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HOUMAN OWHADI

Abstract. These notes serve as a short introduction to operator-valued kernels, their
associated feature maps and Gaussian processes.

1. Introduction

Operator-valued kernels were introduced in [2] as a generalization of vector-valued
kernels [1]. The following notes, taken almost verbatim from parts of [5], serve as a short
introduction to such kernels, their associated feature maps and Gaussian processes.

2. Operator valued kernels

Let X and Y be separable Hilbert spaces endowed with the inner products
@
�, �
D
X and@

�, �
D
Y . Write LpYq for the set of bounded linear operators mapping Y to Y. We call

K : X � X Ñ LpYq an operator-valued kernel if

(1) K is Hermitian, i.e.

Kpx, x1q � Kpx1, xqT for x, x1 P X , (2.1)

writing AT for the adjoint of the operator A with respect to
@
�, �
D
Y , and

(2) non-negative, i.e.

m̧

i,j�1

@
yi,Kpxi, xjqyj

D
Y ¥ 0 for pxi, yiq P X � Y, m P N . (2.2)

We call K non-degenerate if
°m
i,j�1

@
yi,Kpxi, xjqyj

D
Y � 0 implies yi � 0 for all i when-

ever xi �� xj for i �� j.

3. Reproducing kernel Hilbert space

Each non-degenerate, locally bounded and separately continuous operator-valued ker-
nel K (which we will refer to as a Mercer's kernel) is in one to one correspondence with
a reproducing kernel Hilbert space H of continuous functions f : X Ñ Y obtained as
the closure of the linear span of functions z Ñ Kpz, xqy (px, yq P X �Y) with respect to
the inner product identi�ed by the reproducing property@

f,Kp�, xqy
D
H �

@
fpxq, y

D
Y (3.1)
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4. Feature maps

Let F be a separable Hilbert space (with inner product
@
�, �
D
F and norm } � }F ) and let

ψ : X Ñ LpY,Fq be a continuous function mapping X to the space of bounded linear
operators from Y to F .

De�nition 4.1. We say that F and ψ : X Ñ LpY,Fq are a feature space and a feature
map for the kernel K if, for all px, x1, y, y1q P X 2 � Y2,

yTKpx, x1qy1 �
@
ψpxqy, ψpx1qy1

D
F . (4.1)

Write ψT pxq, for the adjoint of ψpxq de�ned as the linear function mapping F to Y
satisfying @

ψpxqy, α
D
F �

@
y, ψT pxqα

D
Y (4.2)

for x, y, α P X � Y � F . Note that ψT : X Ñ LpF ,Yq is therefore a function mapping
X to the space of bounded linear functions from F to Y. Writing αTα1 :�

@
α, α1

D
F for

the inner product in F we can ease our notations by writing

Kpx, x1q � ψT pxqψpx1q (4.3)

which is consistent with the �nite-dimensional setting and yTKpx, x1qy1 � pψpxqyqT pψpx1qy1q
(writing yT y1 for the inner product in Y). For α P F write ψTα for the function X Ñ Y
mapping x P X to the element y P Y such that@

y1, y
D
Y �

@
y1, ψT pxqα

D
Y �

@
ψpxqy1, α

D
F for all y1 P Y . (4.4)

We can, without loss of generality, restrict F to be the range of px, yq Ñ ψpxqy so that
the RKHS H de�ned by K is the (closure of) linear space spanned by ψTα for α P F .
Note that the reproducing property (3.1) implies that for α P F@

ψT p�qα,ψT p�qψpxqy
D
H �

@
ψT pxqα, y

D
Y �

@
α,ψpxqy

D
F (4.5)

for all x, y P X � Y, which leads to the following theorem.

Theorem 4.2. The RKHS H de�ned by the kernel (4.3) is the linear span of ψTα over
α P F such that }α}F   8. Furthermore,

@
ψT p�qα,ψT p�qα1

D
H �

@
α, α1

D
F and

}ψT p�qα}2H � }α}2F for α, α1 P F . (4.6)

5. Interpolation

We employ the setting of supervised learning, which can be expressed as solving the
following problem.

Problem 1. Let f : be an unknown continuous function mapping X to Y. Given the
information1 f :pXq � Y with the data pX,Y q P XN � YN approximate f :.

1For a N -vector X � pX1, . . . , XN q P XN and a function f : X Ñ Y, write fpXq for the N vector
with entries

�
fpX1q, . . . , fpXN q

�
(we will keep using this generic notation).
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Using the relative error in } � }H-norm as a loss, the minimax optimal recovery solution
of Problem (1) is [6, Thm. 12.4,12.5] the minimizer (in H) of#

Minimize }f}2H
subject to fpXq � Y

(5.1)

By the representer theorem [3], the minimizer of (5.1) is

fp�q �
Ņ

j�1

Kp�, XjqZj , (5.2)

where the coe�cients Zj P Y are identi�ed by solving the system of linear equations

Ņ

j�1

KpXi, XjqZj � Yi for all i P t1, . . . , Nu , (5.3)

i.e. KpX,XqZ � Y where Z � pZ1, . . . , ZN q, Y � pY1, . . . , YN q P YN and KpX,Xq is
the N � N block-operator matrix2 with entries KpXi, Xjq. Therefore, writing Kp�, Xq
for the vector pKp�, X1q, . . . ,Kp�, XN qq P HN , the minimizer of (5.1) is

fp�q � Kp�, XqKpX,Xq�1Y , (5.4)

which implies that the value of (5.1) at the minimum is

}f}2H � Y TKpX,Xq�1Y , (5.5)

where KpX,Xq�1 is the inverse of KpX,Xq (whose existence is implied by the non-
degeneracy of K combined with Xi �� Xj for i �� j).

6. Ridge regression

Let λ ¡ 0. A ridge regression solution (also known as Tikhonov regularizer) to Problem
1 is a minimizer of

inf
fPH

λ }f}2H �
Ņ

i�1

}Y 1
i � Yi}

2
Y . (6.1)

The minimizer of (6.1) is

fpxq � Kpx,Xq
�
KpX,Xq � λI

��1
Y , (6.2)

(writing I for the identity matrix) and the value of (6.1) at the minimum is

λY T
�
KpX,Xq � λI

��1
Y . (6.3)

2For N ¥ 1 let YN be the N-fold product space endowed with the inner-product
@
Y,Z

D
YN :�°N

i,j�1

@
Yi, Zj

D
Y for Y � pY1, . . . , YN q, Z � pZ1, . . . , ZN q P YN . A P LpYN q given by A ��

��
A1,1 � � � A1,N

...
...

AN,1 � � � AN,N

�
� where Ai,j P LpYq, is called a block-operator matrix. Its adjoint AT with re-

spect to
@
�, �
D
YN is the block-operator matrix with entries pAT qi,j � pAj,iq

T .
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7. Function-valued Gaussian processes

The following de�nition of function-valued Gaussian processes is a natural extension
of scalar-valued Gaussian �elds.

De�nition 7.1. Let K : X � X Ñ LpYq be an operator-valued kernel. Let m be a
function mapping X to Y. We call ξ : X Ñ LpY,Hq a function-valued Gaussian process
if ξ is a function mapping x P X to ξpxq P LpY,Hq where H is a Gaussian space and
LpY,Hq is the space of bounded linear operators from Y to H. Abusing notations we
write

@
ξpxq, y

D
Y for ξpxqy. We say that ξ has mean m and covariance kernel K and

write ξ � N pm,Kq if
@
ξpxq, y

D
Y � N

�
mpxq, yTKpx, xqy

�
and

Cov
�@
ξpxq, y

D
Y ,
@
ξpx1q, y1

D
Y
�
� yTKpx, x1qy1 . (7.1)

We say that ξ is centered if it is of zero mean.

If Kpx, xq is trace class (TrrKpx, xqs   8) then ξpxq de�nes a measure on Y (i.e. a
Y-valued random variable), otherwise it only de�nes a (weak) cylinder-measure in the
sense of Gaussian �elds.

Theorem 7.2. The distribution of a function-valued Gaussian process is uniquely deter-
mined by its mean and covariance kernel K. Conversely given m and K there exists a
function-valued Gaussian process having mean m and covariance kernel K. In particular
if K has feature space F and map ψ, the ei form an orthonormal basis of F , and the Zi
are i.i.d. N p0, 1q random variables, then

ξ � m�
¸
i

Ziψ
T ei (7.2)

is a function-valued GP with mean m and covariance kernel K.

Proof. The proof is classical, see [6, Sec. 7&17]. Note that the separability of F ensures
the existence of the ei. Furthermore E

�
pξ �mqpξ �mqT

�
� ψTψ � K. �

Theorem 7.3. Let ξ be a centered function-valued GP with covariance kernel K : X �
X Ñ LpYq. Let X,Y P XN � YN . Let Z � pZ1, . . . , ZN q be a random Gaussian vector,
independent from ξ, with i.i.d. N p0, λIYq entries (λ ¥ 0 and IY is the identity map on
Y). Then ξ conditioned on ξpXq � Z is a function-valued GP with mean

E
�
ξpxq

��ξpXq � Z � Y
�
� Kpx,Xq

�
KpX,Xq � λIY

��1
Y � (6.2) (7.3)

and conditional covariance operator

KKpx, x1q :� Kpx, x1q �Kpx,Xq
�
KpX,Xq � λIY

��1
KpX,x1q . (7.4)

In particular, if K is trace class, then

σ2pxq :� E
���ξpxq � Erξpxq|ξpXq � Z � Y s

��2
Y

���ξpXq � Z � Y
�
� Tr

�
KKpx, xq

�
. (7.5)

Proof. The proof is a generalization of the classical setting [6, Sec. 7&17]. Writing
ξT pxqy for

@
ξpxq, y

D
Y observe that yT ξpxqξT px1qy � yTKpx, x1qy1 implies ErξpxqξT px1qs �

Kpx, x1q. Since ξ and Z share the same Gaussian space the expectation of ξpxq con-
ditioned on ξpXq � Z is A

�
ξpXq � Z

�
where A is a linear map identi�ed by 0 �
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Cov
�
ξpxq � A

�
ξpXq � Z

�
, ξpXq � Z

	
� E

�
ξpxq � A

�
ξpXq � Z

��
ξT pXq � ZT

��
�

Kpx,Xq�A
�
KpX,Xq�λIY

�
, which leads to A � Kpx,Xq

�
KpX,Xq�λIY

��1
and (7.3).

The conditional covariance is then given by KKpx, x1q � E
��
ξpxq �Kpx,Xq

�
KpX,Xq �

λIY
��1�

ξpXq �Z
�	�

ξpx1q �Kpx1, Xq
�
KpX,Xq � λIY

��1�
ξpXq �Z

�	T �
which leads to

(7.4). �

8. Deterministic error estimates for function-valued Kriging

The following theorem shows that the standard deviation (7.5) provides deterministic
a prior error bounds on the accuracy of the ridge regressor (7.3) to f : in Problem 1.
Local error estimates such as (8.1) are classical in Kriging [7] where σ2pxq is known as
the power function/kriging variance (see also [4][Thm. 5.1] for applications to PDEs).

Theorem 8.1. Let f : be the unknown function of Problem 1 and let fpxq � (7.3) � (??)
be its GPR/ridge regression solution. Let H be the RKHS associated with K and let Hλ

be the RKHS associated with the kernel Kλ :� K � λIY . It holds true that��f :pxq � fpxq
��
Y ¤ σpxq}f :}H (8.1)

and ��f :pxq � fpxq
��
Y ¤

a
σ2pxq � λ dimpYq}f :}Hλ

, (8.2)

where σpxq is the standard deviation (7.5).

Proof. Let y P Y. Using the reproducing property (3.1) and Y � f :pXq we have

yT
�
f :pxq � fpxq

�
� yT f :pxq � yTKpx,Xq

�
KpX,Xq � λIY

��1
f :pXq

�
@
f :,Kp�, xqy �Kp�, Xq

�
KpX,Xq � λIY

��1
KpX,xqy

D
H .

Using Cauchy-Schwartz inequality, we deduce that���yT �f :pxq � fpxq
����2 ¤ }f :}2H y

TKKpx, xqy (8.3)

where KK is the conditional covariance (7.4). Summing over y ranging in basis of Y
implies (8.1). The proof of (8.2) is similar, simply observe that

yT
�
f :pxq � fpxq

�
�
@
f :,Kλp�, xqy �Kλp�, Xq

�
KpX,Xq � λIY

��1
KpX,xqy

D
Hλ

¤ }f :}Hλ
��Kλp�, xqy �Kλp�, Xq

�
KpX,Xq � λIY

��1
KpX,xqy

��
Hλ

,

which implies ���yT �f :pxq � fpxq
����2 ¤ }f :}2Hλ

�
λyT y � yTKKpx, xqy

�
. (8.4)

�

Remark 8.2. Since Thm. 8.1 does not require X to be �nite-dimensional, its estimates
do not su�er from the curse of dimensionality but from �nding a good kernel for which
both }f :}H and yTKKpx, xqy are small (over x sampled from the testing distribution).
Indeed both (8.1) and (8.2) provide a priori deterministic error bounds on f :�f depending
on the RKHS norms }f :}H and }f :}Hλ

. Although these norms can be controlled in the



6 HOUMAN OWHADI

PDE setting [4] via compact embeddings of Sobolev spaces, there is no clear strategy for
obtaining a-priori bounds on these norms for general machine learning problems.
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