2007, pp. 5492–
5498.

[21] Y. Liao, H. Qi, and W. Li, “Load-balanced clustering algorithm with
distributed self-organization for wireless sensor networks,” IEEE Sensors
Journal, vol. 13, no. 5, pp. 1498–1506, 2013.

[22] T. Erseghe, “Distributed optimal power flow using admm,” IEEE Trans-
actions on Power Systems, vol. 29, no. 5, pp. 2370–2380, 2014.

[23] Q. Peng and S. H. Low, “Distributed optimal power flow algorithm for
radial networks, i: Balanced single phase case,” IEEE Transactions on
Smart Grid, 2016.

[24] Y. Cao, S. Tang, C. Li, P. Zhang, Y. Tan, Z. Zhang, and J. Li, “An
optimized ev charging model considering tou price and soc curve,” IEEE
Transactions on Smart Grid, vol. 3, no. 1, pp. 388–393, 2012.

[25] L. Gan, U. Topcu, and S. H. Low, “Optimal decentralized protocol for
electric vehicle charging,” IEEE Transactions on Power Systems, vol. 28,
no. 2, pp. 940–951, May 2013.

[26] S. H. Low and D. E. Lapsley, “Optimization flow control. I. Basic
algorithm and convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–874, Dec 1999.

[27] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
2007.

[28] D. P. Palomar and M. Chiang, “Alternative distributed algorithms
for network utility maximization: Framework and applications,” IEEE
Transactions on Automatic Control, vol. 52, no. 12, pp. 2254–2269,
2007.

[29] P. Samadi, A.-H. Mohsenian-Rad, R. Schober, V. W. Wong, and J. Jatske-
vich, “Optimal real-time pricing algorithm based on utility maximization
for smart grid,” in Proc. of IEEE Smart Grid Communications (Smart-
GridComm), 2010, pp. 415–420.

[30] N. Li, L. Chen, and S. H. Low, “Optimal demand response based on
utility maximization in power networks,” in IEEE Power and Energy
Society General Meeting, 2011, pp. 1–8.

[31] L. L. Andrew, S. Barman, K. Ligett, M. Lin, A. Meyerson, A. Roytman,
and A. Wierman, “A tale of two metrics: Simultaneous bounds on
competitiveness and regret.” in COLT, 2013, pp. 741–763.

[32] E. Hazan, “Introduction to online convex optimization,” Foundations and
Trends in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[33] M. E. Saks and C. Seshadhri, “Local monotonicity reconstruction,” SIAM
Journal on Computing, vol. 39, no. 7, pp. 2897–2926, 2010.

[34] R. Andersen, C. Borgs, J. Chayes, J. Hopcroft, V. Mirrokni, and S. Teng,
“Local computation of pagerank contributions,” Internet Mathematics,
vol. 5(1–2), pp. 23–45, 2008.

[35] J. Katz and L. Trevisan, “On the efficiency of local decoding procedures
for error-correcting codes,” in Proc. 32nd Annual ACM Symposium on
the Theory of Computing (STOC), 2000, pp. 80–86.

[36] N. Alon, R. Rubinfeld, S. Vardi, and N. Xie, “Space-efficient local com-
putation algorithms,” in Proc. 22ndACM-SIAM Symposium on Discrete
Algorithms (SODA), 2012, pp. 1132–1139.

[37] R. Levi, R. Rubinfeld, and A. Yodpinyanee, “Brief announcement: Local
computation algorithms for graphs of non-constant degrees,” in Proc.
of the 27th ACM on Symposium on Parallelism in Algorithms and
Architectures, (SPAA), 2015, pp. 59–61.

[38] O. Reingold and S. Vardi, “New techniques and tighter bounds for
local computation algorithms,” Journal of Computer and System Science,
vol. 82, no. 7, pp. 1180–1200, 2016.

[39] U. Feige, B. Patt-Shamir, and S. Vardi, “On the probe complexity of
local computation algorithms,” 2017, under submission.

[40] Y. Mansour, A. Rubinstein, S. Vardi, and N. Xie, “Converting online
algorithms to local computation algorithms,” in Proc. of 39th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP),
2012, pp. 653–664.

[41] Y. Mansour, B. Patt-Shamir, and S. Vardi, “Constant-time local com-
putation algorithms,” in Approximation and Online Algorithms - 13th
International Workshop, WAOA, 2015, pp. 110–121.

[42] G. Dantzig, Linear programming and extensions. Princeton university
press, 2016.

[43] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[44] N. Z. Shor, Minimization methods for non-differentiable functions.
Springer - Verlag, 1985.

[45] Y. Yi and M. Chiang, “Stochastic network utility maximization - a tribute
to Kelly’s paper published in this journal a decade ago,” European
Transactions on Telecommunications, vol. 19, no. 4, pp. 421–442, 2008.

[46] L. Massoulié and J. Roberts, “Bandwidth sharing: objectives and algo-
rithms,” in IEEE INFOCOM’99, vol. 3, 1999, pp. 1395–1403.

[47] R. Albert, H. Jeong, and A.-L. Barabási, “Internet: Diameter of the
world-wide web,” Nature, vol. 401, no. 6749, pp. 130–131, 1999.

[48] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[49] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear
variational problems via finite element approximation,” Computers &
Mathematics with Applications, vol. 2, no. 1, pp. 17–40, 1976.

[50] G. Steidl and T. Teuber, “Removing multiplicative noise by douglas-
rachford splitting methods,” Journal of Mathematical Imaging and
Vision, vol. 36, no. 2, pp. 168–184, 2010.

[51] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” Journal of Machine Learning Re-
search, vol. 11, pp. 1663–1707, 2010.

[52] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” Multiscale Modeling & Simulation, vol. 4, no. 4,
pp. 1168–1200, 2005.

[53] P. L. Combettes and J.-C. Pesquet, “A douglas–rachford splitting ap-
proach to nonsmooth convex variational signal recovery,” IEEE Journal
of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 564–574, 2007.

[54] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc
WSNs with noisy linkspart I: Distributed estimation of deterministic
signals,” IEEE Trans. on Signal Processing, vol. 56, no. 1, pp. 350–
364, 2008.

[55] “An extended version of this paper can be found at,” https://1drv.ms/b/
s!AjNk3vqq1VPdaqICDufe6tnSWGs.

[56] N. Buchbinder and J. Naor, “The design of competitive online algorithms
via a primal-dual approach,” Foundations and Trends in Theoretical
Computer Science, vol. 3, no. 2-3, pp. 93–263, 2009.

[57] R. Eghbali and M. Fazel, “Designing smoothing functions for improved
worst-case competitive ratio in online optimization,” in Neural Informa-
tion Processing Systems, 2016, accepted.

[58] Y. Azar, N. Buchbinder, T. H. Chan, S. Chen, I. R. Cohen, A. Gupta,
Z. Huang, N. Kang, V. Nagarajan, J. Naor, and D. Panigrahi, “Online
algorithms for covering and packing problems with convex objectives,”
in IEEE 57th Annual Symposium on Foundations of Computer Science,
(FOCS), 2016, pp. 148–157.

[59] “The CAIDA UCSD AS Relationship Dataset, September 17, 2007,”
http://www.caida.org/data/as-relationships/.

APPENDIX

A. Pseudocode for General Online Fractional Packing

The following pseudocode is replicated from [56]. Con-
straints arrive in some order. During the ith round, the packing
variable xi and all the covering variables are increased. The
minimum xi is found such that the covering constraints are
satisfied.

Instead of increasing xi continuously, one can perform a
binary search over possible values of xi. For each candidate
xi, a corresponding new value of y ∈ Rn is computed and the
covering constraints are checked for feasibility. If feasible, y
is accepted, and xi will be increased in the next round of the
binary search. If infeasible, y is rejected, and the value of xi
will be decreased in the next round of the search.

Algorithm 2: General Online Fractional Packing
Input: A ∈ Rm×n, f ∈ Rn
Output: x, y
Initialize x = 0m, y = 0n

for i = 1...m do
for j = 1...n do

aj(max)← maxik=1{akj}
while

∑n
j=1 aijyj < 1 do

Increase xi continuously
for j = 1...n do

δ = exp(B
2fi

∑i
k=1 akjxk)− 1

yj = max
{
yj ,

1
naj(max)δ

}

B. ADMM

In our numerical results we compare LOCO to ADMM in
the case of linear NUM. For completeness, we describe the
application of ADMM to that setting here.

To apply ADMM, we first absorb the inequality constraint
x ≤ x̄ into the inequality A′′x ≤ c′ by letting A′′ =

[
A, I

]T
and c′ =

[
c, x̄
]T

, where this notation indicates a stack of
vectors. We introduce a slack variable s ≥ 0 such that the
inequality constraint becomes A′′x+s = c′. Let x′ =

[
x, s
]T
,

A′ = [A′′ I] and b =
[
1m,0m

]T
. We can now write the

problem in standard ADMM form,

min
x′,z

g(x′) + h(z)

s.t. x′ − z = 0

where g = (x− x)+ is the indicator function associated with
the constraints x ≤ x and h(z′) = −bT z where dom h =
{z|A′z = c′}.

Writing down the scaled augmented Lagrangian
Lρ(x

′, z, u) = g(x′) + h(z) + uT (z − x′) + ρ
2‖x

′ − z‖2, we
can see that all the update steps have closed form solution
(see [48, Chapter 5.2]). The updates become:

x′k+1 = (zk+1 + uk − x)+

zk+1 =

[
ρI A′T

A′ 0

]−1 [
ρ(x′k − uk)− b

c′

]
uk+1 = uk + (x′k+1 − zk+1)

The solution to the NUM problem is recovered from the
first n entries of x′.

C. Proof of Lemma 3

We denote the set {0, 1, . . . , n} by [n]. Logarithms are base
e. Let G = (V,E) be a graph. For any vertex set S ⊆ V ,
denote by N(S) the set of vertices that are not in S but are
neighbors of some vertex in S: N(S) = {N(v) : v ∈ S} \ S.
The length of a path is the number of edges it contains. For

a set S ⊆ V and a function f : V → N, we use S ∩ f−1(i)
to denote the set {v ∈ S : f(v) = i}.

Let G = (V,E) be a graph, and let f : V → N be
some function on the vertices. An adaptive vertex exposure
procedure A is one that does not know f a priori. A is
given a vertex v ∈ V and f(v); A iteratively adds vertices
from V \ S to S: for every vertex u that A adds to S, f(u)
is revealed immediately after u is added. Let St denote S
after the addition of the tth vertex. The following is a simple
concentration bound whose proof is given for completeness.

Lemma 6. Let G = (V,E) be a graph, let Q > 0 be some
constant, let γ = 15Q, and let f : V → [Q] be a function
chosen uniformly at random from all such possible functions.
Let A be an adaptive vertex exposure procedure that is given a
vertex v ∈ V . Then, for any q ∈ [Q], the probability that there
is some t, γ logm ≤ t ≤ m for which |St ∩ f−1(q)| > 2|St|

Q

is at most 1
m4 .

Proof. Let vj be the jth vertex added to S by A, and let Xj

be the indicator variable whose value is 1 iff f(vj) = q. For

any t ≤ m, E

 t∑
j=1

Xj

 = t
Q . As Xi and Xj are independent

for all i 6= j, by the Chernoff bound, for γ logm ≤ t ≤ m,

Pr

 t∑
j=1

Xj >
2t

Q

 ≤ e−t3Q ≤ e−5 logm.

A union bound over all possible values of t : γ logm ≤ t ≤ m
completes the proof.

Let r : V → [0, 1] be a function chosen uniformly at random
from all such possible functions. Partition [0, 1] into Q = 4(d+
1) segments of equal measure, I1, . . . , IQ. For every v ∈ V ,
set f(v) = q if r(v) ∈ Iq (f is a quantization of r).

Consider the following method of generating two sets of
vertices: T and R, where T ⊆ R. For some vertex v, set T =
R = {v}. Continue inductively: choose some vertex w ∈ T ,
add all N(w) to R and compute f(u) for all u ∈ N(w). Add
the vertices u such that u ∈ N(w) and f(u) ≥ f(w) to T . The
process ends when no more vertices can be added to T . T is
the query set with respect to f , hence |T | is an upper bound
on the size of the actual query set (i.e., the query set with
respect to r). However, it is difficult to reason about the size
of T directly, as the ranks of its vertices are not independent.
The ranks of the vertices in R, though, are independent, as R
is generated by an adaptive vertex exposure procedure. R is a
superset of T that includes T and its boundary, hence |R| is
also an upper bound on the size of the query set.

We now define Q + 1 “layers” - T≤0, . . . , T≤Q: T≤q =
T ∩

⋃q
i=0 f

−1(i). That is, T≤q is the set of vertices in T
whose rank is at most q. (The range of f is [Q], hence T≤0
will be empty, but we include it to simplify the proof.)

Claim 7. Set Q = 4(d + 1), γ = 15Q. Assume without loss
of generality that f(v) = 0. Then for all 0 ≤ i ≤ Q− 1,

Pr[|T≤i| ≤ 2iγ logm ∧ |T≤i+1| ≥ 2i+1γ logm] ≤ 1

m4
.

Proof. For all 0 ≤ i ≤ Q, let R≤i = T≤i∪N(T≤i). Note that

R≤i ∩ f−1(i) = T≤i ∩ f−1(i), (1)

because if there had been some u ∈ N(T≤i), f(u) = i, u
would have been added to T≤i.

Note that |T≤i| ≤ 2iγ logm ∧ |T≤i+1| ≥ 2i+1γ logm
implies that

|T≤i+1 ∩ f−1(i+ 1)| > |T≤i+1|
2

. (2)

In other words, the majority of vertices v ∈ T≤i+1 must
have f(v) = i+ 1.

Given |T≤i+1| > 2i+1γ logm, it holds that |R≤i+1| >
2i+1γ logm because T≤i+1 ⊆ R≤i+1. Furthermore, R≤i+1

was constructed by an adaptive vertex exposure procedure
and so the conditions of Lemma ?? hold for R≤i+1. From
Equations (??) and (??) we get

Pr[|T≤i| ≤ 2iγ logm ∧ |T≤i+1| ≥ 2i+1γ logm]

≤ Pr

[∣∣R≤i+1 ∩ f−1(i+ 1)
∣∣ > |T≤i+1|

2

]
≤ Pr

[∣∣R≤i+1 ∩ f−1(i+ 1)
∣∣ > 2 |R≤i+1|

Q

]
≤ 1

m4
,

where the second inequality is because |R≤i+1| ≤ (d +
1)|T≤i+1|, as G’s degree is at most d; the last inequality is
due to Lemma ??.

Lemma 8. Set Q = 4(d+1). Let G = (V,E) be a graph with
degree bounded by d, where |V | = m. For any vertex v ∈ G,
Pr
[
Tv > 2Q · 15Q logm

]
< 1

m3 .

Proof. To prove Lemma ??, we need to show that, for γ =
15Q,

Pr[|T≤Q| > 2Lγ logm] <
1

m3
.

We show that for 0 ≤ i ≤ Q,Pr[|T≤i| > 2iγ logm] < i
m4 ,

by induction. For the base of the induction, |S0| = 1, and the
claim holds. For the inductive step, assume that Pr[|T≤i| >
2iγ logm] < i

m4 . Then, denoting by X the event |T≤i| >
2iγ logm and by X̄ the event |T≤i| ≤ 2iγ logm,

Pr[|T≤i+1| > 2i+1γ logm]

= Pr[|T≤i+1| > 2i+1γ logm : X] Pr[X]

+ Pr[|T≤i+1| > 2i+1γ logm : X̄] Pr[X̄].

From the inductive step and Claim ??, using the union bound,
the lemma follows.

Applying a union bound over all the vertices gives the size

of each query set is O(logm) with probability at least 1 −
1/m2, completing the proof of Lemma 3.

