

with Norm Beaudry, Frédéric Dupuis and Renato Renner

Randomness used to test a property (specific state, Bell violation,...)

- Many systems $Y_1 \ldots Y_n$
- Want: testing random subset enough to guarantee global property

Randomness used to test a property (specific state, Bell violation,...)

- Many systems $Y_1 \ldots Y_n$
- Want: testing random subset enough to guarantee global property

Another property we would like to test:

Has student *B* learned the data $X_1 \ldots X_n$?

Want: testing random subset enough to guarantee global learning

Systems:

- Data: $X_1, \ldots, X_n \in \{0, 1\}^n$
- Student memory: *B* (could be classical or quantum)

Modeled by a joint distribution $P_{X_1...X_nB}$

Systems:

Data: $X_1, \ldots, X_n \in \{0, 1\}^n$

• Student memory: *B* (could be classical or quantum) Modeled by a joint distribution $P_{X_1...X_nB}$

Test:

- Exam: $\vec{i} = (\vec{i}_1, ..., \vec{i}_k)$ with $\vec{i}_p \in \{1, ..., n\}$
- Given *B* and \vec{i} , answer $A^{\vec{i}} = A^{\vec{i}}(B,\vec{i}) \in \{0,1\}^k$
- Grade given by $G_k = \sum_{p=1}^k \mathbf{1}_{X^*_{\vec{i}_p} = A^{\vec{i}}_p} = k d_H(X_{\vec{i}'}A^{\vec{i}})$

Property we are testing: correlation between *B* and $X_1 \ldots X_n$

Systems:

Data: $X_1, \ldots, X_n \in \{0, 1\}^n$

• Student memory: *B* (could be classical or quantum) Modeled by a joint distribution $P_{X_1...X_nB}$

Test:

- Exam: $\vec{i} = (\vec{i}_1, ..., \vec{i}_k)$ with $\vec{i}_p \in \{1, ..., n\}$
- Given *B* and \vec{i} , answer $A^{\vec{i}} = A^{\vec{i}}(B,\vec{i}) \in \{0,1\}^k$
- Grade given by $G_k = \sum_{p=1}^k \mathbf{1}_{X^*_{\vec{i}_p} = A^{\vec{i}}_p} = k d_H(X_{\vec{i}'}A^{\vec{i}})$

Property we are testing: correlation between *B* and $X_1 \ldots X_n$ Think of the student as the adversary

Exam strategies

Exam strategies

Exam strategies

In general strategies, answer to question *i* depends on context

Notation: Data: X_1, \ldots, X_n Exam: $\vec{i} = (\vec{i}_1)$ Student memory contains *B*

, . . . ,~*i^k*) with~*i^p* ∈ {1, . . . , *n*} [~]*ⁱ* ⁼ *^A* ~*i* (*B*,~*i*) ∈ {0, 1} *^k* Grade ^G*^k* (*A* ~*i*) = P*^k p*=1 **1** *X*~*ip* =*A* ~*i p*

Notation: Data: X_1, \ldots, X_n Exam: $\vec{i} = (\vec{i}_1)$ Student memory contains *B*

Example 1.
$$
\vec{i} = (\vec{i}_1, \ldots, \vec{i}_k)
$$
 with $\vec{i}_p \in \{1, \ldots, n\}$

\nAnswer $A^{\vec{i}} = A^{\vec{i}}(B, \vec{i}) \in \{0, 1\}^k$ Grade $G_k(A^{\vec{i}}) = \sum_{p=1}^k 1_{X_{\vec{i}_p} = A_p^{\vec{i}_p}}$

Example: *X* uniform on {0, 1} *ⁿ* and

$$
B = \begin{cases} X & \text{with prob. } 1/2\\ 0 & \text{with prob. } 1/2 \end{cases}
$$

Notation: Data: $X_1, ..., X_n$ Exam: $\vec{i} = (\vec{i}_1, ..., \vec{i}_k)$ with $\vec{i}_p \in \{1, ..., n\}$ Student memory contains B Answer $A^{\vec{i}} = A^{\vec{i}}(B,\vec{i}) \in \{0,1\}^k$ Grade $G_k(A^{\vec{i}}) = \sum_{p=1}^k \mathbf{1}_{\substack{X_{\vec{i}_p} = A_p^{\vec{i}_p}}}$

Example: *X* uniform on {0, 1} *ⁿ* and

$$
B = \begin{cases} X & \text{with prob. } 1/2\\ 0 & \text{with prob. } 1/2 \end{cases}
$$

 \rightarrow no absolute good/bad student

Notation: Data: X_1, \ldots, X_n $, \ldots, X_n$ Exam: $\vec{i} = (\vec{i}_1, \ldots, \vec{i}_k)$ with $\vec{i}_p \in \{1, \ldots, n\}$ Student memory contains *B* $\overrightarrow{q} = A^{\overrightarrow{i}}(B, \overrightarrow{i}) \in \{0, 1\}^k$ Grade $G_k(A^{\overrightarrow{i}}) = \sum_{p=1}^k \mathbf{1}_{\substack{X_{\overrightarrow{p}} = A_p^{\overrightarrow{i}} \\ \overrightarrow{q}}$

Example: *X* uniform on {0, 1} *ⁿ* and

$$
B = \begin{cases} X & \text{with prob. } 1/2\\ 0 & \text{with prob. } 1/2 \end{cases}
$$

 \rightarrow no absolute good/bad student

Property we are looking after:

memory *B* allows answering many X_1, \ldots, X_n correctly

Theorem

For any $P_{X_1...X_nB}$ and any $\{A^{\vec{i}}\}_{\vec{i}'}$ there exists an $\overline{A} = \overline{A}(B,\vec{i},X_{\vec{i}}) \in \{0,1\}^n$ s.t.

$$
\mathbf{P}\left\{\frac{\mathbf{G}_n(\overline{A})}{n} \leqslant \frac{\mathbf{G}_k(A^{\overrightarrow{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}
$$

Exam: simple strategies

Notation: Data: X_1, \ldots, X_n Exam: $\vec{i} = (\vec{i}_1, \ldots, \vec{i}_k)$ with $\vec{i}_p \in \{1, \ldots, n\}$ Student memory contains *B* $A^{\vec{i}} = A^{\vec{i}}(B,\vec{i}) \in \{0,1\}^k$

For simple strategies, $A^{\overline{i}}_{p} = A_{\overline{i}_{p}}$ for some $A \in \{0, 1\}^{n}$ We choose $\overline{A} = A$. Statement becomes

Theorem

For any random variable $A = A_1 \dots A_n$,

$$
\mathbf{P}_{\vec{i},X,A}\left\{\frac{1}{n}\sum_{\ell=1}^n\mathbf{1}_{X_\ell=A_\ell}\leqslant\frac{1}{k}\sum_{p=1}^k\mathbf{1}_{X_{\vec{i}_p}=A_{\vec{i}_p}}-\delta\right\}\leqslant e^{-\frac{\delta^2 k}{32}}
$$

Exam: simple strategies

Notation: Data: X_1, \ldots, X_n Exam: $\vec{i} = (\vec{i}_1, \ldots, \vec{i}_k)$ with $\vec{i}_p \in \{1, \ldots, n\}$ Student memory contains *B* $A^{\vec{i}} = A^{\vec{i}}(B,\vec{i}) \in \{0,1\}^k$

For simple strategies, $A^{\overline{i}}_{p} = A_{\overline{i}_{p}}$ for some $A \in \{0, 1\}^{n}$ We choose $\overline{A} = A$. Statement becomes

Theorem

For any random variable $A = A_1 \dots A_n$,

$$
\mathbf{P}_{\vec{i},X,A}\left\{\frac{1}{n}\sum_{\ell=1}^n\mathbf{1}_{X_\ell=A_\ell}\leqslant\frac{1}{k}\sum_{p=1}^k\mathbf{1}_{X_{\vec{i}_p}=A_{\vec{i}_p}}-\delta\right\}\leqslant e^{-\frac{\delta^2 k}{32}}
$$

For fixed *X* and *A*: standard bounds on hypergeometric distribution

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}'}$ there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$
\mathbf{P}\left\{\frac{\mathbf{G}_n(\overline{A})}{n} \leqslant \frac{\mathbf{G}_k(A^{\overrightarrow{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}
$$

How to choose *A*?

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}'}$ there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$
\mathbf{P}\left\{\frac{\mathbf{G}_n(\overline{A})}{n} \leqslant \frac{\mathbf{G}_k(A^{\overrightarrow{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}
$$

How to choose *A*?

• Choose
$$
\overline{A}_{\ell} = \text{maj}\{A_{\ell}^{\overline{j}} : \ell \in \overline{j}\}
$$

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}'}$ there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$
\mathbf{P}\left\{\frac{\mathbf{G}_n(\overline{A})}{n} \leqslant \frac{\mathbf{G}_k(A^{\overrightarrow{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}
$$

How to choose \overline{A} ?

 $\overline{\mathsf{Choose}}\ \overline{A}_\ell = \mathsf{maj}\{A_\ell^{\overline{j}}\}$ $\ell^j_\ell : \ell \in \vec{j}$ does not work, have to use \vec{i}

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}'}$ there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$
\mathbf{P}\left\{\frac{\mathbf{G}_n(\overline{A})}{n} \leqslant \frac{\mathbf{G}_k(A^{\overrightarrow{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}
$$

How to choose \overline{A} ?

- $\overline{\mathsf{Choose}}\ \overline{A}_\ell = \mathsf{maj}\{A_\ell^{\overline{j}}\}$ $\ell^j_\ell : \ell \in \vec{j}$ does not work, have to use \vec{i}
- $\overline{A}_{\ell} = \text{maj}\{A^{\overline{j}}_{\ell}\}$ \vec{y} : $\ell \in \vec{j}$, $|\vec{j} \cap \vec{i}|$ large, $A\vec{i} = A\vec{i}$ on $\vec{i} \cap \vec{j}$ maybe works, but tough to analyze

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}'}$ there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$
\mathbf{P}\left\{\frac{\mathbf{G}_n(\overline{A})}{n} \leqslant \frac{\mathbf{G}_k(A^{\overrightarrow{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}
$$

How to choose \overline{A} ?

- $\overline{\mathsf{Choose}}\ \overline{A}_\ell = \mathsf{maj}\{A_\ell^{\overline{j}}\}$ $\ell^j_\ell : \ell \in \vec{j}$ does not work, have to use \vec{i}
- $\overline{A}_{\ell} = \text{maj}\{A^{\overline{j}}_{\ell}\}$ \vec{y} : $\ell \in \vec{j}$, $|\vec{j} \cap \vec{i}|$ large, $A\vec{i} = A\vec{i}$ on $\vec{i} \cap \vec{j}$ maybe works, but tough to analyze
- Optimal strategy?

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}'}$ there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$
\mathbf{P}\left\{\frac{\mathbf{G}_n(\overline{A})}{n} \leqslant \frac{\mathbf{G}_k(A^{\overrightarrow{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}
$$

How to choose \overline{A} ?

- $\overline{\mathsf{Choose}}\ \overline{A}_\ell = \mathsf{maj}\{A_\ell^{\overline{j}}\}$ $\ell^j_\ell : \ell \in \vec{j}$ does not work, have to use \vec{i}
- $\overline{A}_{\ell} = \text{maj}\{A^{\overline{j}}_{\ell}\}$ \vec{y} : $\ell \in \vec{j}$, $|\vec{j} \cap \vec{i}|$ large, $A\vec{i} = A\vec{i}$ on $\vec{i} \cap \vec{j}$ maybe works, but tough to analyze
- Optimal strategy? In what sense?

Proof: introducing sequential exams

Notation: \vec{p} ⁻¹ = \vec{i}_1 , . . . , \vec{i}_{p-1}

Two steps:

- ¹ Introduce "sequential exams" and prove statement
- ² Relate general strategies for a strategy for sequential exam

Notation: \vec{p} ⁻¹ = \vec{i}_1 , . . . , \vec{i}_{p-1}

Two steps:

- **1** Introduce "sequential exams" and prove statement
- ² Relate general strategies for a strategy for sequential exam

Sequential exam (or oral exam)

Interaction between examiner and student

- Questions one by one
- Have to answer \vec{i}_p before getting \vec{i}_{p+1}
- After answering \vec{i}_p also gets $X_{\vec{i}_p}$

Notation: \vec{p} ⁻¹ = \vec{i}_1 , . . . , \vec{i}_{p-1}

Two steps:

- ¹ Introduce "sequential exams" and prove statement
- ² Relate general strategies for a strategy for sequential exam

Sequential exam (or oral exam)

Interaction between examiner and student

- Questions one by one
- Have to answer \vec{i}_p before getting \vec{i}_{p+1}
- After answering \vec{i}_p also gets $X_{\vec{i}_p}$

 \rightarrow $A_p^{\text{seq}} = A_p^{\text{seq}}(\vec{i}_p, \vec{i}^{p-1}, X_{\vec{i}^{p-1}})$ but independent of $\vec{i}_{p+1} \ldots \vec{i}_k$

Notation: \vec{p} ⁻¹ = \vec{i}_1 , . . . , \vec{i}_{p-1}

Two steps:

- ¹ Introduce "sequential exams" and prove statement
- ² Relate general strategies for a strategy for sequential exam

Sequential exam (or oral exam)

Interaction between examiner and student

- Questions one by one
- Have to answer \vec{i}_p before getting \vec{i}_{p+1}
- After answering \vec{i}_p also gets $X_{\vec{i}_p}$

 \rightarrow $A_p^{\text{seq}} = A_p^{\text{seq}}(\vec{i}_p, \vec{i}^{p-1}, X_{\vec{i}^{p-1}})$ but independent of $\vec{i}_{p+1} \ldots \vec{i}_k$

Remark: A priori "general" and "sequential" incomparable

Proof for sequential strategies

Theorem

*For any sequential strategy A*seq, *there exists an* $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ *such that*

$$
\mathbf{P}\left\{\frac{\mathbf{G}_n(\overline{A})}{n} \leqslant \frac{\mathbf{G}_k(A^{\overrightarrow{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{8}}
$$

Simplification: define \overline{A} only on \vec{j} with $|\vec{j}| = k$ \rightarrow look at $\left[\frac{G_k(\overline{A})}{k} \leq \frac{G_k(A^{\text{seq}})}{k} - \delta\right]$

Proof for sequential strategies

Theorem

*For any sequential strategy A*seq, *there exists an* $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ *such that*

$$
\mathbf{P}\left\{\frac{\mathbf{G}_n(\overline{A})}{n} \leqslant \frac{\mathbf{G}_k(A^{\overrightarrow{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{8}}
$$

Simplification: define \overline{A} only on \vec{j} with $|\vec{j}| = k$ \rightarrow look at $\left[\frac{G_k(\overline{A})}{k} \leq \frac{G_k(A^{\text{seq}})}{k} - \delta\right]$

$$
\overline{A}_{\vec{j}_p} \stackrel{\text{def}}{=} A_p^{\text{seq}}(\vec{j}_p, \vec{i}^{p-1}, X_{\vec{i}^{p-1}})
$$

To answer all questions: Partition $[n] = S_1 \cup \cdots \cup S_k$ at random, and for $\ell \in S_p$, let $\overline{A}_{\ell} = A^{\text{seq}}(\ell, \vec{p}^{p-1}, X_{\vec{p}^{p-1}})$

Proof for sequential strategies

$$
\text{Notation: } \vec{p} - 1 = \vec{i}_1, \ldots, \vec{i}_{p-1} \qquad \text{Grade } \textsf{G}_k(A^{\text{seq}}) = \sum_{p=1}^k \textbf{1}_{\substack{\textsf{x}_p \\ \textsf{x}_p = A_p^{\text{seq}}}} \qquad \text{Grade } \textsf{G}_k(\overline{A}) = \sum_{p=1}^k \textbf{1}_{\substack{\textsf{x}_p \\ \textsf{J}p}} = \overline{A}_p
$$

Using Azuma's inequality:

$$
\mathbf{P}\left\{\sum_{p=1}^k\mathbf{1}_{X_{\vec{i}_p}=A_p^{\text{seq}}}-\sum_{p=1}^k\mathbf{E}_{\vec{i}_p,X_{\vec{i}_p}}\left\{\mathbf{1}_{X_{\vec{i}_p}=A_p^{\text{seq}}}\Big|\vec{r}^{p-1}\vec{f}^{p-1}X_{\vec{p}^{p-1}}X_{\vec{p}^{p-1}}\right\}\geqslant\delta k\right\}\leqslant e^{-\frac{\delta^2 k}{2}}
$$

$$
\mathbf{P}\left\{\sum_{p=1}^k\mathbf{E}_{\vec{j}_p,X_{\vec{j}_p}}\left\{\mathbf{1}_{X_{\vec{j}_p}=\overline{A}_p}\Big|\vec{t}^{p-1}\vec{f}^{p-1}X_{\vec{p}^{p-1}}X_{\vec{j}^{p-1}}\right\}-\sum_{p=1}^k\mathbf{1}_{X_{\vec{j}_p}=\overline{A}_p}\geqslant \delta k\right\}\leqslant e^{-\frac{\delta^2 k}{2}}
$$

Observe:

$$
{\bf E}\left\{{\bf 1}_{X_{\vec{i}p}=A_p^{\rm seq}}\Big|{\vec{i}^{p-1}\vec{j}^{p-1}X_{\vec{i}^{p-1}}X_{\vec{j}^{p-1}}}\right\} ={\bf E}\left\{{\bf 1}_{X_{\vec{j}p}=\overline{A}_p}\Big|{\vec{i}^{p-1}\vec{j}^{p-1}X_{\vec{i}^{p-1}}X_{\vec{j}^{p-1}}}\right\}
$$

$$
\Rightarrow \qquad \mathbf{P} \left\{ \sum_{p=1}^k \mathbf{1}_{X_{\vec{i}_p} = A_p^{\text{seq}}} - \sum_{p=1}^k \mathbf{1}_{X_{\vec{j}_p} = \overline{A}_p} \geqslant 2\delta k \right\} \leqslant 2e^{-\frac{\delta^2 k}{2}}
$$

Relating general to sequential strategies

Theorem

There exists A^{seq} such that for any $\{A^{\vec{i}}\}_{\vec{i}}$

$$
\mathbf{P}\left\{\sum_{p=1}^k\mathbf{1}_{X_{\vec{i}_p}=A_p^{\vec{i}}} - \sum_{p=1}^k\mathbf{1}_{X_{\vec{i}_p}=A_p^{\text{seq}}} \geqslant \delta k\right\} \leqslant e^{-\frac{\delta^2 k}{8}}
$$

 $A^{\text{seq}}(\ell, \vec{i}^{p-1}, X_{\vec{i}^{p-1}}) \overset{\text{def}}{=} \text{ best guess for } X_\ell \text{ given } B, \vec{i}^{p-1}, X_{\vec{i}^{p-1}}$ Azuma \Rightarrow \sum^k $\sum_{p=1}^k \mathbf{1}_{X^*_{\vec{i}p} = A^{\vec{i}}_p} \approx \sum_{p=1}^k$ $\sum_{p=1}$ $\mathbf{E}_{\vec{i}_p, X_{\vec{i}_p}}$ $\sqrt{ }$ $\mathbf{1}_{X_{\vec{i}\mathit{p}}=A_{\mathit{p}}^{\vec{i}}}$ $\left| \vec{i}^{p-1} X_{\vec{i}^{p-1}} (A^{\vec{i}})^{p-1} \right. \bigg\}$ Azuma \Rightarrow \sum^k $\sum_{p=1}^k \mathbf{1}_{X^*_{\vec{t}_p} = A_p^{\text{seq}}} \approx \sum_{p=1}^k$ $\sum_{p=1}^{\infty} \mathbf{E}_{\vec{i}_p, X_{\vec{i}_p}} \left\{ \mathbf{1}_{X_{\vec{i}_p} = A_p^{\rm seq}} \Big| \vec{i}^{p-1} X_{\vec{i}^{p-1}} (A^{\vec{i}})^{p-1} \right\}$

For any fixed \vec{i}_p and *B*, $(A^{\vec{i}})^{p-1}$ cannot help in predicting $X_{\vec{i}_p}$

$$
\Longrightarrow \mathbf{E}_{\vec{i}_p, X_{\vec{i}_p}}\left\{ \mathbf{1}_{X_{\vec{i}_p} = A_p^{\rm seq}} \Big| \vec{i}^{p-1} X_{\vec{i}^{p-1}}(A^{\vec{i}})^{p-1} \right\} \geqslant \mathbf{E}_{\vec{i}_p, X_{\vec{i}_p}}\left\{ \mathbf{1}_{X_{\vec{i}_p} = A_p^{\vec{i}}}\Big| \vec{i}^{p-1} X_{\vec{i}^{p-1}}(A^{\vec{i}})^{p-1} \right\} _{11/13}
$$

Start with $\{A^{\vec{i}}\}_{\vec{i}}$

 A^{seq} (guesses optimally given past) is at least as good on exam \overline{i} If A^{seq} works on \vec{i} , also works on rest

Theorem

 F or any strategy $\{A^{\vec{i}}\}_{\vec{i}'}$ there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$
\mathbf{P}\left\{\frac{\mathbf{G}_n(\overline{A})}{n} \leqslant \frac{\mathbf{G}_k(A^{\overrightarrow{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}
$$

System *B* is quantum

Important difficulty: Applying $A^{\vec{i}}(B,\vec{i})$ affects B Issues in the two steps of the classical proof

- ¹ For sequential strategies, measurement may lead to losses
- ² Cannot simultaneously define the two strategies

System *B* is quantum

Important difficulty: Applying $A^{\vec{i}}(B,\vec{i})$ affects B Issues in the two steps of the classical proof

- ¹ For sequential strategies, measurement may lead to losses
- ² Cannot simultaneously define the two strategies

In fact, as is, just wrong \rightarrow QRAC example

System *B* is quantum

Important difficulty: Applying $A^{\vec{i}}(B,\vec{i})$ affects B Issues in the two steps of the classical proof

- ¹ For sequential strategies, measurement may lead to losses
- ² Cannot simultaneously define the two strategies

In fact, as is, just wrong \rightarrow QRAC example

Better way of quantifying correlation:

• Use $H_{\text{max}}(X_1 \ldots X_n | B)$ (number of bits of hint for perfect recovery of $X_1 \ldots X_n$