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Abstract

We propose a new approach for learning
a sparse graphical model approximation to
a specified multivariate probability distri-
bution (such as the empirical distribution
of sample data). The selection of sparse
graph structure arises naturally in our ap-
proach through solution of a convex opti-
mization problem, which differentiates our
method from standard combinatorial ap-
proaches. We seek the maximum entropy re-
laxation (MER) within an exponential fam-
ily, which maximizes entropy subject to con-
straints that marginal distributions on small
subsets of variables are close to the prescribed
marginals in relative entropy. To solve MER,
we present a modified primal-dual interior
point method that exploits sparsity of the
Fisher information matrix in models defined
on chordal graphs. This leads to a tractable,
scalable approach provided the level of relax-
ation in MER is sufficient to obtain a thin
graph. The merits of our approach are inves-
tigated by recovering the structure of some
simple graphical models from sample data.

1 Introduction

Graphical models offer a convenient representation for
multivariate probability distributions and convey the
Markov structure in distributions compactly. In such
models, a probability distribution is defined with re-
spect to a graph; the vertices of this graph represent
random variables, and the edge structure specifies the
conditional independence (Markov) properties among
the variables. However, the Markov structure in a set
of variables is rarely known in advance. Hence, learn-

ing such structure given an empirical distribution of
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a set of variables is an important problem. Also, it is
often of interest to identify a simpler, more tractable
approximation to a given graphical model. We develop
an approach that is well-suited to both problems.

The problem of learning the Markov structure of a
probability distribution has been extensively studied
from the point of view of solving a combinatorial opti-
mization problem. Given a distribution p∗ (for exam-
ple, an empirical distribution obtained from data sam-
ples), one searches over a collection of graphs in order
to identify a simple graph that still provides a good
approximation to p∗ in the sense of information diver-
gence. Essentially, this involves projecting the distri-
bution to each candidate graph (minimizing informa-
tion divergence) and picking the closest one. Several
methods focus on chordal graphs due to the fact the
projection onto a chordal graph has a simple solution.
For instance, it is tractable to find the best tree [1] or
to find an optimal sub-graph of a given thin chordal
graph [2]. However, the general problem of finding the
best k-width graph is NP-complete for k > 1 [3], and
so heuristic methods are used [4, 5, 6, 7].

In this paper, we propose a novel approach to solve
the graphical model selection problem using a con-
vex program as opposed to a combinatorial approach.
Our formulation is motivated by the maximum en-
tropy (ME) principle [8, 9]. The ME principle states
that subject to linear constraints on a set of statis-
tics, the entropy-maximizing distribution among all

distributions lies in the exponential family based on
those statistics used to define the constraints. Loosely,
this suggests that entropy, when used as a maximiz-
ing objective function, implicitly favors Markov mod-
els which possess as few conditional dependencies as
possible while still satisfying the constraints. Proceed-
ing with this point of view, we propose a maximum en-
tropy relaxation (MER) problem in which linear con-
straints on marginal moments are replaced by a set of
nonlinear, convex constraints that enforce closeness to
the marginal distributions of p∗ in the sense of infor-



mation divergence. Roughly speaking, we expect that
when p∗ is close to a lower-order family of Markov
models defined on some graph, the MER approach
will automatically “thin” the model, that is, the re-
laxed probability distribution will lie in that Markov
sub-family.

Several methods have recently appeared [10, 11, 12]1

using `1-penalized information projections, where an
`1-norm on model parameters is used to favor sparse
graphs. It is known that these methods are dual to
the maximum-entropy method using `∞ moment con-
straints [13], which is similar to our MER approach.
However, the MER constraints are expressed in terms
of relative entropy, and we consider the information-
theoretic approach to be more principled. In particu-
lar, the MER distribution is invariant to reparameter-
ization of the exponential family.

To solve the MER problem, we develop a scalable al-
gorithm that exploits sparse computations on chordal
graphs. This algorithm actually solves a sequence of
MER problems based on subsets of the constraints. At
each step of the procedure, we add more active con-
straints (the ones which have the largest constraint vi-
olation) until all the constraints that were omitted are
found to be inactive. Each MER sub-problem may be
formulated with respect to a chordal graph which sup-
ports the current constraint set. We solve these sub-
problems using a primal-dual interior point method
that exploits sparsity of the Fisher information matrix
over chordal graphs. Very importantly, this incremen-
tal approach to solution of MER still finds the global
MER solution in the complete model, but in a manner
which exploits sparsity of the MER solution. We focus
our development on two classes of exponential families,
namely, the Gaussian and Boltzmann models.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide a brief background on graphical
models, exponential families, information theory and
relevant properties of chordal graphs. In Section 3, we
formulate the MER problem, discuss its model thin-
ning property, and develop efficient algorithms. Sim-
ulation results are presented in Section 4 for both the
Gaussian and Boltzmann models. We conclude in Sec-
tion 5 and discuss possible extensions.

2 Preliminaries

2.1 Graphical Models

A graph (or hypergraph) (V,G) consists of a set of
vertices V = {1, . . . , n} and associated edges G ⊂

(

V
2

)

1Two of these [11, 12] appeared after we submitted the
initial draft of this paper.

(or G ⊂ 2V ) that link vertices together. Here,
(

V
2

)

represents unordered pairs of vertices (pairwise edges)
and 2V represents arbitrary subsets of vertices (hyper-
edges). A graphical model is a collection of random
variables x = (xv)v∈V with probability distribution
p(x) that is Markov with respect to the graph: Given
arbitrary subsets A,B, S ⊂ V such that any path
from a vertex in A to a vertex in B necessarily passes
through a vertex in S (in other words, S is a separator

of A and B), the subset of variables xA = (xv)v∈A is
conditionally independent of xB given xS .

A clique C ∈ C(G) is a vertex set C ⊂ V in which each
pair of vertices are linked by an edge. For a strictly
positive probability distribution p that is Markov with
respect to G, the Hammersley-Clifford theorem (HC)
[14] states that p can be factored in terms of local
functions defined on cliques as

p(x) =
1

Z(ψ)

∏

C∈C(G)

ψC(xC), (1)

where ψC(xC) depends only on the variables xC , and
Z(ψ) is the partition function, which serves to normal-
ize the probability distribution. Conversely, if p can be
factored as in (1), then it is Markov on G.

2.2 Exponential Families

We consider parametric families of probability distri-
butions with support X

n defined by

pθ(x) = exp{θTφ(x)− Φ(θ)}, (2)

where φ : X
n → R

d are the sufficient statis-

tics, θ are the exponential parameters, and Φ(θ) =
log

∫

exp(θTφ(x))dx is the cumulant generating func-

tion (or the log-partition function). The family is de-
fined by the set of all normalizable θ ∈ Θ ⊂ R

d, such
that Φ(θ) < ∞, and is said to be regular if Θ con-
tains an open neighborhood of R

d. The statistics φ
are minimal if they, together with φ∅(x) = 1, are lin-
early independent on X

n. The moments η = E{φ(x)}
define another parameterization of the family. The set
of moments that are realized by the family is denoted
M. For regular families with minimal statistics, the
map Λ : Θ → M defined by the moment calculation
Λ(θ) , Eθ{φ(x)} is bijective. We refer the reader to
the references for background on exponential families
and information geometry [15, 16, 17].

A family of graphical models is obtained by defining
“local” statistics, φE(xE), such that each statistic is a
function of just a subset of variables. Our focus here
is on two particular families, namely, the Boltzmann
and Gaussian models.



Boltzmann Model Boltzmann machines are graph-
ical models defined over hypergraphs G ⊂ 2V where all
variables are binary valued xv ∈ {0, 1}. The family of
all probability distributions with support on {0, 1}n

can be parameterized as:

p(x) ∝ exp
∑

E⊂V

θEφE(x), (3)

with sufficient statistics:

φE(x) =
∏

v∈E

xv (4)

that are indicator functions for the event {xv = 1,∀v ∈
E}. Thus, the moment parameters are given by the
probabilities ηE , E{φE(x)} = Pr({xv = 1,∀v ∈ E})
for each E ⊂ V . The functions Λ and Λ−1 may both be
evaluated using a Möbius transform described briefly
in Appendix A (see [18] for further details). These
computations are O(n2n) using a recursive algorithm.

Gaussian Model Gaussian graphical models [4, 19]
are defined over graphs G ⊂

(

V
2

)

. We consider
the graphical model learning problem involving zero-
mean2 Gaussian distributions. Such distributions
are usually parameterized in terms of the symmetric,
positive-definite covariance matrix P = E{xxT } as

p(x) ∝ exp{− 1
2x

TP−1x}. (5)

The exponential family representation of this model is
p(x) ∝ exp{− 1

2x
TJx} based on the information ma-

trix J = P−1. Defining sufficient statistics φ as

φ(x) = (x2
v)v∈V ∪ (xuxv){u,v}⊂(V

2)
(6)

we obtain θ and η parameters that are respectively
given by elements of the J and P matrices:

θ = (− 1
2Jv,v)v ∪ (−Ju,v){u,v} (7)

η = (Pv,v)v ∪ (Pu,v){u,v}. (8)

Converting between the moment and exponential pa-
rameters is equivalent to converting between P and J .
This can be achieved by matrix inversion, which, in
general, is an O(n3) computation.

Markov and Marginal Sub-Families Appealing
to HC, with ψE(xE) = exp{θEφE(xE)}, the sub-
family of Markov distributions on a graph G corre-
sponds to a flat submanifold Θ(G) ⊂ Θ defined by
sparsity constraints θE = 0 for all subsets E 6∈ C(G).
This Markov sub-family is an exponential family based

2The mean vector does not play a critical role in Gaus-
sian model identification. Therefore, we only consider the
zero-mean case without loss of generality.

on the statistics φG , (φE)E∈G with reduced parame-
terizations θG , (θE)E∈G and ηG , (ηE)E∈G .

A key feature of both the Boltzmann and Gaussian
models is that the marginal distribution pC(xC) on
any clique C ∈ C can be represented within the family.
Let GC , {E ∈ G : E ⊂ C}. The moments ηGC

=
(ηE)E∈GC

specify the marginal distribution pC(xC) in
the exponential family based on φGC

.

Entropy, Divergence and Fisher Information
[9, 15] The entropy of a probability distribution p is
defined h(p) , −Ep{log p(x)}, which is a measure of
the inherent uncertainty or randomness of the random
variable x with probability distribution p. The infor-

mation divergence (or relative entropy) between two

distributions p and q is d(p, q) , Ep{log p(x)
q(x)} and is

a non-negative measure of contrast between probabil-
ity distributions that is zero if and only p(x) = q(x)
(a.e.). In Boltzmann models these are computed by
summation. In Gaussian models, letting P and Q de-
note covariances, one obtains:

h(P ) = 1
2 (log detP + n log 2πe) (9)

d(P,Q) = 1
2{tr(PQ

−1 − I)− log detPQ−1}(10)

In an exponential family, entropy as a function of η
satisfies a duality relation with the cumulant function,

h(η) = min
θ∈Θ

{

Φ(θ)− ηT θ
}

= Φ(Λ−1(η))− ηT Λ−1(η)

(11)
where θ = Λ−1(η) is the unique minimizer. It follows
that ∇h(η) = −θ and ∇2h(η) = −(∇2Φ(θ))−1 for this
θ = Λ−1(η).

The Fisher information of the exponential family with
respect to the moment parameters η is a symmetric,
positive-definite matrix defined by

G(η) , Eη

{

(∇η log p(x; η))(∇η log p(x; η))T
}

, (12)

which plays an important role in variational methods
due to the fact that ∇2h(η) = −G(η).

Information divergence, expressed as a function of the
moment parameters µ and ν of its respective argu-
ments, is seen to be the Bregmann distance induced
by entropy, i.e.,

d(µ, ν) = {h(ν) +∇h(ν)T (µ− ν)} − h(µ) (13)

Computing first and second derivatives with respect
to µ we have:

∇µd(µ, ν) = Λ−1(µ)− Λ−1(ν) (14)

∇2
µd(µ, ν) = G(µ) (15)

Calculation of G(η) in the complete Boltzmann model
is described in Appendix A and [18]. In the complete



Gaussian model, it is given by G(ij),(kl) = Ji,kJj,l +

Ji,lJj,k, G(ij),k = Ji,kJj,k and Gi,k = 1
2J

2
i,k with J =

P (η)−1 (see [20] for derivations).

2.3 Computations on Thin Chordal Graphs

A graph is chordal if for each of its cycles of length
greater than three there exists an edge not contained
in that cycle which links two nodes of the cycle. A
junction tree of a graph G is a tree defined on the set of
maximal cliques C ⊂ C(G) with the following property:
For all Ci, Cj ∈ C, each clique along the unique path
between Ci and Cj in the tree contains Ci ∩ Cj . It
is known that a graph is chordal if and only if it has
a junction tree. Importantly, distributions that are
Markov on a chordal graph can be factored as

p(x) =

∏

C∈C p(xC)
∏

S∈S p(xS),
(16)

where C is the set of maximal cliques and S is the
collection of edge-wise separators Ci ∩ Cj defined by
the edges {Ci, Cj} of any junction tree of the graph.
We say that a chordal graph is thin if it has small
maximal cliques.

Using (16), entropy can be expressed in terms of
marginal entropies on the cliques and separators of
a junction tree of the graph. Using the property that
the clique marginals are contained within the Gaussian
and Boltzmann models, we have:

hG(ηG) =
∑

C∈C

hC(ηGC
)−

∑

S∈S

hS(ηGS
). (17)

Differentiating both sides with respect to moment pa-
rameters using ∇h(η) = −Λ−1(η) we have

Λ−1
G (ηG) =

∑

C∈C

Λ−1
C (ηGC

)−
∑

S∈S

Λ−1
S (ηGS

) (18)

Differentiating again using DΛ−1(η) = −∇2h(η) =
G(η) we have

GG(ηG) =
∑

C∈C

GC(ηGC
)−

∑

S∈S

GS(ηGS
). (19)

Implicit in (18) and (19) is the padding of the terms
on the right with zeroes at appropriate locations.
We remark that the calculations hE , Λ−1

E and GE

all have explicit closed-form expressions on fully con-
nected subsets of nodes E ∈ G and are tractable for
small subsets, thus enabling efficient computation of
(17), (18), and (19) for thin chordal graphs.3 Also, the

3Computation of (17-18) is O(nw3) and O(n2w) respec-
tively in the Gaussian and Boltzmann model, where w is
the maximum clique size. Computing the sparse matrix
(19) is O(nw4) and O(n4w).

sparsity of the Fisher information matrix is important
later when we use sparse matrix computations to effi-
ciently perform each step of the primal-dual interior-
point method.

3 Maximum Entropy Relaxation

We present an exponential family formulation of the
MER problem, and discuss its model-thinning prop-
erty. Using this property, we then develop an incre-
mental method for solving the complete MER prob-
lem by solving a sequence of sub-problems defined on
tractable sub-graphs of the full constraint set. Each
sub-problem is solved using a primal-dual interior
point method that exploits tractable calculations on
chordal graphs.

3.1 Exponential Family Formulation

Let F be an exponential family with statistics φ and
moment parameters η ∈ M. Let p∗ be a given
probability distribution with corresponding moments
η∗ , Ep∗{φ(x)}. We would like to identify a lower-
order Markov approximation of p∗ defined on some
sparse graph (to be determined) that still provides a
good approximation to p∗.

We propose to address this problem by solution of the
Maximum Entropy Relaxation (MER) problem:

maxη∈M h(η)
s.t. dE(η, η∗) ≤ δE , ∀E ∈ G

where h(η) denotes entropy in the complete family,
dE(η, η∗) , d(ηGE

, η∗GE
) is the information divergence

in the marginal family on edge E between distributions
specified by ηGE

and η∗GE
, the hypergraph G serves to

specify the constraint set and δG = (δE)E∈G specify
tolerance on marginal divergence. We require that ev-
ery non-empty subset of an edge in G is also an edge.

For η∗ ∈M and δG > 0, this problem is strictly feasi-
ble. It is a convex optimization problem: the objective
h(η) is a concave function, each marginal divergence
dE(η, η∗) is a convex function of η for fixed η∗ and the
set of realizable momentsM is convex. Using minimal
statistics φ, it is strictly convex such that the MER so-
lution η̃ (when it exists) is unique. Finally, we remark
that the solution always exists in the Boltzmann model
and, in the Gaussian model, it exists if and only if each
node is contained by at least one edge-constraint.

Note also, we have not imposed any Markov con-
straints on the solution of the MER problem. The hy-
pergraph G serves simply to summarize the constraint
set, and may very well be fully connected. Typically,
we will specify G to be the set of all subsets of V up



to size k; for instance, with k = 2 we impose all node
and pairwise marginal constraints. We always include
a complete set of node constraints.

However, we do have the following result concerning
the Markov structure of the MER solution η̃. We
say that the constraint on edge E ∈ G is active if
dE(η̃, η∗) = δE and is lax if dE(η̃, η∗) < δE . Let
G̃ , {E ∈ G : dE(η̃, η∗) = δE} denote the sub-
hypergraph corresponding to active constraints.

Theorem (Model-Thinning) The MER solution is
Markov with respect to G. Moreover, it is Markov on
G̃ ⊂ G defined by the active constraints.

Proof. The Karush-Kuhn-Tucker (KKT) conditions
assert that there exist λE ≥ 0 for E ∈ G such that

∇h(η̃)−
∑

E∈G

λE∇η̃dE(η̃, η∗) = 0 (20)

Also, by complementary slackness, λE = 0 for lax
constraints. Hence, using ∇h(η̃) = −Λ−1(η̃) and
∇η̃dE(η̃, η∗) = Λ−1

E (η̃)− Λ−1
E (η∗), we have

Λ−1(η̃) +
∑

E∈G̃

λE(Λ−1
E (η̃)− Λ−1

E (η∗)) = 0 (21)

where each term (Λ−1
E )S is zero if S 6⊂ E. Then,

θ̃E , (Λ−1(η̃))E = 0 for all E 6∈ C(G̃), which implies
Markovianity on G̃ and, hence, on G ⊃ G̃ as well. �

Fundamentally, this is the mechanism which allows us
to learn graph structure by solving a convex problem.
When constraints are laxly satisfied by the MER solu-
tion, the model is automatically “thinned”.

3.2 Algorithms for Solving MER

Incremental Approach Note that MER is formu-
lated with respect to the complete exponential fam-
ily (not assuming any Markov structure in advance).
For problems of even moderate size, direct solution of
MER in the complete model can become intractable
due to the high dimension of the parameter vector
η. However, based on the model-thinning property,
we conclude that if the solution is actually sparse, it
should not be necessary to solve MER in the complete
parameterization. Hence, we propose the following
algorithm to adaptively identify the subset of active
constraints and a corresponding lower-order Markov
family containing the MER solution:

1. Set k = 0. Start with the disconnected graph G(0)

including only node constraints.

2. Solve the reduced MER sub-problem based on just
the constraints included in G(k) (use the primal-dual
method described in the following section).

3. Based on the solution η̃(k), evaluate the constraint
violations gE = dE(η̃(k), η∗)− δE for all E ∈ G \ G(k).

4. If gE < 0 for all E ∈ G\G(k), STOP. Then, η̃ = η̃(k)

is the MER solution.

5. Otherwise, build G(k+1) by adding edges to G(k)

corresponding to the K largest, positive constraints
violations (if there are less than K such edges, add
just the edges corresponding to violated constraints).
Set k ← k + 1 and go back to Step 2.

We again emphasize that, provided we continue adding
violated constraints until all the remaining constraints
are satisfied, the final graph G(k) contains G̃ and η̃(k)

is therefore the optimal solution of the original MER
problem in the complete family. Unlike greedy meth-
ods used in combinatorial approaches, our method is
distinguished by the fact that the solution obtained is
optimal with respect to our global MER criterion.

Primal-Dual Method on Thin Chordal Graphs
Lastly, we specify an efficient method to solve the
MER sub-problem arising in Step 2 of the incremental
approach provided the constraint graph G(k) is suf-
ficiently sparse.4 We assume that G(k) has a thin
chordal super-graph Ḡ(k), and solve the MER prob-
lem in the Markov sub-family parameterized by ηḠ(k) .
By embedding the optimization problem in a Markov
family based on a chordal graph, we are able to com-
pute entropy and its derivatives in an efficient man-
ner.5 Moreover, we find that the Fisher information
is sparse in chordal graphs which provides the basis
for efficient implementation of Newton’s method, en-
abling super-linearly convergent methods. Although
we embed the problem in a chordal graph, we still only
impose constraints over G(k), and hence, by the model
thinning property, this embedding does not alter the
MER solution with respect to G(k).

We use the primal-dual interior point method [21],
which solves modified KKT conditions by Newton’s
method to determine an optimal primal-dual pair
(ηḠ(k) , λG(k)) where λG(k) = (λE)E∈G(k) are Lagrange
multipliers. We refer the reader to [21] for details of
the primal-dual algorithm. Here, we only comment on
how we exploit sparsity to obtain an efficient approach.
The key computational step of the algorithm is the so-

4In the conclusion, we propose an extension of our ap-
proach to handle cases where the MER solution has an
intractable graph.

5Note that computing h(ηG) for a non-chordal graph G
is difficult because the moment parameters ηG only im-
plicitly specify the probability distribution. In general,
this would require solution of a variational problem, ei-
ther to determine the corresponding θG or to determine the
maximum-entropy completion to a chordal graph. Hence,
the chordal graph embedding method is a critical element
in our approach to maximum entropy modeling.



lution of a system of linear equations H∆ηḠ(k) = r,
based on the symmetric, positive-definite matrix

H = G+
∑

E∈G(k)

λE

(

GE + 1
δE−dE

bEb
T
E

)

(22)

where G is the Fisher information on the chordal
graph, GE is the marginal Fisher information, dE is
the marginal divergence and bE = Λ−1

E (η) − Λ−1
E (η∗)

is the difference in marginal exponential parameters
on edge E between η and η∗. The matrix G is sparse,
inheriting the sparse structure of the chordal graph
through (19). Furthermore, each additional term in
(22), corresponding to an edge E ∈ Gk ⊂ C(Ḡ(k)), is
non-zero only for those indices u, v ∈ E. Hence, the
fill-pattern of H is the same as for G and we can com-
pute ∆ηḠ(k) = H−1r efficiently using sparse Cholesky
factorization and back-substitution.6 The primal-dual
method also requires computation of ∇h(ηḠ(k)) =
−Λ−1(ηḠ(k)), which is given by a tractable compu-
tation (18). Although we solve for moment param-
eters η̃Ḡ(k) , it is straight-forward to obtain θ̃Ḡ(k) ,

Λ−1(η̃Ḡ(k)), again by (18). Also, due to the model-

thinning effect, the converged value of θ̃Ḡ(k) is zero for
all edges not contained in G(k). In other words, adding
fill edges to obtain a chordal super-graph Ḡ(k) does not
spoil the Markov structure of the MER solution with
respect to G(k).

4 Simulation Results

In this section, we describe the results of simulations
that demonstrate the effectiveness of the MER frame-
work in learning the Markov structure of Boltzmann
and Gaussian models from sample data. The tolerance
parameters used in the MER problem are set in pro-
portion to the number of parameters needed to specify
the marginal distribution as follows:

δE = γ ×

{

|E|+
(

|E|
2

)

, Gaussian
2|E| − 1, Boltzmann

(23)

Here, γ > 0 is an overall regularization parameter
which controls the trade-off between complexity and
accuracy in the resulting MER solution. Our moti-
vation for setting δ proportional to parametric com-
plexity is that, for large sample size, the expectation
of d(η, η∗), where η are the actual moments and η∗

are empirical, is approximately equal to the number
of parameters divided by the number of samples Ns,
which also suggests choosing γ ∼ 1/Ns. In the fol-
lowing examples, we explore the effect of varying γ.

6This approach is O(nw6) and O(n8w) respectively in
the Gaussian and Boltzmann model. Iterative methods
with O(nw3) and O(n2w) complexity per iteration are also
possible and will be presented in a longer paper.

Test Model γ = 0.03125

γ = 0.015625 γ = 0.0019531

Figure 1: Graphs of the Boltzmann test model and
MER of empirical distribution for several values of γ.

In practice, cross-validation methods might prove use-
ful to determine γ that approximately minimizes the
generalization error.

Boltzmann model We generated 1000 samples of
a 10-node Boltzmann model displayed in Fig. 1. This
model includes a pairwise potential (xu−

1
2 )(xv−

1
2 ) for

each pair of vertices that are linked by an edge, which
defines a model with unbiased nodes. The empirical
moments η∗ from these samples were provided as in-
put to MER, where we impose marginal constraints
on all singleton, doublet and triplet sets. Fig. 1 shows
the MER distribution for several values of γ. No-
tice the correspondence between the tolerance level
and the amount of model-thinning. In this case, for
γ = .015625 we recover the correct graphical structure
of the test model.

Gaussian model We describe two sets of experi-
ments for this case. Both simulations were based on
400 samples of test models. In the first experiment,
we generate samples from a 16-node cyclic Gaussian
model with constant node weights Jii = −2θi = 1.0
and edge weights Jij = −θij = −0.1875 between nodes
that are one or two steps away on the circle. Analogous
to the Boltzmann case, Fig. 2 shows the ME relaxation
for various values of γ.

The second experiment for the Gaussian involves a
10× 10 grid-structured model with edge weight Jij =
−θij = −0.24 between nearest neighbors in the grid.
Again, 400 samples were generated based on this
model and the MER problem is solved for a fixed value



γ = 0.5 γ = 0.25

γ = 0.0625 γ = 0.0039062

Figure 2: Graphs of the MER solution for various val-
ues of γ in the Gaussian model.

of γ = 0.08. The initial MER problem is solved with
100 node constraints, and at each successive step, the
50 most violated constraints are added. Fig. 3 demon-
strates this incremental approach.

In this case, directly solving the MER problem in the
complete family (corresponding to the complete graph)
would be computationally prohibitive because the re-
sulting Fisher information is a 10, 000×10, 000 full ma-
trix. Yet, our incremental approach, using a sequence
of thin graphs, solves the MER problem exactly in a
few minutes and recovers the underlying graph with
very few spurious or missing edges.

5 Conclusion

We have presented a convex optimization approach for
learning the graph structure of a collection of random
variables from sample data. Our approach differs from
previous approaches that addressed this problem pri-
marily from the point of view of solving a combinato-
rial optimization problem. Our framework is based on
the sparsity-enforcing characteristic of entropy (with
respect to exponential parameters) that is implicit
in the maximum entropy principle. We also exploit
sparse, tractable computations of the entropy function
and its derivatives on thin chordal graphs in order to
solve the MER problem using a scalable primal-dual
interior point method. We have demonstrated the ef-
fectiveness of our approach with simulation results for
the Gaussian and Boltzmann models.

We envision several directions for future research based

on the concepts presented in this paper. This paper
has been presented primarily from the point of view
of learning a model given an empirical distribution.
However, our approach can also be used for efficient
model-thinning in order to approximate a complex dis-
tribution by a lower-order Markov model. This may
find applications in recently developed approximate in-
ference methods based on the principle of model thin-
ning [5, 22, 23]. In problems involving a large number
of variables, our framework allows for exact solution
of the MER problem only when the solution has a
tractable graphical structure. If the solution is too
complex to compute exactly, it is also of interest to
solve the MER problem approximately using tractable
approximations of the entropy function such as in the
Bethe and Kikuchi approximations, or “convexified”
versions of these [17].

A Möbius Transform

We briefly discuss the role of the Möbius transform
in connecting θ and η parameters in the Boltzmann
model. These formulas, derived for the complete
Boltzmann model, also apply for marginal computa-
tions on cliques and are used to solve MER in thin
chordal graphs.

Here, we take θ, η ∈ R
2n

(adding extra “parame-
ters” η∅ = 1 and θ∅ = −Φ(θ) associated with the
empty set ∅). These vectors are indexed by sub-
sets x ⊂ {1, . . . , n} which may be identified with the
integers x ∈ {0, . . . , 2n − 1} with binary expansion
x = xn . . . x1 where xi = 1 if i is contained in the sub-
set and xi = 0 otherwise. Also, the vector p ∈ R

2n

of probabilities of all possible states x = xn . . . x1 is
indexed similarly.

We define the ω-transform of f ∈ R
2n

by

(Mω
n f)(x) =

∑

y⊆x

ω|x\y|f(y) (24)

where |x \ y| is this number of elements of x that are
not contained in y. The Möbius transform is given by
Mn , M1

n and its inverse by M−1
n . One can show by

induction that

Mω
n =

(

Mω
n−1 0

ωMω
n−1 Mω

n−1

)

(25)

where Mω
0 = 1. Hence, we can implement a “fast” ω-

transform that requires n2n computations rather than
O(22n). Given f = (f1, f2) ∈ R

2n

with f1, f2 ∈ R
2n−1

,
we compute the transform of f recursively as f̃ =
(f̃1, ωf̃1 + f̃2). We also use the “upper” Möbius trans-
formMT

n where the summation is over supersets rather
than subsets.
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Figure 3: Illustration of the incremental approach for identifying the set of active constraints in the MER problem
by solving a sequence of sub-problems defined on sub-graphs of the final solution (far right). Here, dim(G) and
dim(Gc) are the number of nodes plus the number of edges of the constraint graph G and its chordal super-graph
Gc, which respectively determine the dimension of λ and η in each MER sub-problem.

Let φ(x) ∈ R
2n

denote the vector of sufficient statistics
of the Boltzmann model (with φ∅(x) = 1) and define
δ(x) to be x-th standard basis vector. We can show
the following relations: φ(x) = MT

n δ(x), η = MT
n p

and p = exp(Mnθ). From these relations, we obtain
the following conversion formula:

η = MT
n exp(Mnθ) (26)

θ = M−1
n log(M−T

n η) (27)

To obtain the Fisher information matrix, we first com-
pute G(η) , ∂θ

∂η
= M−1

n Diag(1/pη)M−T
n where pη =

M−T
n η. Because this is using an over-parameterized

representation, the Fisher information in the minimal
parameterization (without η∅) is obtained by deleting
the first row and column of G.
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