NOTES ON OPERATOR VALUED KERNELS, FEATURE MAPS AND GAUSSIAN PROCESSES

HOUMAN OWHADI

ABSTRACT. These notes serve as a short introduction to operator-valued kernels, their associated feature maps and Gaussian processes.

1. Introduction

Operator-valued kernels were introduced in [2] as a generalization of vector-valued kernels [1]. The following notes, taken almost verbatim from parts of [5], serve as a short introduction to such kernels, their associated feature maps and Gaussian processes.

2. Operator valued kernels

Let \mathcal{X} and \mathcal{Y} be separable Hilbert spaces endowed with the inner products $\langle \cdot, \cdot \rangle_{\mathcal{X}}$ and $\langle \cdot, \cdot \rangle_{\mathcal{Y}}$. Write $\mathcal{L}(\mathcal{Y})$ for the set of bounded linear operators mapping \mathcal{Y} to \mathcal{Y} . We call $K : \mathcal{X} \times \mathcal{X} \to \mathcal{L}(\mathcal{Y})$ an **operator-valued kernel** if

(1) K is Hermitian, i.e.

$$K(x, x') = K(x', x)^T \text{ for } x, x' \in \mathcal{X}, \qquad (2.1)$$

writing A^T for the adjoint of the operator A with respect to $\langle \cdot, \cdot \rangle_{\mathcal{Y}}$, and (2) non-negative, i.e.

$$\sum_{i,j=1}^{m} \left\langle y_i, K(x_i, x_j) y_j \right\rangle_{\mathcal{Y}} \ge 0 \text{ for } (x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, \ m \in \mathbb{N}.$$
(2.2)

We call K non-degenerate if $\sum_{i,j=1}^{m} \langle y_i, K(x_i, x_j) y_j \rangle_{\mathcal{Y}} = 0$ implies $y_i = 0$ for all *i* whenever $x_i \neq x_j$ for $i \neq j$.

3. Reproducing kernel Hilbert space

Each non-degenerate, locally bounded and separately continuous operator-valued kernel K (which we will refer to as a Mercer's kernel) is in one to one correspondence with a reproducing kernel Hilbert space \mathcal{H} of continuous functions $f : \mathcal{X} \to \mathcal{Y}$ obtained as the closure of the linear span of functions $z \to K(z, x)y$ ($(x, y) \in \mathcal{X} \times \mathcal{Y}$) with respect to the inner product identified by the reproducing property

$$\left\langle f, K(\cdot, x)y \right\rangle_{\mathcal{H}} = \left\langle f(x), y \right\rangle_{\mathcal{Y}}$$
(3.1)

Date: October 18, 2021.

Caltech, MC 9-94, Pasadena, CA 91125, USA, owhadi@caltech.edu.

HOUMAN OWHADI

4. Feature maps

Let \mathcal{F} be a separable Hilbert space (with inner product $\langle \cdot, \cdot \rangle_{\mathcal{F}}$ and norm $\|\cdot\|_{\mathcal{F}}$) and let $\psi : \mathcal{X} \to \mathcal{L}(\mathcal{Y}, \mathcal{F})$ be a continuous function mapping \mathcal{X} to the space of bounded linear operators from \mathcal{Y} to \mathcal{F} .

Definition 4.1. We say that \mathcal{F} and $\psi : \mathcal{X} \to \mathcal{L}(\mathcal{Y}, \mathcal{F})$ are a feature space and a feature map for the kernel K if, for all $(x, x', y, y') \in \mathcal{X}^2 \times \mathcal{Y}^2$,

$$y^T K(x, x') y' = \left\langle \psi(x) y, \psi(x') y' \right\rangle_{\mathcal{F}}.$$
(4.1)

Write $\psi^T(x)$, for the adjoint of $\psi(x)$ defined as the linear function mapping \mathcal{F} to \mathcal{Y} satisfying

$$\left\langle \psi(x)y,\alpha\right\rangle_{\mathcal{F}} = \left\langle y,\psi^{T}(x)\alpha\right\rangle_{\mathcal{Y}}$$
(4.2)

for $x, y, \alpha \in \mathcal{X} \times \mathcal{Y} \times \mathcal{F}$. Note that $\psi^T : \mathcal{X} \to \mathcal{L}(\mathcal{F}, \mathcal{Y})$ is therefore a function mapping \mathcal{X} to the space of bounded linear functions from \mathcal{F} to \mathcal{Y} . Writing $\alpha^T \alpha' := \langle \alpha, \alpha' \rangle_{\mathcal{F}}$ for the inner product in \mathcal{F} we can ease our notations by writing

$$K(x, x') = \psi^T(x)\psi(x') \tag{4.3}$$

which is consistent with the finite-dimensional setting and $y^T K(x, x')y' = (\psi(x)y)^T(\psi(x')y')$ (writing $y^T y'$ for the inner product in \mathcal{Y}). For $\alpha \in \mathcal{F}$ write $\psi^T \alpha$ for the function $\mathcal{X} \to \mathcal{Y}$ mapping $x \in \mathcal{X}$ to the element $y \in \mathcal{Y}$ such that

$$\langle y', y \rangle_{\mathcal{Y}} = \langle y', \psi^T(x) \alpha \rangle_{\mathcal{Y}} = \langle \psi(x)y', \alpha \rangle_{\mathcal{F}} \text{ for all } y' \in \mathcal{Y}.$$
 (4.4)

We can, without loss of generality, restrict \mathcal{F} to be the range of $(x, y) \to \psi(x)y$ so that the RKHS \mathcal{H} defined by K is the (closure of) linear space spanned by $\psi^T \alpha$ for $\alpha \in \mathcal{F}$. Note that the reproducing property (3.1) implies that for $\alpha \in \mathcal{F}$

$$\left\langle \psi^{T}(\cdot)\alpha,\psi^{T}(\cdot)\psi(x)y\right\rangle_{\mathcal{H}} = \left\langle \psi^{T}(x)\alpha,y\right\rangle_{\mathcal{Y}} = \left\langle \alpha,\psi(x)y\right\rangle_{\mathcal{F}}$$
(4.5)

for all $x, y \in \mathcal{X} \times \mathcal{Y}$, which leads to the following theorem.

Theorem 4.2. The RKHS \mathcal{H} defined by the kernel (4.3) is the linear span of $\psi^T \alpha$ over $\alpha \in \mathcal{F}$ such that $\|\alpha\|_{\mathcal{F}} < \infty$. Furthermore, $\langle \psi^T(\cdot)\alpha, \psi^T(\cdot)\alpha' \rangle_{\mathcal{H}} = \langle \alpha, \alpha' \rangle_{\mathcal{F}}$ and

$$\|\psi^T(\cdot)\alpha\|_{\mathcal{H}}^2 = \|\alpha\|_{\mathcal{F}}^2 \text{ for } \alpha, \alpha' \in \mathcal{F}.$$
(4.6)

5. Interpolation

We employ the setting of supervised learning, which can be expressed as solving the following problem.

Problem 1. Let f^{\dagger} be an unknown continuous function mapping \mathcal{X} to \mathcal{Y} . Given the information $f^{\dagger}(X) = Y$ with the data $(X, Y) \in \mathcal{X}^N \times \mathcal{Y}^N$ approximate f^{\dagger} .

¹For a N-vector $X = (X_1, \ldots, X_N) \in \mathcal{X}^N$ and a function $f : \mathcal{X} \to \mathcal{Y}$, write f(X) for the N vector with entries $(f(X_1), \ldots, f(X_N))$ (we will keep using this generic notation).

Using the relative error in $\|\cdot\|_{\mathcal{H}}$ -norm as a loss, the minimax optimal recovery solution of Problem (1) is [6, Thm. 12.4,12.5] the minimizer (in \mathcal{H}) of

$$\begin{cases} \text{Minimize} & \|f\|_{\mathcal{H}}^2 \\ \text{subject to} & f(X) = Y \end{cases}$$
(5.1)

By the representer theorem [3], the minimizer of (5.1) is

$$f(\cdot) = \sum_{j=1}^{N} K(\cdot, X_j) Z_j , \qquad (5.2)$$

where the coefficients $Z_j \in \mathcal{Y}$ are identified by solving the system of linear equations

$$\sum_{j=1}^{N} K(X_i, X_j) Z_j = Y_i \text{ for all } i \in \{1, \dots, N\},$$
(5.3)

i.e. K(X,X)Z = Y where $Z = (Z_1, \ldots, Z_N), Y = (Y_1, \ldots, Y_N) \in \mathcal{Y}^N$ and K(X,X) is the $N \times N$ block-operator matrix² with entries $K(X_i, X_j)$. Therefore, writing $K(\cdot, X)$ for the vector $(K(\cdot, X_1), \ldots, K(\cdot, X_N)) \in \mathcal{H}^N$, the minimizer of (5.1) is

$$f(\cdot) = K(\cdot, X)K(X, X)^{-1}Y,$$
 (5.4)

which implies that the value of (5.1) at the minimum is

$$||f||_{\mathcal{H}}^2 = Y^T K(X, X)^{-1} Y, \qquad (5.5)$$

where $K(X, X)^{-1}$ is the inverse of K(X, X) (whose existence is implied by the nondegeneracy of K combined with $X_i \neq X_j$ for $i \neq j$).

6. Ridge regression

Let $\lambda > 0$. A ridge regression solution (also known as Tikhonov regularizer) to Problem 1 is a minimizer of

$$\inf_{f \in \mathcal{H}} \lambda \, \|f\|_{\mathcal{H}}^2 + \sum_{i=1}^N \|Y_i' - Y_i\|_{\mathcal{Y}}^2 \,. \tag{6.1}$$

The minimizer of (6.1) is

$$f(x) = K(x, X) (K(X, X) + \lambda I)^{-1} Y, \qquad (6.2)$$

(writing I for the identity matrix) and the value of (6.1) at the minimum is

$$\lambda Y^T \big(K(X,X) + \lambda I \big)^{-1} Y \,. \tag{6.3}$$

For $N \ge 1$ let \mathcal{Y}^N be the N-fold product space endowed with the inner-product $\langle Y, Z \rangle_{\mathcal{Y}^N} := \sum_{i,j=1}^N \langle Y_i, Z_j \rangle_{\mathcal{Y}}$ for $Y = (Y_1, \dots, Y_N), Z = (Z_1, \dots, Z_N) \in \mathcal{Y}^N$. $\mathbf{A} \in \mathcal{L}(\mathcal{Y}^N)$ given by $\mathbf{A} = \begin{pmatrix} A_{1,1} & \cdots & A_{1,N} \\ \vdots & & \vdots \\ A_{N,1} & \cdots & A_{N,N} \end{pmatrix}$ where $A_{i,j} \in \mathcal{L}(\mathcal{Y})$, is called a block-operator matrix. Its adjoint $\mathbf{A}^{\mathbf{T}}$ with re-

spect to $\langle \cdot, \cdot \rangle_{\mathcal{V}^N}$ is the block-operator matrix with entries $(A^T)_{i,j} = (A_{j,i})^T$.

HOUMAN OWHADI

7. Function-valued Gaussian processes

The following definition of function-valued Gaussian processes is a natural extension of scalar-valued Gaussian fields.

Definition 7.1. Let $K : \mathcal{X} \times \mathcal{X} \to \mathcal{L}(\mathcal{Y})$ be an operator-valued kernel. Let m be a function mapping \mathcal{X} to \mathcal{Y} . We call $\xi : \mathcal{X} \to \mathcal{L}(\mathcal{Y}, \mathbf{H})$ a function-valued Gaussian process if ξ is a function mapping $x \in \mathcal{X}$ to $\xi(x) \in \mathcal{L}(\mathcal{Y}, \mathbf{H})$ where \mathbf{H} is a Gaussian space and $\mathcal{L}(\mathcal{Y}, \mathbf{H})$ is the space of bounded linear operators from \mathcal{Y} to \mathbf{H} . Abusing notations we write $\langle \xi(x), y \rangle_{\mathcal{Y}}$ for $\xi(x)y$. We say that ξ has mean m and covariance kernel K and write $\xi \sim \mathcal{N}(m, K)$ if $\langle \xi(x), y \rangle_{\mathcal{Y}} \sim \mathcal{N}(m(x), y^T K(x, x)y)$ and

$$\operatorname{Cov}\left(\left\langle \xi(x), y \right\rangle_{\mathcal{Y}}, \left\langle \xi(x'), y' \right\rangle_{\mathcal{Y}}\right) = y^{T} K(x, x') y'.$$

$$(7.1)$$

We say that ξ is centered if it is of zero mean.

If K(x, x) is trace class $(\text{Tr}[K(x, x)] < \infty)$ then $\xi(x)$ defines a measure on \mathcal{Y} (i.e. a \mathcal{Y} -valued random variable), otherwise it only defines a (weak) cylinder-measure in the sense of Gaussian fields.

Theorem 7.2. The distribution of a function-valued Gaussian process is uniquely determined by its mean and covariance kernel K. Conversely given m and K there exists a function-valued Gaussian process having mean m and covariance kernel K. In particular if K has feature space \mathcal{F} and map ψ , the e_i form an orthonormal basis of \mathcal{F} , and the Z_i are *i.i.d.* $\mathcal{N}(0,1)$ random variables, then

$$\xi = m + \sum_{i} Z_i \psi^T e_i \tag{7.2}$$

is a function-valued GP with mean m and covariance kernel K.

Proof. The proof is classical, see [6, Sec. 7&17]. Note that the separability of \mathcal{F} ensures the existence of the e_i . Furthermore $\mathbb{E}[(\xi - m)(\xi - m)^T] = \psi^T \psi = K$.

Theorem 7.3. Let ξ be a centered function-valued GP with covariance kernel $K : \mathcal{X} \times \mathcal{X} \to \mathcal{L}(\mathcal{Y})$. Let $X, Y \in \mathcal{X}^N \times \mathcal{Y}^N$. Let $Z = (Z_1, \ldots, Z_N)$ be a random Gaussian vector, independent from ξ , with i.i.d. $\mathcal{N}(0, \lambda I_{\mathcal{Y}})$ entries ($\lambda \ge 0$ and $I_{\mathcal{Y}}$ is the identity map on \mathcal{Y}). Then ξ conditioned on $\xi(X) + Z$ is a function-valued GP with mean

$$\mathbb{E}[\xi(x)|\xi(X) + Z = Y] = K(x, X) (K(X, X) + \lambda I_{\mathcal{Y}})^{-1} Y = (6.2)$$
(7.3)

and conditional covariance operator

$$K^{\perp}(x,x') := K(x,x') - K(x,X) \left(K(X,X) + \lambda I_{\mathcal{Y}} \right)^{-1} K(X,x') .$$
(7.4)

In particular, if K is trace class, then

$$\sigma^{2}(x) := \mathbb{E}\Big[\|\xi(x) - \mathbb{E}[\xi(x)|\xi(X) + Z = Y]\|_{\mathcal{Y}}^{2} \Big| \xi(X) + Z = Y \Big] = \operatorname{Tr} \big[K^{\perp}(x,x) \big].$$
(7.5)

Proof. The proof is a generalization of the classical setting [6, Sec. 7&17]. Writing $\xi^T(x)y$ for $\langle \xi(x), y \rangle_{\mathcal{Y}}$ observe that $y^T\xi(x)\xi^T(x')y = y^TK(x,x')y'$ implies $\mathbb{E}[\xi(x)\xi^T(x')] = K(x,x')$. Since ξ and Z share the same Gaussian space the expectation of $\xi(x)$ conditioned on $\xi(X) + Z$ is $A(\xi(X) + Z)$ where A is a linear map identified by 0 =

 $Cov\left(\xi(x) - A(\xi(X) + Z), \xi(X) + Z\right) = \mathbb{E}[\xi(x) - A(\xi(X) + Z)(\xi^{T}(X) + Z^{T})] = K(x, X) - A(K(X, X) + \lambda I_{\mathcal{Y}}), \text{ which leads to } A = K(x, X)(K(X, X) + \lambda I_{\mathcal{Y}})^{-1} \text{ and } (7.3).$ The conditional covariance is then given by $K^{\perp}(x, x') = \mathbb{E}[(\xi(x) - K(x, X)(K(X, X) + \lambda I_{\mathcal{Y}})^{-1}(\xi(X) + Z))(\xi(x') - K(x', X)(K(X, X) + \lambda I_{\mathcal{Y}})^{-1}(\xi(X) + Z))]^{T}$ which leads to (7.4).

8. Deterministic error estimates for function-valued Kriging

The following theorem shows that the standard deviation (7.5) provides deterministic a prior error bounds on the accuracy of the ridge regressor (7.3) to f^{\dagger} in Problem 1. Local error estimates such as (8.1) are classical in Kriging [7] where $\sigma^2(x)$ is known as the power function/kriging variance (see also [4][Thm. 5.1] for applications to PDEs).

Theorem 8.1. Let f^{\dagger} be the unknown function of Problem 1 and let f(x) = (7.3) = (??)be its GPR/ridge regression solution. Let \mathcal{H} be the RKHS associated with K and let \mathcal{H}_{λ} be the RKHS associated with the kernel $K_{\lambda} := K + \lambda I_{\mathcal{Y}}$. It holds true that

$$\left\|f^{\dagger}(x) - f(x)\right\|_{\mathcal{Y}} \leqslant \sigma(x) \left\|f^{\dagger}\right\|_{\mathcal{H}}$$

$$(8.1)$$

and

$$\left\|f^{\dagger}(x) - f(x)\right\|_{\mathcal{Y}} \leqslant \sqrt{\sigma^{2}(x) + \lambda \operatorname{dim}(\mathcal{Y})} \|f^{\dagger}\|_{\mathcal{H}_{\lambda}}, \qquad (8.2)$$

$$n dard \ deviation \ (7.5)$$

where $\sigma(x)$ is the standard deviation (7.5).

Proof. Let $y \in \mathcal{Y}$. Using the reproducing property (3.1) and $Y = f^{\dagger}(X)$ we have

$$y^{T}(f^{\dagger}(x) - f(x)) = y^{T}f^{\dagger}(x) - y^{T}K(x, X)(K(X, X) + \lambda I_{\mathcal{Y}})^{-1}f^{\dagger}(X)$$
$$= \langle f^{\dagger}, K(\cdot, x)y - K(\cdot, X)(K(X, X) + \lambda I_{\mathcal{Y}})^{-1}K(X, x)y \rangle_{\mathcal{H}}.$$

Using Cauchy-Schwartz inequality, we deduce that

$$\left|y^{T}\left(f^{\dagger}(x) - f(x)\right)\right|^{2} \leq \left\|f^{\dagger}\right\|_{\mathcal{H}}^{2} y^{T} K^{\perp}(x, x) y$$

$$(8.3)$$

where K^{\perp} is the conditional covariance (7.4). Summing over y ranging in basis of \mathcal{Y} implies (8.1). The proof of (8.2) is similar, simply observe that

$$y^{T}(f^{\dagger}(x) - f(x)) = \left\langle f^{\dagger}, K_{\lambda}(\cdot, x)y - K_{\lambda}(\cdot, X) \left(K(X, X) + \lambda I_{\mathcal{Y}} \right)^{-1} K(X, x)y \right\rangle_{\mathcal{H}_{\lambda}}$$

$$\leq \|f^{\dagger}\|_{H_{\lambda}} \|K_{\lambda}(\cdot, x)y - K_{\lambda}(\cdot, X) \left(K(X, X) + \lambda I_{\mathcal{Y}} \right)^{-1} K(X, x)y \|_{\mathcal{H}_{\lambda}},$$

which implies

$$\left|y^{T}\left(f^{\dagger}(x) - f(x)\right)\right|^{2} \leq \|f^{\dagger}\|_{\mathcal{H}_{\lambda}}^{2}\left(\lambda y^{T}y + y^{T}K^{\perp}(x,x)y\right).$$

$$(8.4)$$

Remark 8.2. Since Thm. 8.1 does not require \mathcal{X} to be finite-dimensional, its estimates do not suffer from the curse of dimensionality but from finding a good kernel for which both $\|f^{\dagger}\|_{\mathcal{H}}$ and $y^{T}K^{\perp}(x,x)y$ are small (over x sampled from the testing distribution). Indeed both (8.1) and (8.2) provide a priori deterministic error bounds on $f^{\dagger}-f$ depending on the RKHS norms $\|f^{\dagger}\|_{\mathcal{H}}$ and $\|f^{\dagger}\|_{\mathcal{H}_{\lambda}}$. Although these norms can be controlled in the

HOUMAN OWHADI

PDE setting [4] via compact embeddings of Sobolev spaces, there is no clear strategy for obtaining a-priori bounds on these norms for general machine learning problems.

References

- [1] Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence, et al. Kernels for vector-valued functions: A review. Foundations and Trends (R) in Machine Learning, 4(3):195-266, 2012.
- [2] Hachem Kadri, Emmanuel Duflos, Philippe Preux, Stéphane Canu, Alain Rakotomamonjy, and Julien Audiffren. Operator-valued kernels for learning from functional response data. The Journal of Machine Learning Research, 17(1):613-666, 2016.
- [3] Charles A Micchelli and Massimiliano Pontil. Kernels for multi-task learning. In Advances in neural information processing systems, pages 921–928, 2005.
- [4] Houman Owhadi. Bayesian numerical homogenization. Multiscale Modeling & Simulation, 13(3):812-828, 2015.
- [5] Houman Owhadi. Do ideas have shape? plato's theory of forms as the continuous limit of artificial neural networks. arXiv preprint arXiv:2008.03920, 2020.
- [6] Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm Design, volume 35. Cambridge University Press, 2019.
- [7] Zong-min Wu and Robert Schaback. Local error estimates for radial basis function interpolation of scattered data. IMA journal of Numerical Analysis, 13(1):13-27, 1993.