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Abstract. In this paper we establish links between, and new results for, three problems that
are not usually considered together. The first is a matrix decomposition problem that arises in
areas such as statistical modeling and signal processing: given a matrix X formed as the sum of an
unknown diagonal matrix and an unknown low-rank positive semidefinite matrix, decompose X into
these constituents. The second problem we consider is to determine the facial structure of the set of
correlation matrices, a convex set also known as the elliptope. This convex body, and particularly
its facial structure, plays a role in applications from combinatorial optimization to mathematical
finance. The third problem is a basic geometric question: given points v1, v2, . . . , vn ∈ Rk (where
n > k) determine whether there is a centered ellipsoid passing exactly through all the points. We
show that in a precise sense these three problems are equivalent. Furthermore we establish a simple
sufficient condition on a subspace U that ensures any positive semidefinite matrix L with column
space U can be recovered from D + L for any diagonal matrix D using a convex optimization-based
heuristic known as minimum trace factor analysis. This result leads to a new understanding of the
structure of rank-deficient correlation matrices and a simple condition on a set of points that ensures
there is a centered ellipsoid passing through them.
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subspace coherence
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1. Introduction. Decomposing a matrix as a sum of matrices with simple struc-
ture is a fundamental operation with numerous applications. A matrix decomposition
may provide computational benefits, such as allowing the efficient solution of the as-
sociated linear system in the square case. Furthermore, if the matrix arises from
measurements of a physical process (such as a sample covariance matrix), decom-
posing that matrix can provide valuable insight about the structure of the physical
process.

Among the most basic and well-studied additive matrix decompositions is the
decomposition of a matrix as the sum of a diagonal matrix and a low-rank matrix.
This decomposition problem arises in the factor analysis model in statistics, which
has been studied extensively since Spearman’s original work of 1904 [29]. The same
decomposition problem is known as the Frisch scheme in the system identification
literature [17]. For concreteness, in section 1.1 we briefly discuss a stylized version of
a problem in signal processing that under various assumptions can be modeled as a
(block-) diagonal and low-rank decomposition problem.
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1396 SAUNDERSON, CHANDRASEKARAN, PARRILO, WILLSKY

Much of the literature on diagonal and low-rank matrix decompositions is in one
of two veins. An early approach [1] that has seen recent renewed interest [11] is an al-
gebraic one, where the principal aim is to give a characterization of the vanishing ideal
of the set of symmetric n×n matrices that decompose as the sum of a diagonal matrix
and a rank k matrix. Such a characterization has only been obtained for the border
cases k = 1, k = n − 1 (due to Kalman [17]) and the recently resolved k = 2 case
(due to Brouwer and Draisma [3] following a conjecture by Drton, Sturmfels, and
Sullivan [11]). This approach does not (yet) offer scalable algorithms for perform-
ing decompositions, rendering it unsuitable for many applications, including those in
high-dimensional statistics, optics [12], and signal processing [24]. The other main
approach to factor analysis is via heuristic local optimization techniques, often based
on the expectation maximization algorithm [9]. This approach, while computationally
tractable, typically offers no provable performance guarantees.

A third way is offered by convex optimization-based methods for diagonal and
low-rank decompositions such as minimum trace factor analysis (MTFA), the idea
and initial analysis of which dates at least to Ledermann’s 1940 work [21]. MTFA is
computationally tractable, being based on a semidefinite program (see section 2), and
yet offers the possibility of provable performance guarantees. In this paper we provide
a new analysis of MTFA that is particularly suitable for high-dimensional problems.

Semidefinite programming duality theory provides a link between this matrix
decomposition heuristic and the facial structure of the set of correlation matrices—
positive semidefinite matrices with unit diagonal—also known as the elliptope [19].
This set is one of the simplest of spectrahedra—affine sections of the positive semidef-
inite cone. Spectrahedra are of particular interest for two reasons. First, spectrahedra
are a rich class of convex sets that have many nice properties (such as being facially
exposed). Second, there are well-developed algorithms, efficient both in theory and
in practice, for optimizing linear functionals over spectrahedra. These optimization
problems are known as semidefinite programs [30].

The elliptope arises in semidefinite programming-based relaxations of problems
in areas such as combinatorial optimization (e.g., the max-cut problem [14]) and
statistical mechanics (e.g., the k-vector spin glass problem [2]). In addition, the
problem of projecting onto the set of (possibly low-rank) correlation matrices has
enjoyed considerable interest in mathematical finance and numerical analysis in recent
years [16]. In each of these applications the structure of the set of low-rank correlation
matrices, i.e., the facial structure of this convex body, plays an important role.

Understanding the faces of the elliptope turns out to be related to the following
ellipsoid fitting problem: given n points in R

k (with n > k), under what conditions on
the points is there an ellipsoid centered at the origin that passes exactly through these
points? While there is considerable literature on many ellipsoid-related problems, we
are not aware of any previous systematic investigation of this particular problem.

1.1. Illustrative application: Direction of arrival estimation. Direction
of arrival estimation is a classical problem in signal processing where (block-) diagonal
and low-rank decomposition problems arise naturally. In this section we briefly discuss
some stylized models of the direction of arrival estimation problem that can be reduced
to matrix decomposition problems of the type considered in this paper.

Suppose we have n sensors at locations (x1, y1), (x2, y2), . . . , (xn, yn) ∈ R2 that
are passively “listening” for waves (electromagnetic or acoustic) at a known frequency
from r � n sources in the far field (so that the waves are approximately plane waves
when they reach the sensors). The aim is to estimate the number of sources r and their
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DIAGONAL AND LOW-RANK MATRIX DECOMPOSITIONS 1397

θ1θ2

Fig. 1.1. Plane waves from directions θ1 and θ2 arriving at an array of sensors equally spaced
on a circle (a uniform circular array).

directions of arrival θ = (θ1, θ2, . . . , θr) given sensor measurements and knowledge of
the sensor locations (see Figure 1.1).

A standard mathematical model for this problem (see [18] for a derivation) is to
model the vector of sensor measurements z(t) ∈ Cn at time t as

(1.1) z(t) = A(θ)s(t) + n(t),

where s(t) ∈ Cr is the vector of baseband signal waveforms from the sources, n(t) ∈ Cn

is the vector of sensor measurement noise, and A(θ) is the n× r matrix with complex

entries [A(θ)]ij = e−k
√−1(xi cos(θj)+yi sin(θj)) with k a positive constant related to the

frequency of the waves being sensed.
The column space of A(θ) contains all the information about the directions of

arrival θ. As such, subspace-based approaches to direction of arrival estimation aim
to estimate the column space of A(θ) (from which a number of standard techniques
can be employed to estimate θ).

Typically s(t) and n(t) are modeled as zero-mean stationary white Gaussian pro-
cesses with covariances E[s(t)s(t)H ] = P and E[n(t)n(t)H ] = Q, respectively (where
AH denotes the Hermitian transpose of A and E[·] the expectation). In the simplest
setting, s(t) and n(t) are assumed to be uncorrelated so that the covariance of the
sensor measurements at any time is

Σ = A(θ)PA(θ)H +Q.

The first term is Hermitian positive semidefinite with rank r, i.e., the number of
sources. Under the assumption that spatially well-separated sensors (such as in a
sensor network) have uncorrelated measurement noise, Q is diagonal. In this case
the covariance Σ of the sensor measurements decomposes as a sum of a positive
semidefinite matrix of rank r � n and a diagonal matrix. Given an approximation
of Σ (e.g., a sample covariance) approximately performing this diagonal and low-rank
matrix decomposition allows the estimation of the column space of A(θ) and in turn
the directions of arrival.
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1398 SAUNDERSON, CHANDRASEKARAN, PARRILO, WILLSKY

A variation on this problem occurs if there are multiple sensors at each location,
sensing, for example, waves at different frequencies. Again under the assumption
that well-separated sensors have uncorrelated measurement noise, and sensors at the
same location have correlated measurement noise, the sensor noise covariance matrix
Q would be block-diagonal. As such the covariance of all the sensor measurements
would decompose as the sum of a low-rank matrix (with rank equal to the total
number of sources over all measured frequencies) and a block-diagonal matrix.

A block-diagonal and low-rank decomposition problem also arises if the second-
order statistics of the noise have certain symmetries. This might occur in cases where
the sensors themselves are arranged in a symmetric way (such as in the uniform
circular array shown in Figure 1.1). In this case there is a unitary matrix T (depending
only on the symmetry group of the array) such that TQTH is block-diagonal [25].
Then the covariance of the sensor measurements, when written in coordinates with
respect to T , is

TΣTH = TA(θ)PA(θ)HTH + TQTH,

which has a decomposition as the sum of a block-diagonal matrix and a rank r Her-
mitian positive semidefinite matrix (as conjugation by T does not change the rank of
this term).

Note that the matrix decomposition problems discussed in this section involve
Hermitian matrices with complex entries, rather than the symmetric matrices with
real entries considered elsewhere in this paper. In Appendix B we briefly discuss how
results for the complex case can be obtained from our results for the block-diagonal
and low-rank decomposition problem over the reals.

1.2. Contributions.
Relating MTFA, correlation matrices, and ellipsoid fitting. We introduce and

make explicit the links between the analysis of MTFA, the facial structure of the
elliptope, and the ellipsoid fitting problem, showing that these problems are, in a
precise sense, equivalent (see Proposition 3.1). As such, we relate a basic problem in
statistical modeling (tractable diagonal and low-rank matrix decompositions), a basic
problem in convex algebraic geometry (understanding the facial structure of perhaps
the simplest of spectrahedra), and a basic geometric problem.

A sufficient condition for the three problems. The main result of the paper is to
establish a new, simple, sufficient condition on a subspace U of Rn that ensures that
MTFA correctly decomposes matrices of the form D� + L�, where U is the column
space of L�. The condition is stated in terms of a measure of coherence of a subspace
(made precise in Definition 4.1). Informally, the coherence of a subspace is a real
number between zero and one that measures how close the subspace is to containing
any of the elementary unit vectors. This result can be translated into new results for
the other two problems under consideration based on the relationship between the
analysis of MTFA, the faces of the elliptope, and ellipsoid fitting.

Block-diagonal and low-rank decompositions. In section 5 we turn our attention
to the block -diagonal and low-rank decomposition problem, showing how our results
generalize to that setting. Our arguments combine our results for the diagonal and
low-rank decomposition case with an understanding of the symmetries of the block-
diagonal and low-rank decomposition problem.

1.3. Outline. The remainder of the paper is organized as follows. We describe
notation, give some background on semidefinite programming, and provide precise
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problem statements in section 2. In section 3 we present our first contribution by
establishing relationships between the success of MTFA, the faces of the elliptope,
and ellipsoid fitting. We then illustrate these connections by noting the equivalence
of a known result about the faces of the elliptope, and a known result about MTFA,
and translating these into the context of ellipsoid fitting. Section 4 is focused on
establishing and interpreting our main result: a sufficient condition for the three
problems based on a coherence inequality. Finally in section 5 we generalize our results
to the analogous tractable block-diagonal and low-rank decomposition problem.

2. Background and problem statements.

2.1. Notation. If x, y ∈ Rn we denote by 〈x, y〉 =
∑n

i=1 xiyi the standard
Euclidean inner product and by ‖x‖2 = 〈x, x〉1/2 the corresponding Euclidean norm.
We write x ≥ 0 and x > 0 to indicate that x is entrywise nonnegative and strictly
positive, respectively. Correspondingly, if X,Y ∈ Sn, the set of n × n symmetric
matrices, then we denote by 〈X,Y 〉 = tr(XY ) the trace inner product and by ‖X‖F =
〈X,X〉1/2 the Frobenius norm. We write X � 0 and X 	 0 to indicate that X is
positive semidefinite and strictly positive definite, respectively. We write Sn

+ for the
cone of n× n positive semidefinite matrices.

The column space of a matrix X is denoted R(X) and the nullspace is denoted
N (X). If X is an n× n matrix, then diag(X) ∈ Rn is the diagonal of X . If x ∈ Rn,
then diag∗(x) ∈ Sn is the diagonal matrix with [diag∗(x)]ii = xi for i = 1, 2, . . . , n.
If U is a subspace of Rn, then PU : Rn → Rn denotes the orthogonal projector
onto U , that is, the self-adjoint linear map such that R(PU ) = U , P 2

U = PU and
tr(PU ) = dim(U).

We use the notation ei for the vector with a one in the ith position and zeros
elsewhere and the notation 1 to denote the vector all entries of which are one. We
use the shorthand [n] for the set {1, 2, . . . , n}. The set of n× n correlation matrices,
i.e., positive semidefinite matrices with unit diagonal, is denoted En. For brevity we
typically refer to En as the elliptope and the elements of En as correlation matrices.

2.2. Semidefinite programming. The term semidefinite programming [30]
refers to convex optimization problems of the form

(2.1) minimize
X

〈C,X〉 subject to

{ A(X) = b,
X � 0,

where X and C are n× n symmetric matrices, b ∈ Rm, and A : Sn → Rm is a linear
map. The dual semidefinite program is

(2.2) maximize
y,S

〈b, y〉 subject to

{
C −A∗(y) = S,

S � 0,

where A∗ : Rm → Sn is the adjoint of A.
General semidefinite programs can be solved efficiently using interior point meth-

ods [30]. While our focus in this paper is not on algorithms, we remark that for
the structured semidefinite programs discussed in this paper, many different special-
purpose methods have been devised.

The main result about semidefinite programming that we use is the following
optimality condition (see [30], for example).

Theorem 2.1. Suppose (2.1) and (2.2) are strictly feasible. Then X� and
(y�, S�) are optimal for the primal (2.1) and dual (2.2), respectively, if and only
if X� is primal feasible, (y�, S�) is dual feasible, and X�S� = 0.
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1400 SAUNDERSON, CHANDRASEKARAN, PARRILO, WILLSKY

2.3. Tractable diagonal and low-rank matrix decompositions. To decom-
pose X into a diagonal part and a positive semidefinite low-rank part, we may try to
solve the following rank minimization problem:

minimize
D,L

rank(L) subject to

⎧⎨
⎩

X = D + L,
L � 0,
D diagonal.

Since the rank function is nonconvex and discontinuous, it is not clear how to solve this
optimization problem directly. One approach that has been successful for other rank
minimization problems (for example, those in [22, 23]) is to replace the rank function
with the trace function in the objective. This can be viewed as a convexification
of the problem as the trace function is the convex envelope of the rank function
when restricted to positive semidefinite matrices with spectral norm at most one.
Performing this convexification leads to the semidefinite program MTFA:

(2.3) minimize
D,L

tr(L) subject to

⎧⎨
⎩

X = D + L,
L � 0,
D diagonal.

It has been shown by Della Riccia and Shapiro [7] that if MTFA is feasible it has a
unique optimal solution. One central concern of this paper is to understand when the
diagonal and low-rank decomposition of a matrix given by MTFA is “correct” in the
following sense.

Recovery problem I. Suppose X is a matrix of the form X = D� + L�, where D�

is diagonal and L� is positive semidefinite. What conditions on (D�, L�) ensure that
(D�, L�) is the optimum of MTFA with input X?

We establish in section 3 that whether (D�, L�) is the optimum of MTFA with
input X = D�+L� depends only on the column space of L�, motivating the following
definition.

Definition 2.2. A subspace U of Rn is recoverable by MTFA if for every di-
agonal D� and every positive semidefinite L� with column space U , (D�, L�) is the
optimum of MTFA with input X = D� + L�.

In these terms, we can restate the recovery problem succinctly as follows.
Recovery problem II. Determine which subspaces of Rn are recoverable by MTFA.
Much of the basic analysis of MTFA, including optimality conditions and relations

between minimum rank factor analysis and minimum trace factor analysis, was car-
ried out in a sequence of papers by Shapiro [26, 27, 28] and Della Riccia and Shapiro
[7]. More recently, Chandrasekaran et al. [6] and Candès et al. [4] considered convex
optimization methods for decomposing a matrix as a sum of a sparse and low-rank
matrix. Since a diagonal matrix is certainly sparse, the analysis in [6] can be spe-
cialized to give fairly conservative sufficient conditions for the success of their convex
programs in performing diagonal and low-rank decompositions (see section 4.1).

The diagonal and low-rank decomposition problem can also be interpreted as a
low-rank matrix completion problem, where we are given all the entries of a low-rank
matrix except the diagonal and aim to correctly reconstruct the diagonal entries. As
such, this paper is closely related to the ideas and techniques used in the work of
Candès and Recht [5] and a number of subsequent papers on this topic. We would
like to emphasize a key point of distinction between that line of work and the present
paper. The recent low-rank matrix completion literature largely focuses on deter-
mining the proportion of randomly selected entries of a low-rank matrix that need
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to be revealed to be able to reconstruct that low-rank matrix using a tractable algo-
rithm. The results of this paper, on the other hand, can be interpreted as attempting
to understand which low-rank matrices can be reconstructed from a fixed and quite
canonical pattern of revealed entries.

2.4. Faces of the elliptope. The faces of the cone of n×n positive semidefinite
matrices are all of the form

(2.4) FU = {X � 0 : N (X) ⊇ U},
where U is a subspace of Rn [19]. Conversely, given any subspace U of Rn, FU is a
face of Sn

+. As a consequence, the faces of En are all of the form

(2.5) En ∩ FU = {X � 0 : N (X) ⊇ U , diag(X) = 1},
where U is a subspace of Rn [19]. It is not the case, however, that for every subspace
U of Rn there is a correlation matrix with nullspace containing U , motivating the
following definition.

Definition 2.3 (see [19]). A subspace U of Rn is realizable if there is an n× n
correlation matrix Q such that N (Q) ⊇ U .

The problem of understanding the facial structure of the set of correlation matrices
can be restated as follows.

Facial structure problem. Determine which subspaces of Rn are realizable.
Much is already known about the faces of the elliptope. For example, all possible

dimensions of faces as well as polyhedral faces are known [20]. Characterizations of
the realizable subspaces of Rn of dimension 1, n − 2, and n − 1 are given in [8] and
implicitly in [19] and [20]. Nevertheless, little is known about which k-dimensional
subspaces of Rn are realizable for general n and k.

2.5. Ellipsoid fitting. Throughout, an ellipsoid is a set of the form {u ∈ Rk :
uTMu = 1}, where M � 0. Note that this includes “degenerate” ellipsoids.

Ellipsoid fitting problem I. What conditions on a collection of n points in Rk

ensure that there is a centered ellipsoid passing exactly through all those points?
Let us consider some basic properties of this problem.
Number of points. If n ≤ k we can always fit an ellipsoid to the points. Indeed if

V is the matrix with columns v1, v2, . . . , vn, then the image of the unit sphere in Rn

under V is a centered ellipsoid passing through v1, v2, . . . , vn. If n >
(
k+1
2

)
and the

points are “generic,” then we cannot fit a centered ellipsoid to them. This is because
if we represent the ellipsoid by a symmetric k × k matrix M , the condition that it
passes through the points (ignoring the positivity condition on M) means that M
must satisfy n linearly independent equations.

Invariances. If T ∈ GL(k) is an invertible linear map, then there is an ellip-
soid passing through v1, v2, . . . , vn if and only if there is an ellipsoid passing through
Tv1, T v2, . . . , T vn. This means that whether there is an ellipsoid passing through n
points in Rk depends not on the actual set of n points but on a subspace of Rn related
to the points. We summarize this observation in the following lemma.

Lemma 2.4. Suppose V is a k×n matrix with row space V. If there is a centered
ellipsoid in R

k passing through the columns of V , then there is a centered ellipsoid
passing through the columns of any matrix Ṽ with row space V.

Lemma 2.4 asserts that whether it is possible to fit an ellipsoid to v1, v2, . . . , vn
depends only on the row space of the matrix with columns given by the vi, motivating
the following definition.
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Definition 2.5. A k-dimensional subspace V of Rn has the ellipsoid fitting
property if there is a k× n matrix V with row space V and a centered ellipsoid in Rk

that passes through each column of V .
As such we can restate the ellipsoid fitting problem as follows.
Ellipsoid fitting problem II. Determine which subspaces of Rn have the ellipsoid

fitting property.

3. Relating ellipsoid fitting, diagonal and low-rank decompositions,
and correlation matrices. In this section we show that the ellipsoid fitting prob-
lem, the recovery problem, and the facial structure problem are equivalent in the
following sense.

Proposition 3.1. Let U be a subspace of Rn. Then the following are equivalent:
1. U is recoverable by MTFA.
2. U is realizable.
3. U⊥ has the ellipsoid fitting property.

Proof. Let dim(U) = n − k. To see that 2 implies 3, let V be a k × n matrix
with nullspace U and let vi denote the ith column of V . If U is realizable there is a
correlation matrix Y with nullspace containing U . Hence there is some M � 0 such
that Y = V TMV and vTi Mvi = 1 for i ∈ [n]. Since V has nullspace U , it has row
space U⊥. Hence the subspace U⊥ has the ellipsoid fitting property. By reversing the
argument we see that the converse also holds.

The equivalence of 1 and 2 arises from semidefinite programming duality. Follow-
ing a slight reformulation, MTFA (2.3) can be expressed as

(3.1) maximize
d,L

〈1, d〉 subject to

{
X = diag∗(d) + L,
L � 0,

and its dual as

(3.2) minimize
Y

〈X,Y 〉 subject to

{
diag(Y ) = 1,

Y � 0,

which is clearly just the optimization of the linear functional defined by X over the
elliptope. We note that (3.1) is exactly in the standard dual form (2.2) for semidefinite
programming and correspondingly that (3.2) is in the standard primal form (2.1) for
semidefinite programming.

Suppose U is recoverable by MTFA. Fix a diagonal matrix D� and a positive
semidefinite matrix L� with column space U and let X = D� + L�. Since (3.1)
and (3.2) are strictly feasible, by Theorem 2.1 (optimality conditions for semidefinite
programming), the pair (diag(D�), L�) is an optimum of (3.1) if and only if there is
some correlation matrix Y � such that Y �L� = 0. Since R(L�) = U this implies that
U is realizable. Conversely, if U is realizable, there is some Y � such that Y �L� = 0
for every L� with column space U , showing that U is recoverable by MTFA.

Remark. We note that in the proof of Proposition 3.1 we established that the
two versions of the recovery problem stated in section 2.3 are actually equivalent.
In particular, whether (D�, L�) is the optimum of MTFA with input X = D� + L�

depends only on the column space of L�.

3.1. Certificates of failure. We can certify that a subspace U is realizable by
constructing a correlation matrix with nullspace containing U . We can also establish
that a subspace is not realizable by constructing a matrix that certifies this fact.
Geometrically, a subspace U is realizable if and only if the subspace LU = {X ∈ Sn :
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N (X) ⊇ U} of symmetric matrices intersects with the elliptope. So a certificate that
U is not realizable is a hyperplane in the space of symmetric matrices that strictly
separates the elliptope from LU . The following lemma describes the structure of these
separating hyperplanes.

Lemma 3.2. A subspace U of Rn is not realizable if and only if there is a diagonal
matrix D such that tr(D) > 0 and vTDv ≤ 0 for all v ∈ U⊥.

Proof. By Proposition 3.1, U is not realizable if and only if U⊥ does not have
the ellipsoid fitting property. Let dim(U⊥) = k and let V be a k × n matrix with
row space U⊥. Then U⊥ does not have the ellipsoid fitting property if and only if
we cannot find an ellipsoid passing through the columns of V , i.e., the semidefinite
program

(3.3) minimize
M

〈0,M〉 subject to

{
diag(V TMV ) = 1,

M � 0,

is infeasible. The semidefinite programming dual of (3.3) is

(3.4) maximize
d

〈d,1〉 subject to
{

V diag∗(d)V T � 0.

Both the primal and dual problems are strictly feasible, so strong duality holds. Since
(3.4) is clearly always feasible, (3.3) is infeasible if and only if (3.4) is unbounded (by
strong duality). This occurs if and only if there is some d with 〈d,1〉 > 0 and yet
V diag∗(d)V T � 0. Then D = diag∗(d) has the properties in the statement of the
lemma.

3.2. Exploiting connections: Results for one-dimensional subspaces. In
1940, Ledermann [21] characterized the one-dimensional subspaces that are recover-
able by MTFA. In 1990, Grone, Pierce, and Watkins [15] gave a necessary condition
for a subspace to be realizable. In 1993, independently of Ledermann’s work, Delorme
and Poljak [8] showed that this condition is also sufficient for one-dimensional sub-
spaces. Since we have established that a subspace is recoverable by MTFA if and only
if it is realizable, Ledermann’s result and Delorme and Poljak’s results are equivalent.
In this section we translate these equivalent results into the context of the ellipsoid
fitting problem, giving a geometric characterization of when it is possible to fit a
centered ellipsoid to k + 1 points in Rk.

Delorme and Poljak state their result in terms of the following definition.
Definition 3.3 (Delorme and Poljak [8]). A vector u ∈ Rn is balanced if

(3.5) |ui| ≤
∑
j �=i

|uj | for all i ∈ [n].

If the inequality is strict we say that u is strictly balanced. A subspace U of Rn is
(strictly) balanced if every u ∈ U is (strictly) balanced.

In the following, the necessary condition is due to Grone et al. [15] and the
sufficient condition is due to Ledermann [21] (in the context of the analysis of MTFA)
and Delorme and Poljak [8] (in the context of the facial structure of the elliptope).
We state the result only in terms of realizability of a subspace.

Theorem 3.4. If a subspace U of R
n is realizable, then it is balanced. If a

subspace U of Rn is balanced and dim(U) = 1, then it is realizable.
From Proposition 3.1 we know that whether a subspace is realizable can be deter-

mined by deciding whether we can fit an ellipsoid to a particular collection of points.
We next develop the analogous geometric interpretation of balanced subspaces.
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Definition 3.5. A collection of points v1, v2, . . . , vn ∈ Rk is in convex position
if for each i ∈ [n], vi lies on the boundary of the convex hull of ±v1,±v2, . . . ,±vn.

The following lemma makes precise the connection between balanced subspaces
and points in convex position.

Lemma 3.6. Suppose V is any k×n matrix with N (V ) = U . Then U is balanced
if and only if the columns of V are in convex position.

Proof. We defer a detailed proof to Appendix A, giving only the main idea
here. We can check if a collection of points is in convex position by checking the
feasibility of a system of linear inequalities (given in Appendix A). An application of
linear programming duality establishes that certificates of infeasibility of these linear
inequalities take the form of elements of U that are not balanced.

By combining Theorem 3.4 with Lemma 3.6, we are in a position to interpret
Theorem 3.4 purely in terms of ellipsoid fitting.

Corollary 3.7. If there is a centered ellipsoid passing through v1, v2, . . . , vn ∈
Rk, then they are in convex position. If v1, v2, . . . , vn ∈ Rk and k = n− 1, then there
is a centered ellipsoid passing through them.

In this geometric setting the necessary condition is clear—we can only hope to
find a centered ellipsoid passing through a collection of points if they are in convex
position, i.e., they lie on the boundary of some convex body.

One may wonder for which other n and k (if any) it is the case that there is
an ellipsoid passing through any set of n points in R

k that are in convex position
(or equivalently that any (n− k)-dimensional balanced subspace of Rn is realizable).
This is not the case for general n and k. For example, let n ≥ (k+1

2

)
+ 1 and choose

v1, v2, . . . , vn−1 on the unit sphere in Rk so that the sphere is the unique centered
ellipsoid passing through them. Then choose vn in the interior of the sphere but not
in the convex hull of ±v1,±v2, . . . ,±vn−1. The resulting points are in convex position
but there is no centered ellipsoid passing through them.

On a positive note, since there is clearly an ellipsoid passing through any subset
of R1 in convex position, we have the following simple addition to Theorem 3.4.

Proposition 3.8. If a subspace U of Rn is balanced and dim(U) = n − 1, then
U is realizable.

4. A sufficient condition for the three problems. In this section we estab-
lish a new sufficient condition for a subspace U of Rn to be realizable and consequently
a sufficient condition for U to be recoverable by MTFA and U⊥ to have the ellipsoid
fitting property. Our condition is based on a simple property of a subspace known as
coherence.

Given a subspace U of Rn, the coherence of U is a measure of how close the sub-
space is to containing any of the elementary unit vectors. This notion was introduced
(with a different scaling) by Candès and Recht in their work on low-rank matrix com-
pletion [5], although related quantities have played an important role in the analysis
of sparse reconstruction problems since the work of Donoho and Huo [10].

Definition 4.1. If U is a subspace of Rn, then the coherence of U is

μ(U) = max
i∈[n]

‖PUei‖22.

There are a number of equivalent ways to express coherence, some of which we
collect here for convenience. Since P 2

U = PU = I − PU⊥ ,

(4.1) μ(U) = max
i∈[n]

[PU ]ii = 1− min
i∈[n]

[PU⊥ ]ii.
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Coherence also has an interpretation as the square of the worst-case ratio between
the infinity norm and the Euclidean norm on a subspace:

(4.2) μ(U) = max
i∈[n]

‖PUei‖22 = max
i∈[n]

max
u∈U\{0}

〈ei, u〉2
‖u‖22

= max
u∈U\{0}

‖u‖2∞
‖u‖22

.

A basic property of coherence is that it satisfies the inequality

(4.3)
dim(U)

n
≤ μ(U) ≤ 1

for any subspace U of Rn [5]. This holds because PU has dim(U) eigenvalues equal to
one and the rest equal to zero so that dim(U)/n = tr(PU )/n ≤ maxi∈[n][PU ]ii = μ(U).
The inequality (4.3), together with the definition of coherence, provides useful intu-
ition about the properties of subspaces with low coherence, that is, incoherence. Any
subspace with low coherence is necessarily of low dimension and far from containing
any of the elementary unit vectors ei. As such, any symmetric matrix with incoherent
row/column spaces is necessarily of low rank and quite different from being a diagonal
matrix.

4.1. Coherence-threshold-type sufficient conditions. In this section we fo-
cus on finding the largest possible α such that

μ(U) < α =⇒ U is realizable,

that is, finding the best possible coherence-threshold-type sufficient condition for a
subspace to be realizable. Such conditions are of particular interest because the
dependence they have on the ambient dimension and the dimension of the subspace is
only the mild dependence implied by (4.3). In contrast, existing results (e.g., [8, 20,
19]) about realizability of subspaces hold only for specific combinations of the ambient
dimension and the dimension of the subspace.

The following theorem, our main result, gives a sufficient condition for realizability
based on a coherence-threshold condition. Furthermore, it establishes that this is the
best possible coherence-threshold-type sufficient condition.

Theorem 4.2. If U is a subspace of Rn and μ(U) < 1/2, then U is realizable.
On the other hand, given any α > 1/2, there is a subspace U with μ(U) = α that is
not realizable.

Proof. We give the main idea of the proof, deferring some details to Appendix A.
Instead of proving that there is some Y ∈ FU = {Y � 0 : N (Y ) ⊇ U} such that Yii = 1
for i ∈ [n], it suffices to choose a convex cone K that is an inner approximation to
FU and establish that there is some Y ∈ K such that Yii = 1 for i ∈ [n]. One natural
choice is to take K = {PU⊥ diag∗(λ)PU⊥ : λ ≥ 0}, which is clearly contained in FU .
Note that there is some Y ∈ K such that Yii = 1 for all i ∈ [n] if and only if there is
λ ≥ 0 such that

(4.4) diag (PU⊥ diag∗(λ)PU⊥) = 1.

The rest of the proof of the sufficient condition involves showing that if μ(U) < 1/2,
then such a nonnegative λ exists. We establish this in Lemma A.1.

Now let us construct, for any α > 1/2, a subspace with coherence α that is
not realizable. Let U be the subspace of R2 spanned by u = (

√
α,

√
1− α). Then

μ(U) = max{α, 1 − α} = α and yet by Theorem 3.4, U is not realizable because u is
not balanced.
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Comparison with results on sparse and low-rank decompositions. In [6, Corol-
lary 3] a sufficient condition is given under which a convex program related to MTFA
can successfully decompose the sum of an unknown sparse matrix S� and an un-
known low-rank matrix L�. The condition is that degmax(S

�) inc(L�) < 1/12, where
degmax(S

�) is the maximum number of nonzero entries per row/column of S� and, for
a symmetric matrix L� with column space U , inc(L�) =

√
μ(U) is the square root of

the coherence as defined in the present paper. As such, Chandrasekaran et al. show
that the convex program they analyze successfully decomposes the sum of a diagonal
matrix and a symmetric matrix with column space U as long as 1 ·√μ(U) < 1/12 or
equivalently μ(U) < 1/144. By comparison, in this paper both the convex program
we consider and our analysis of that convex program exploit the assumptions that the
sparse matrix is diagonal and that the low-rank matrix is positive semidefinite. This
allows us to obtain the much more refined sufficient condition μ(U) < 1/2.

We now establish two corollaries of our coherence-threshold-type sufficient con-
dition for realizability. These corollaries can be thought of as reinterpretations of the
coherence inequality μ(U) < 1/2 in terms of other natural quantities.

An ellipsoid-fitting interpretation. With the aid of Proposition 3.1 we reinterpret
our coherence-threshold-type sufficient condition as a sufficient condition on a set of
points in Rk that ensures there is a centered ellipsoid passing through them. The
condition involves “sandwiching” the points between two ellipsoids (that depend on
the points). Indeed, given 0 < β < 1 and points v1, v2, . . . , vn ∈ R

k that span R
k, we

define the ellipsoid

Eβ(v1, . . . , vn) =
⎧⎨
⎩x ∈ R

k : xT

(
n∑

j=1

vjv
T
j

)−1

x ≤ β

⎫⎬
⎭ .

Definition 4.3. Given 0 < β < 1 the points v1, v2, . . . , vn satisfy the β-sandwich
condition if v1, v2, . . . , vn span Rk and

{v1, v2, . . . , vn} ⊂ E1(v1, . . . , vn) \ Eβ(v1, . . . , vn).
The intuition behind this definition (illustrated in Figure 4.1) is that if the points

satisfy the β-sandwich condition for β close to one, then they are confined to a thin
ellipsoidal shell that is adapted to their position. One might expect that it is “easier”
to fit an ellipsoid to points that are confined in this way. Indeed this is the case.

Corollary 4.4. If v1, v2, . . . , vn ∈ R
k satisfy the 1/2-sandwich condition, then

there is a centered ellipsoid passing through v1, v2, . . . , vn.

E
E ′

v3

v1

v2

0

Fig. 4.1. The ellipsoids shown are E = E1(v1, v2, v3) and E ′ = E1/2(v1, v2, v3). There is an
ellipsoid passing through v1, v2, and v3 because the points are sandwiched between E and E ′.
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Proof. Let V be the k × n matrix with columns given by the vi, and let U be
the (n− k)-dimensional nullspace of V . Then the orthogonal projection onto the row
space of V is PU⊥ and can be written as

PU⊥ = V T (V V T )−1V.

Our assumption that the points satisfy the 1/2-sandwich condition is equivalent to
assuming that 1/2 < [PU⊥ ]ii ≤ 1 for all i ∈ [n], which by (4.1) is equivalent to
μ(U) < 1/2. From Theorem 4.2 we know that μ(U) < 1/2 implies that U is realizable.
Invoking Proposition 3.1 we then conclude that there is a centered ellipsoid passing
through v1, v2, . . . , vn.

A balance interpretation. In section 3.2 we saw that if a subspace U is realizable,
every u ∈ U is balanced. The sufficient condition of Theorem 4.2 can be expressed in
terms of a balance condition on the elementwise square of the elements of a subspace.
(In what follows u ◦ u denotes the elementwise square of a vector in Rn.)

Lemma 4.5. If U is a subspace of Rn, then

μ(U) < 1/2 ⇐⇒ u ◦ u is strictly balanced for all u ∈ U ,
=⇒ U is strictly balanced.

Proof. By the characterization of μ(U) in (4.2)

μ(U) < 1/2 ⇐⇒ max
u∈U\{0}

‖u‖2∞/‖u‖22 < 1/2,

which in turn is equivalent to u2
i <

∑
j �=i u

2
j for all i ∈ [n] and all u ∈ U , i.e., u ◦ u is

strictly balanced for all u ∈ U .
Suppose u ◦ u is strictly balanced for all u ∈ U . Then for all i ∈ [n] and all u ∈ U

|ui| <
(∑

j �=i

u2
j

)1/2

≤
∑
j �=i

|uj |,

i.e., U is strictly balanced. (Here we have used the fact that ‖x‖2 ≤ ‖x‖1 for any
x ∈ Rn.)

With this relationship established we can express both the known necessary con-
dition and our sufficient condition for a subspace to be realizable in terms of the
notion of balance. The necessary condition is restated from Theorem 3.4; the suffi-
cient condition follows by combining Theorem 4.2 and Lemma 4.5.

Corollary 4.6. If a subspace U is realizable, then every u ∈ U is balanced. If
u ◦ u is strictly balanced for every u ∈ U , then the subspace U is realizable.

Remark. Suppose U = span{u} is a one-dimensional subspace of Rn. We have
just established that if u ◦ u is strictly balanced, then U is realizable and so (by
Theorem 3.4) u must be balanced, a fact we proved directly in Lemma 4.5.

4.2. Examples. To gain more intuition for what Theorem 4.2 means, we con-
sider its implications in two particular cases. First, we compare the characterization
of when it is possible to fit an ellipsoid to k + 1 points in Rk (Corollary 3.7) with
the specialization of our sufficient condition to this case (Corollary 4.4). This com-
parison provides some geometric insight into how conservative our sufficient condition
is. Second, we investigate the coherence properties of suitably random subspaces.
This provides intuition about whether μ(U) < 1/2 is a very restrictive condition. In
particular, we establish that “most” subspaces of Rn with dimension bounded above
by (1/2− ε)n are realizable.
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e2

e1
0

(a) The shaded set is R, those points w
for which we can fit an ellipsoid through
w and the standard basis vectors.

e2

e1
0

(b) The shaded set is R′, those points
w such that w, e1, and e2 satisify the
condition of Corollary 4.4.

Fig. 4.2. Comparing our sufficient condition (Corollary 4.4) with the characterization (Corol-
lary 3.7) in the case of fitting an ellipsoid to k + 1 points in Rk.

Fitting an ellipsoid to k + 1 points in Rk. Recall that the result of Ledermann
and Delorme and Poljak, interpreted in terms of ellipsoid fitting, tells us that we can
fit an ellipsoid to k + 1 points v1, . . . , vk+1 ∈ Rk if and only if those points are in
convex position (see Corollary 3.7). We now compare this characterization with the
1/2-sandwich condition, which is sufficient by Corollary 4.4.

Without loss of generality we assume that k of the points are e1, . . . , ek, the
standard basis vectors, and compare the conditions by considering the set of locations
of the (k+1)st point w ∈ Rk for which we can fit an ellipsoid through all k+1 points.
Corollary 3.7 gives a characterization of this region as

R =

⎧⎨
⎩w ∈ R

k :

k∑
j=1

|wj | ≥ 1, |wi| −
∑
j �=i

|wj | ≤ 1 for i ∈ [k]

⎫⎬
⎭ ,

which is shown in Figure 4.2(a) in the case k = 2. The set of w such that w, e1, . . . , en
satisfy the 1/2-sandwich condition can be written as

R′ = {w ∈ R
k : wT (I + wwT )−1w > 1/2, eTi (I + wwT )−1ei > 1/2 for i ∈ [k]}

=

⎧⎨
⎩w ∈ R

k :
k∑

j=1

w2
j > 1, w2

i −
∑
j �=i

w2
j < 1 for i ∈ [k]

⎫⎬
⎭ ,

where the second equality holds because (I + wwT )−1 = I − wwT

1+wTw . The region R′

is shown in Figure 4.2(b) in the case k = 2. It is clear that R′ ⊆ R.
Realizability of random subspaces. Suppose U is a subspace generated by taking

the column space of an n × r matrix with independent and identically distributed
standard Gaussian entries. For what values of r and n does such a subspace have
μ(U) < 1/2 with high probability, i.e., satisfy our sufficient condition for being real-
izable?

The following result essentially shows that for large n, “most” subspaces of dimen-
sion at most (1/2−ε)n are realizable. This suggests that MTFA is a very good heuristic
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for diagonal and low-rank decomposition problems in the high-dimensional setting.
Indeed “most” subspaces of dimension up to one half the ambient dimension—hardly
just low-dimensional subspaces—are recoverable by MTFA.

Proposition 4.7. Let 0 < ε < 1/2 be a constant and suppose n > 6/(ε2 − 2ε3).
There are positive constants c̄, c̃, (depending only on ε) such that if U is a random
(1/2− ε)n dimensional subspace of Rn, then

Pr[U is realizable] ≥ 1− c̄
√
ne−c̃n.

We provide a proof of this result in Appendix A. The main idea is that the
coherence of a random r-dimensional subspace of Rn is the maximum of n random
variables that concentrate around their mean of r/n for large n.

To illustrate the result, we consider the case where ε = 1/4 and n > 192. Then
(by examining the proof in Appendix A) we see that we can take c̃ = 1/24 and
c̄ = 24/

√
3π ≈ 7.8. Hence if n > 192 and U is a random n/4 dimensional subspace of

Rn we have that

Pr[U is realizable] ≥ 1− 7.8
√
ne−n/24.

5. Tractable block-diagonal and low-rank decompositions and related
problems. In this section we generalize our results to the analogue of MTFA for
block -diagonal and low-rank decompositions. Mimicking our earlier development, we
relate the analysis of this variant of MTFA to the facial structure of a variant of
the elliptope and a generalization of the ellipsoid fitting problem. The key point is
that these problems all possess additional symmetries that, once taken into account,
essentially allow us to reduce our analysis to cases already considered in sections 3
and 4.

Throughout this section, let P be a fixed partition of {1, 2, . . . , n}. We say a
matrix is P-block-diagonal if it is zero except for the principal submatrices indexed
by the elements of P . We denote by blkdiagP the map that takes an n×n matrix and
maps it to the principal submatrices indexed by P . Its adjoint, denoted blkdiag∗P ,
takes a tuple of symmetric matrices (XI)I∈P and produces an n × n matrix that is
P-block-diagonal with blocks given by the XI .

We now describe the analogues of MTFA, ellipsoid fitting, and the problem of
determining the facial structure of the elliptope.

Block minimum trace factor analysis. If X = B� + L�, where B� is P-block-
diagonal and L� � 0 is low rank, the obvious analogue of MTFA is the semidefinite
program

(5.1) minimize
B,L

tr(L) subject to

⎧⎨
⎩

X = B + L,
L � 0,
B is P-block-diagonal,

which we call block minimum trace factor analysis (BMTFA). A straightforward mod-
ification of the Della Riccia and Shapiro argument for MTFA [7] shows that if BMTFA
is feasible it has a unique optimal solution.

Definition 5.1. A subspace U of Rn is recoverable by BMTFA if for every
B� that is P-block-diagonal and every positive semidefinite L� with column space U ,
(B�, L�) is the optimum of BMTFA with input X = B� + L�.

Faces of the P-elliptope. Just as MTFA is related to the facial structure of the
elliptope, BMTFA is related to the facial structure of the spectrahedron

EP = {Y � 0 : blkdiagP(Y ) = (I, I, . . . , I)}.
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We refer to EP as the P-elliptope. We extend the definition of a realizable subspace
to this context.

Definition 5.2. A subspace U of Rn is P-realizable if there is some Y ∈ EP
such that N (Y ) ⊇ U .

Generalized ellipsoid fitting. To describe the P-ellipsoid fitting problem we first
introduce some convenient notation. If I ⊂ [n] we write

(5.2) SI = {x ∈ R
n : ‖x‖2 = 1, xj = 0 if j /∈ I}

for the intersection of the unit sphere with the coordinate subspace indexed by I.
Suppose v1, v2, . . . , vn ∈ Rk is a collection of points and V is the k × n matrix

with columns given by the vi. Noting that S{i} = {−ei, ei}, and thinking of V as
a linear map from Rn to Rk, we see that the ellipsoid fitting problem is to find an
ellipsoid in Rk with boundary containing ∪i∈[n]V (S{i}), i.e., the collection of points

±v1, . . . ,±vn. The P-ellipsoid fitting problem is then to find an ellipsoid in Rk with
boundary containing ∪I∈PV (SI), i.e., the collection of ellipsoids V (SI).

The generalization of the ellipsoid fitting property of a subspace is as follows.
Definition 5.3. A k-dimensional subspace V of Rn has the P-ellipsoid fitting

property if there is a k × n matrix V with row space V such that there is a centered
ellipsoid in R

k with boundary containing ∪I∈PV (SI).

5.1. Relating the generalized problems. The facial structure of the P-
elliptope, BMTFA, and the P-ellipsoid fitting problem are related by the following
result, the proof of which is omitted as it is almost identical to that of Proposition 3.1.

Proposition 5.4. Let U be a subspace of Rn. Then the following are equivalent:
1. U is recoverable by BMTFA.
2. U is P-realizable.
3. U⊥ has the P-ellipsoid fitting property.

The following lemma is the analogue of Lemma 3.2. It describes certificates that
a subspace U is not P-realizable. Again the proof is almost identical to that of
Lemma 3.2, so we omit it.

Lemma 5.5. A subspace U of Rn is not P-realizable if and only if there is a
P-block-diagonal matrix B such that tr(B) > 0 and vTBv ≤ 0 for all v ∈ U⊥.

For the sake of brevity, in what follows we only discuss the problem of whether U
is P-realizable without explicitly translating the results into the context of the other
two problems.

5.2. Symmetries of the P-elliptope. We now consider the symmetries of the
P-elliptope. Our motivation for doing so is that it allows us to partition subspaces
into classes for which either all elements are P-realizable or none of the elements are
P-realizable.

It is clear that the P-elliptope is invariant under conjugation by P-block-diagonal
orthogonal matrices. Let GP denote this subgroup of the group of n× n orthogonal
matrices. There is a natural action of GP on subspaces of Rn defined as follows. If
P ∈ GP and U is a subspace of Rn, then P · U is the image of the subspace U under
the map P . (It is straightforward to check that this is a well-defined group action.)
If there exists some P ∈ GP such that P · U = U ′, then we write U ∼ U ′ and say
that U and U ′ are equivalent. We care about this equivalence relation on subspaces
because the property of being P-realizable is really a property of the corresponding
equivalence classes.

Proposition 5.6. Suppose U and U ′ are subspaces of Rn. If U ∼ U ′, then U is
P-realizable if and only if U ′ is P-realizable.
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Proof. If U is P-realizable there is Y ∈ EP such that Y u = 0 for all u ∈ U .
Suppose U ′ = P · U for some P ∈ GP and let Y ′ = PY PT . Then Y ′ ∈ EP and
Y ′(Pu) = (PY PT )(Pu) = 0 for all u ∈ U . By the definition of U ′ it is then the case
that Y ′u′ = 0 for all u′ ∈ U ′. Hence U ′ is P-realizable. The converse clearly also
holds.

5.3. Exploiting symmetries: Relating realizability and P-realizability.
For a subspace of Rn, we now consider how the notions of P-realizability and realiz-
ability (i.e., [n]-realizability) relate to each other. Since EP ⊂ En, if U is P-realizable,
it is certainly also realizable. While the converse does not hold, we can establish the
following partial converse, which we subsequently use to extend our analysis from
sections 3 and 4 to the present setting.

Theorem 5.7. A subspace U of Rn is P-realizable if and only if U ′ is realizable
for every U ′ such that U ′ ∼ U .

Proof. We note that one direction of the proof is obvious since P-realizability
implies realizability. It remains to show that if U is not P-realizable, then there is
some U ′ equivalent to U that is not realizable.

Recall from Lemma 5.5 that if U is not P-realizable there is some P-block-diagonal
X with positive trace such that vTXv ≤ 0 for all v ∈ U⊥. Since X is P-block-
diagonal there is some P ∈ GP such that PXPT is diagonal. Since conjugation by
orthogonal matrices preserves eigenvalues, tr(PXPT ) = tr(X) > 0. Furthermore,
vT (PXPT )v = (PT v)TX(PT v) ≤ 0 for all PT v ∈ U⊥. Hence wT (PXPT )w ≥ 0 for
all w ∈ P · U⊥ = (P · U)⊥. By Lemma 3.2, PXPT is a certificate that P · U is not
realizable, completing the proof.

The power of Theorem 5.7 lies in its ability to turn any condition for a subspace
to be realizable into a condition for the subspace to be P-realizable by appropriately
symmetrizing the condition with respect to the action of GP . We now illustrate
this approach by generalizing Theorem 3.4 and our coherence-based condition (Theo-
rem 4.2) for a subspace to be P-realizable. In each case we first define an appropriately
symmetrized version of the original condition. The natural symmetrized version of
the notion of balance is as follows.

Definition 5.8. A vector u ∈ Rn is P-balanced if for all I ∈ P
‖uI‖2 ≤

∑
J∈P\{I}

‖uJ ‖2.

We next define the appropriately symmetrized analogue of coherence. Just as co-
herence measures how far a subspace is from any one-dimensional coordinate subspace,
P-coherence measures how far a subspace is from any of the coordinate subspaces in-
dexed by elements of P .

Definition 5.9. The P-coherence of a subspace U of Rn is

μP(U) = max
I∈P

max
x∈SI

‖PUx‖22.

Just as the coherence of U can be computed by taking the maximum diagonal
element of PU , it is straightforward to verify that the P-coherence of U can be com-
puted by taking the maximum of the spectral norms of the principal submatrices
[PU ]I indexed by I ∈ P .

We now use Theorem 5.7 to establish the natural generalization of Theorem 3.4.
Corollary 5.10. If a subspace U of Rn is P-realizable, then every element of U

is P-balanced. If U = span{u} is one-dimensional, then U is P-realizable if and only
if u is P-balanced.
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Proof. If there is u ∈ U that is not P-balanced, then there is P ∈ GP such that
Pu is not balanced. (Choose P so that it rotates each uI until it has only one nonzero
entry.) But then P · U is not realizable and so U is not P-realizable.

For the converse, we first show that if a vector is P-balanced, then it is balanced.
Let I ∈ P , and consider i ∈ I. Then since u is P-balanced,

2|ui| ≤ 2‖uI‖2 ≤
∑
J∈P

‖uJ ‖2 ≤
n∑

i=1

|ui|

and so u is balanced.
Now suppose U = span{u} is one-dimensional and u is P-balanced. Since u is P-

balanced it follows that Pu is P-balanced (and hence balanced) every P ∈ GP . Then
by Theorem 3.4 span{Pu} is realizable for every P ∈ GP . Hence by Theorem 5.7, U
is P-realizable.

Similarly, with the aid of Theorem 5.7 we can write a P-coherence-threshold
condition that is a sufficient condition for a subspace to be P-realizable. The following
is a natural generalization of Theorem 4.2.

Corollary 5.11. If μP(U) < 1/2, then U is P-realizable.
Proof. By examining the constraints in the variational definitions of μ(U) and

μP(U) we see that μ(U) ≤ μP(U). Consequently if μP(U) < 1/2 it follows from
Theorem 4.2 that U is realizable. Since μP is invariant under the action of GP on
subspaces we can apply Theorem 5.7 to complete the proof.

6. Conclusions. We established a link between three problems of independent
interest: deciding whether there is a centered ellipsoid passing through a collection of
points, understanding the structure of the faces of the elliptope, and deciding which
pairs of diagonal and low-rank matrices can be recovered from their sum using a
tractable semidefinite-programming-based heuristic, namely MTFA. We provided a
simple sufficient condition, based on the notion of the coherence of a subspace, which
ensures the success of MTFA and showed that this is the best possible coherence-
threshold-type sufficient condition for this problem. Finally we gave natural gen-
eralizations of our results to the problem of analyzing tractable block-diagonal and
low-rank decompositions, showing how the symmetries of this problem allow us to
reduce much of the analysis to the original case of diagonal and low-rank decomposi-
tions.

Appendix A. Additional proofs.

A.1. Proof of Lemma 3.6. We first establish Lemma 3.6, which gives an in-
terpretation of the balance condition in terms of ellipsoid fitting.

Proof. The proof is a fairly straightforward application of linear programming
duality. Throughout let V be the k × n matrix with columns given by the vi. The
point vi ∈ Rk is on the boundary of the convex hull of ±v1, . . . ,±vn if and only if
there exists x ∈ R

k such that 〈x, vi〉 = 1 and |〈x, vj〉| ≤ 1 for all j �= i. Equivalently,
the following linear program (which depends on i) is feasible:

(A.1) minimize
x

〈0, x〉 subject to

{
vTi x = 1,

|vTj x| ≤ 1 for all j �= i.

Suppose there is some i such that vi is in the interior of conv{±v1, . . . ,±vn}. Then
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(A.1) is not feasible so the dual linear program (which depends on i)

(A.2) maximize
u

ui −
∑
j �=i

|uj| subject to V u = 0

is unbounded. This is the case if and only if there is some u in the nullspace of
V such that ui >

∑
j �=i |uj |. If such a u exists, then it is certainly the case that

|ui| ≥ ui >
∑

j �=i |uj| and so u is not balanced.
Conversely, if u is in the nullspace of V and u is not balanced, then either u or −u

satisfies ui >
∑

j �=i |uj | for some i. Hence the linear program (A.2) associated with
the index i is unbounded and so the corresponding linear program (A.1) is infeasible.
It follows that vi is in the interior of the convex hull of ±v1, . . . ,±vn.

A.2. Completing the proof of Theorem 4.2. We now complete the proof of
Theorem 4.2 by establishing the following result about the existence of a nonnegative
solution to the linear system (4.4).

Lemma A.1. If μ(U) < 1/2, then diag (PU⊥ diag∗(λ)PU⊥) = 1 has a nonnegative
solution λ.

Proof. We note that the linear system diag (PU⊥ diag∗(λ)PU⊥) = 1 can be rewrit-
ten as PU⊥ ◦ PU⊥λ = 1, where ◦ denotes the entrywise product of matrices. As such,
we need to show that PU⊥ ◦ PU⊥ is invertible and (PU⊥ ◦ PU⊥)−11 ≥ 0. To do so,
we appeal to the following (slight restatement) of a theorem of Walters [31] regarding
positive solutions to certain linear systems.

Theorem A.2 (Walters [31]). Suppose A is a square matrix with nonnegative
entries and positive diagonal entries. Let D be a diagonal matrix with Dii = Aii for
all i. If y > 0 and 2y −AD−1y > 0, then A is invertible and A−1y > 0.

For simplicity of notation let P = PU⊥ . We apply Theorem A.2 with A = P ◦ P
and y = 1 and so need to check that (P ◦ P )D−11 < 21, where D is the diagonal
matrix with Dii = P 2

ii for i ∈ [n].
Since P 2 = P it follows that for all i ∈ [n],

∑n
j=1 P

2
ij = [P 2]ii = Pii. Our

assumption that μ(U) < 1/2 implies that mini∈[n] Pii > 1/2 and so Dii = P−2
ii < 4

and Pii − P 2
ii < 1/4 for all i ∈ [n]. Hence

[(P ◦P )D−11]i =

n∑
j=1

P 2
ijD

−1
jj = 1+

∑
j �=i

P 2
ijD

−1
jj < 1+ 4

∑
j �=i

P 2
ij = 1+ 4(Pii −P 2

ii) < 2

as we require.

A.3. Proof of Proposition 4.7. We now establish Proposition 4.7, giving a
bound on the probability that a suitably random subspace is realizable by bounding
the probability that it has coherence strictly bounded above by 1/2.

Proof. It suffices to show that ‖PUei‖22 ≤ (1 − 2ε)(1/2 − ε) = 1/2 − 2ε2 < 1/2
for all i with high probability. The main observation we use is that if U is a random
r-dimensional subspace of Rn and x is any fixed vector with ‖x‖2 = 1, then ‖PUx‖22 ∼
β(r/2, (n− r)/2), where β(p, q) denotes the beta distribution [13]. In the case where
r = (1/2− ε)n, using a tail bound for β random variables [13] we see that if x ∈ R

n

is fixed and r > 3/ε2, then

Pr[‖PUx‖22 ≥ (1 + 2ε)(1/2− ε)] <
1

aε

1

(π(1/4− ε2))1/2
n−1/2e−aεk,
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where aε = ε − 4ε2/3. Taking a union bound over n events, as long as r > 3/ε2

Pr [μ(U) ≥ 1/2] ≤ Pr
[‖PUei‖22 ≥ (1− 2ε)(1/2− ε) for some i ∈ [n]

]
≤ n · 1

aε(π(1/4− ε2))1/2
n−1/2e−aεk = c̄n1/2e−c̃n

for appropriate positive constants c̄ and c̃.

Appendix B. Using complex scalars. In this appendix we briefly discuss the
analogues of our main results when using complex rather than real scalars. If z ∈ C we
denote by �(z) and �(z) its real and imaginary parts and by |z| = (�(z)2+�(z)2)1/2
its modulus. An n × n Hermitian matrix X is positive semidefinite if vHXv ≥ 0 for
all v ∈ Cn. Note that X is positive semidefinite if and only if the real symmetric
2n× 2n matrix

(B.1) X̃ :=

[ �(X) �(X)
−�(X) �(X)

]

is positive semidefinite. We call Hermitian positive semidefinite matrices with all
diagonal elements equal to one complex correlation matrices. We focus here on estab-
lishing sufficient conditions for the complex analogue of realizability.

Definition B.1. A subspace U of Cn is C-realizable if there is an n×n complex
correlation matrix Q such that N (Q) ⊇ U .

Note that the set of complex correlation matrices is invariant under conjugation
by diagonal unitary matrices (i.e., diagonal matrices with all diagonal elements having
modulus one).

B.1. Complex analogue of Theorem 3.4. As before, we say u ∈ Cn is C-
balanced if |ui| ≤

∑
j �=i |uj| for all i ∈ [n]. A subspace U of Cn is C-balanced if all its

elements are C-balanced
Theorem B.2. If a subspace U of Cn is C-realizable, then it is C-balanced. If a

subspace U of Cn is C-balanced and dim(U) = 1, then it is C-realizable.
Proof. Let u ∈ Cn span the one-dimensional subspace U of Cn and let |u| ∈ Rn

be such that |u|i = |ui|. Clearly u is C-balanced if and only if |u| is balanced or,
equivalently, spanR{|u|} is realizable. Now spanR{|u|} is realizable if and only if
spanC{|u|} is C-realizable. (To see this note that if Q is a complex correlation matrix
with Q|u| = 0, then �(Q) is a correlation matrix with �(Q)|u| = �(Q|u|) = 0.)
Finally note that spanC{|u|} is realizable if and only if spanC{u} is realizable. This is
because there is a diagonal unitary matrix D such that Du = |u|, so if M is a complex
correlation matrix with M |u| = 0, then Q = DMDH is a complex correlation matrix
with Qu = 0.

The above argument also establishes that if U is C-realizable, then it is C-
balanced, as every element of a C-realizable subspace spans a one-dimensional C-
realizable subspace and so is C-balanced.

B.2. Complex analogue of Theorem 4.2. We could establish the complex
analogue of Theorem 4.2 by appropriately modifying the proof given in section 4. We
take a different approach, instead relating the C-realizability of a subspace of Cn to
the block realizability of a related subspace of R2n.

Definition B.3. If U is a subspace of Cn define a subspace Ũ of R2n by

Ũ = span

{[ �(u)
−�(u)

]
,

[�(u)
�(u)

]
: u ∈ U

}
.
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Note that Ũ is invariant under multiplication by
[

0 I
−I 0

]
, corresponding to U being

closed under multiplication by the complex unit. Observe that if Q is a complex
correlation matrix, then �(Q) has zero diagonal, so Q̃ (defined in (B.1)) is an element
of the P-elliptope for the partition P = {{1, n+ 1}, {2, n+ 2}, . . . , {n, 2n}} of [2n].
Through this partition of [2n] we can relate realizability properties of U and Ũ .

Lemma B.4. A subspace U of Cn is C-realizable if and only if Ũ is P-realizable.
Proof. If Q is a complex correlation matrix such that N (Q) ⊇ U , then Q̃

(as defined in (B.1)) is in the P-elliptope and it is straightforward to check that
N (Q̃) ⊇ Ũ .

On the other hand suppose there is an element
[

A B
BT C

]
of the P-elliptope with

nullspace containing Ũ . It is straightforward to check that the Hermitian matrix
Q = (A+C)/2 + i(B −BT )/2 has unit diagonal and satisfies N (Q) ⊇ U . It remains
to show that Q is Hermitian positive semidefinite. To see this note that

[
A+ C B −BT

BT −B C +A

]
=

[
I 0
0 I

] [
A B
BT C

] [
I 0
0 I

]T
+

[
0 I
−I 0

] [
A B
BT C

] [
0 I
−I 0

]T
,

which is clearly positive semidefinite whenever
[

A B
BT C

] � 0.
Define the complex coherence of a subspace U of Cn as μC(U) = maxi∈[n] ‖PUei‖22.

Note that it follows directly from the definitions that μC(U) = μP(Ũ). Finally, the
complex version of Theorem 4.2 is as follows.

Theorem B.5. If U is a subspace of Cn and μC(U) < 1/2, then U is C-realizable.
Proof. Since μC(U) = μP(Ũ) we have that

μC(U) < 1/2 =⇒ μP(Ũ) < 1/2 =⇒ Ũ is P-realizable =⇒ U is C-realizable,

where the last two implications follow from Corollary 5.11 and Lemma B.4.
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