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Modern massive datasets create a fundamental problem at the
intersection of the computational and statistical sciences: how to
provide guarantees on the quality of statistical inference given
bounds on computational resources, such as time or space. Our
approach to this problem is to define a notion of “algorithmic
weakening,” in which a hierarchy of algorithms is ordered by both
computational efficiency and statistical efficiency, allowing the
growing strength of the data at scale to be traded off against
the need for sophisticated processing. We illustrate this approach
in the setting of denoising problems, using convex relaxation as
the core inferential tool. Hierarchies of convex relaxations have
been widely used in theoretical computer science to yield tractable
approximation algorithms to many computationally intractable tasks.
In the current paper, we show how to endow such hierarchies with
a statistical characterization and thereby obtain concrete tradeoffs
relating algorithmic runtime to amount of data.
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The rapid growth in the size and scope of datasets in science
and technology has created a need for novel foundational

perspectives on data analysis that blend computer science and
statistics. That classical perspectives from these fields are not
adequate to address emerging problems in “Big Data” is ap-
parent from their sharply divergent nature at an elementary level:
In computer science, the growth of the number of data points is
a source of “complexity” that must be tamed via algorithms or
hardware, whereas in statistics, the growth of the number of data
points is a source of “simplicity” in that inferences are generally
stronger and asymptotic results can be invoked. In classical sta-
tistics, where one considers the increase in inferential accuracy as
the number of data points grows, there is little or no consider-
ation of computational complexity. Indeed, if one imposes the
additional constraint, as is prevalent in real-world applications,
that a certain level of inferential accuracy must be achieved within
a limited time budget, classical theory provides no guidance as to
how to design an inferential strategy. [Note that classical statistics
contains a branch known as sequential analysis that does discuss
methods that stop collecting data points after a target error level
has been reached (e.g., ref. 1), but this is different from the com-
putational complexity guarantees (the number of steps that a
computational procedure requires) that are our focus.] In clas-
sical computer science, practical solutions to large-scale prob-
lems are often framed in terms of approximations to idealized
problems; however, even when such approximations are sought,
they are rarely expressed in terms of the coin of the realm of the
theory of inference: the statistical risk function. Thus, there is
little or no consideration of the idea that computation can be
simplified in large datasets because of the enhanced inferential
power in the data. In general, in computer science, datasets are
not viewed formally as a resource on a par with time and space
(such that the more of the resource, the better).
On intuitive grounds, it is not implausible that strategies can be

designed to yield monotonically improving risk as data accumulate,
even in the face of a time budget. In particular, if an algorithm
simply ignores all future data once a time budget is exhausted,
statistical risk will not increase (under various assumptions that
may not be desirable in practical applications). Alternatively, one

might allow linear growth in the time budget (e.g., in a real-time
setting) and attempt to achieve such growth via a subsampling
strategy in which some fraction of the data are dropped. Executing
such a strategy may be difficult, however, in that the appropriate
fraction depends on the risk function, and thus on a mathematical
analysis that may be difficult to carry out. Moreover, subsampling
is a limited strategy for controlling computational complexity.
More generally, one would like to consider some notion of “al-
gorithm weakening,” where as data accumulate, one can back off
to simpler algorithmic strategies that nonetheless achieve a desired
risk. The challenge is to do this in a theoretically sound manner.
We base our approach to this problem on the notion of

a “time-data complexity class.” In particular, we define a class
TD(t(p), n(p), «(p)) of parameter estimation problems in which
a p-dimensional parameter underlying an unknown population
can be estimated with a risk of «(p), given n(p) independent
and identically distributed (i.i.d.) samples using an inference
procedure with runtime t(p). Our definition parallels the defi-
nition of the time-space (TISP) complexity class in computa-
tional complexity theory for describing algorithmic tradeoffs
between time and space resources (2). In this formalization,
classical results in estimation theory can be viewed as emphasizing
the tradeoffs between the second and third parameters (amount of
data and risk). Our focus in this paper is to fix «(p) to some desired
level of accuracy and to investigate the tradeoffs between the first
two parameters, namely, runtime and dataset size.
Although classical statistics gave little consideration to compu-

tational complexity, computational issues have come increasingly
to the fore in modern “high-dimensional statistics” (3), where the
number of parameters p is relatively large and the number of
data points n is relatively small. In this setting, methods based on
convex optimization have been emphasized (particularly methods
based on ℓ1 penalties). This is due, in part, to the favorable ana-
lytical properties of convex functions and convex sets, but also to
the fact that such methods tend to have favorable computational
scaling. However, the treatment of computation has remained in-
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formal, with little attempt to characterize tradeoffs between com-
putation time and estimation quality. In our work, we aim explicitly
at such tradeoffs in the setting in which both n and p are large.
To develop a notion of algorithm weakening that combines

computational and statistical considerations, we consider estima-
tion procedures for which we can characterize the computational
benefits as well as the loss in estimation performance due to the
use of weaker algorithms. Reflecting the fact that the space of all
algorithms is poorly understood, we retain the focus on convex
optimization from high-dimensional statistics, but we consider
parameterized hierarchies of optimization procedures in which
a form of algorithm weakening is obtained by using successively
weaker outer approximations to convex sets. Such convex relaxations
have been widely used to give efficient approximation algorithms
for intractable problems in computer science (4). As we will
discuss, a precise characterization of both the estimation per-
formance and the computational complexity of using a particular
relaxation of a convex set can be obtained by appealing to convex
geometry and to results on the complexity of solving convex pro-
grams. Specifically, the tighter relaxations in these families offer
better approximation quality (and better estimation performance in
our context) but are computationally more complex. On the other
hand, the weaker relaxations are computationally more tractable
and can provide the same estimation performance as the tighter
ones but with access to more data. In this manner, convex relax-
ations provide a principled mechanism to weaken inference algo-
rithms so as to reduce the runtime in processing larger datasets.
To demonstrate explicit tradeoffs in high-dimensional, large-

scale inference, we focus, for simplicity and concreteness, on
estimation in sequence models (5):

y ¼ x* þ σz; [1]

where σ > 0, the noise vector z ∈ Rp is standard normal, and the
unknown parameter x* belongs to a known subset S ⊂ Rp. The
objective is to estimate x* based on n independent observations
fyigni¼1 of y. This denoising setup has a long history and has been
at the center of some remarkable results in the high-dimensional
setting over the past two decades, beginning with the papers of
Donoho and Johnstone (6, 7). The estimators discussed next
proceed by first computing the sample mean y ¼ ∑n

i¼1yi and then
using y as input to a suitable convex program. Of course, this is
equivalent to a denoising problem in which the noise variance is
σ2/n, and we are given just one sample. The reason why we
consider the elaborate two-step procedure is to account more
accurately both for data aggregation and for subsequent process-
ing in our runtime calculations. Indeed, in a real-world setting,
one is typically faced with a massive dataset in unaggregated form,
and when both p and n may be large, summarizing the data before
any further processing can itself be an expensive computation. As
will be seen in concrete calculations of time-data tradeoffs, the
number of operations corresponding to data aggregation is some-
times comparable to or even larger than the number of operations
required for subsequent processing in a massive data setting.
To estimate x*, we consider the following natural shrinkage

estimator given by a projection of the sample mean y onto a
convex set C that is an outer approximation to S (i.e., S ⊂ C):

x̂nðCÞ ¼ arg min
x∈Rp

1
2

��y− x
��2
ℓ2
 s:t: x∈ C: [2]

We study the estimation performance of a family of shrinkage
estimators fx̂nðCiÞg that use as the convex constraint one of a se-
quence of convex outer approximations {Ci} with C1 ⊃ C2 ⊃ . . . ⊃ S.
Given the same number of samples, using a weaker relaxation,
such as C1, leads to an estimator with a larger risk than would
result from using a tighter relaxation, such as C2. On the other hand,
given access to more data samples, the weaker approximations
provide the same estimation guarantees as the tighter ones. In
settings in which computing a weaker approximation is more

tractable than computing a tighter one, a natural computation/
sample tradeoff arises. We characterize this tradeoff in a number
of stylized examples, motivated by problems such as collaborative
filtering, learning an ordering of a collection of random variables,
and inference in networks.
More broadly, this paper highlights the role of computation in

estimation by jointly studying both the computational and statis-
tical aspects of high-dimensional inference. Such an understanding
is particularly of interest in modern inferential tasks in data-rich
settings. Furthermore, an observation from our examples on time-
data tradeoffs is that, in many contexts, one does not need too
many extra data samples to go from a computationally inefficient
estimator based on a tight relaxation to an extremely efficient es-
timator based on a weaker relaxation. Consequently, in application
domains in which obtaining more data is not too expensive, it may
be preferable to acquire more data, with the upshot being that the
computational infrastructure can be relatively less sophisticated.
We should note that we investigate only one algorithm-

weakening mechanism, namely, convex relaxation, and one class
of statistical estimation problems, namely, denoising in a high-
dimensional sequence model. There is reason to believe, how-
ever, that the principles described in this paper are relevant more
generally. Convex optimization-based procedures are used in a
variety of large-scale data analysis tasks (3, 8), and it is likely to
be interesting to explore hierarchies of convex relaxations in such
tasks. In addition, there are a number of potentially interesting
mechanisms beyond convex relaxation for weakening inference
procedures, such as dimensionality reduction or other forms of
data quantization and approaches based on clustering or coresets.
We discuss these and other research directions in Conclusions.

Related Work
A number of papers have considered computational and sample
complexity tradeoffs in the setting of learning binary classifiers.
Specifically, several authors have described settings under which
speedups in running time of a classifier learning algorithm are
possible, given a substantial increase in dataset size (9–12). In
contrast, in the denoising setup considered in this paper, several
of our examples of time-data tradeoffs demonstrate significant
computational speedups with just a constant factor increase in
dataset size. Another attempt in the binary classifier learning
setting, building on earlier work on classifier learning in data-rich
problems (13), has shown that modest improvements in runtime
(of constant factors) may be possible with access to more data by
using the stochastic gradient descent method (14). Time-data
tradeoffs have also been characterized in Boolean network training
from time series data (15), but the computational speedups offered
there are from exponential-time algorithms to slightly faster but
still exponential-time algorithms. Two recent papers (16, 17) have
considered time-data tradeoffs in sparse principal component
analysis (PCA) (18) and in biclustering, in which one wishes to
estimate the support of a sparse eigenvector that consists of most
of the energy of a matrix. We also study time-data tradeoffs for
this problem, but from a denoising perspective rather than from
one of estimating the support of the leading sparse eigenvector.
In our discussion of Example 3 (Time-Data Tradeoffs), we discuss
the differences between our problem setup and these latter two
papers (16, 17). Finally, a recent paper (19) studies time-data
tradeoffs in model selection problems by investigating proce-
dures that operate within a computational budget. As a general
contrast to all these previous results, a major contribution of the
present paper is the demonstration of the efficacy of convex
relaxation as a powerful algorithm-weakening mechanism for
processing massive datasets in a broad range of settings.

Paper Outline
The main sections of this paper proceed in the following sequence.
The next section describes a framework for formally stating results
on time-data tradeoffs. We then provide some background on
convex optimization and relaxations of convex sets. Following
this, we investigate in detail the denoising problem [1] and char-
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acterize the risk obtained when one employs a convex programming
estimator of the type [2]. Subsequently, we give several examples
of time-data tradeoffs in concrete denoising problems. Finally,
we conclude with a discussion of directions for further research.

Formally Stating Time-Data Tradeoffs
In this section, we describe a framework to state results on com-
putational and statistical tradeoffs in estimation. Our discussion
is relevant to general parameter estimation problems and in-
ference procedures; one may keep in mind the denoising problem
[1] for concreteness. Consider a sequence of estimation problems
indexed by the dimension p of the parameter to be estimated.
Fix a risk function «(p) that specifies the desired error of an
estimator. For example, in the denoising problem [1], the error
of an estimator of the form [2] may be specified as the worst case
mean squared error taken over all elements of the set S (i.e.,
supx*∈SE½kx*−x̂nðCÞk2ℓ2 �).
One can informally view an estimation algorithm that achieves

a risk of «(p) by processing n(p) samples with runtime t(p) as a
point on a 2D plot as shown in Fig. 1, with one axis representing
the runtime and the other representing the sample complexity.
To be precise, the axes in the plot index functions (of p) that
represent runtime and number of samples, but we do not empha-
size such formalities and rather use these plots to provide a
useful qualitative comparison of inference algorithms. In Fig. 1,
procedure A requires fewer samples than procedure C to achieve
the same error, but this reduction in sample complexity comes at
the expense of a larger runtime. Procedure B has both a larger
sample complexity and a larger runtime than procedure C; thus,
it is strictly dominated by procedure C.
Given an error function «(p), there is a lower bound on the

number of samples n(p) required to achieve this error using any
computational procedure [i.e., no constraints on t(p)]; such
information-theoretic or minimax risk lower bounds correspond to
“vertical lines” in the plot in Fig. 1. Characterizing these fun-
damental limits on sample complexity has been a traditional
focus in the estimation theory literature, with a fairly complete
set of results available in many settings. One can imagine asking
for similar lower bounds on the computational side, corresponding
to “horizontal lines” in the plot in Fig. 1: Given a desired risk «(p)
and access to an unbounded number of samples, what is a non-
trivial lower bound on the runtime t(p) of any inference algorithm
that achieves a risk of «(p)? Such complexity-theoretic lower
bounds are significantly harder to obtain, and they remain a central
open problem in computational complexity theory.

This research landscape informs the qualitative nature of the
statements on time-data tradeoffs we make in this paper. First,
we will not attempt to prove combined lower bounds, as is tra-
ditionally done in the characterization of tradeoffs between
physical quantities, involving n(p) and t(p) jointly; this is because
obtaining a lower bound just on t(p) remains a substantial chal-
lenge. Hence, our time-data tradeoff results on the use of more
efficient algorithms for larger datasets refer to a reduction in the
upper bounds on runtimes of estimation procedures with increases
in dataset size. Second, in any setting in which there is a compu-
tational cost associated with touching each data sample and in
which the samples are exchangeable, there is a sample threshold
beyond which it is computationally more efficient to throw away
excess data samples than to process them in any form. This ob-
servation suggests that there is a “floor,” as in Fig. 1 with proce-
dures E, F, G, and H, beyond which additional data do not lead
to a reduction in runtime. Precisely characterizing this sample
threshold is generally very hard because it depends on difficult-
to-obtain computational lower bounds for estimation tasks as well
as on the particular space of estimation algorithms that one may
use. We will comment further on this point when we consider
concrete examples of time-data tradeoffs.
To state our results concerning time-data tradeoffs formally,

we define a resource class constrained by runtime and sample
complexity as follows.

Definition 1: Consider a sequence of parameter estimation
problems indexed by the dimension p of the space of parameters
that index an underlying population. This sequence of estima-
tion problems belongs to a time-data class TD(t(p), n(p), «(p)) if
there exists an inference procedure for the sequence of problems
with runtime upper-bounded by t(p), with the number of i.i.d.
samples processed bounded by n(p), and which achieves a risk
bounded by «(p).
We note that our definition of a time-data resource class par-

allels the time-space resource classes considered in complexity
theory (2). In that literature, TISP(t(p), s(p)) denotes a class of
problems of input size p that can be solved by some algorithm
using t(p) operations and s(p) units of space.
With this formalism, classical minimax bounds can be stated as

follows. Given some function nðpÞ for the number of samples,
suppose a parameter estimation problem has a minimax risk of
«minimax(p) [which depends on the function nðpÞ]. If an estimator
achieving a risk of «minimax(p) is computable with runtime tðpÞ,
this estimation problem then lies in TDðtðpÞ; nðpÞ; eminimaxðpÞÞ.
Thus, the emphasis is fundamentally on the relationship between
nðpÞ and «minimax(p), without much focus on the computational
procedure that achieves the minimax risk bound. Our interest in
this paper is to fix the risk «(p) = «desired(p) to be equal to some
desired level of accuracy and to investigate the tradeoffs between
t(p) and n(p) so that a parameter estimation problem lies in
TD(t(p), n(p), «desired(p)).

Convex Relaxation
In this section, we describe the particular algorithmic toolbox
on which we focus, namely, convex programs. Convex optimi-
zation methods offer a powerful framework for statistical in-
ference due to the broad class of estimators that can be effectively
modeled as convex programs. Furthermore, the theory of convex
analysis is useful both for characterizing the statistical properties
of convex programming-based estimators and for developing
methods to compute such estimators efficiently. Most impor-
tantly from our viewpoint, convex optimization methods provide
a principled and general framework for algorithm weakening
based on relaxations of convex sets. We briefly discuss the key
ideas from this literature that are relevant to this paper in this
section. A central notion to the geometric viewpoint adopted in
this section is that of a convex cone, which is a convex set that is
closed under nonnegative linear combinations.

Representation of Convex Sets.Convex programs refer to a class of
optimization problems in which we seek to minimize a convex

Fig. 1. Tradeoff between the runtime and sample complexity in a stylized
parameter estimation problem. Here, the risk is assumed to be fixed to some
desired level, and the points in the plot refer to different algorithms that
require a certain runtime and a certain number of samples to achieve the
desired risk. The vertical and horizontal lines refer to lower bounds in sample
complexity and in runtime, respectively.
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function over a convex constraint set (8). For example, linear
programming (LP) and semidefinite programming (SDP) are two
prominent subclasses in which linear functions are minimized over
constraint sets given by affine spaces intersecting the nonnegative
orthant (in LP) and the positive semidefinite cone (in SDP).
Roughly speaking, convex programs are tractable to solve com-
putationally if the convex objective function can be computed
efficiently and if membership of an arbitrary point in the convex
constraint sets can be certified efficiently; we will informally refer
to this latter operation as computing the convex constraint set.
(More precisely, one requires an efficient separation oracle that
responds YES if the point is in the convex set and otherwise
provides a hyperplane that separates the point from the convex
set). It is then clear that the main computational bottleneck
associated with solving convex programs of the form [2] is the
efficiency of computing the constraint sets.
A central insight from the literature on convex optimization is

that the complexity of computing a convex set is closely linked to
how efficiently the set can be represented. Specifically, if a convex
set can be expressed as the intersection of a small number of
“basic” or “elementary” convex sets, each of which is tractable to
compute, the original convex set is then also tractable to compute,
and one can, in turn, optimize over this set efficiently. Examples
of basic convex sets include affine spaces or cones, such as the
nonnegative orthant and the cone of positive semidefinite ma-
trices. Indeed, a canonical method with which to represent a convex
set is to express the set as the intersection of a cone and an affine
space. In what follows, we will consider such conic representations
of convex sets in Rp.

Definition 2: Let C ∈ R p be a convex set, and let K ∈ R p be
a convex cone. C is then said to be K-representable if C can be
expressed as follows for A ∈ Rm×p, b ∈ Rm:

C ¼ fxjx∈K; Ax ¼ bg: [3]

Such a representation of C is called a K -representation.
Informally, if K is the nonnegative orthant (or the semidefinite

cone), we will refer to the resulting representations as LP
representations (or SDP representations), following commonly
used terminology in the literature. A virtue of conic repre-
sentations of convex sets based on the orthant or the semidefinite
cone is that these representations lead to a numerical recipe for
solving convex optimization problems of the form [2] via a natural
associated barrier penalty (20). The computational complexity of
these procedures is polynomial in the dimension of the cone, and
we discuss runtimes for specific instances in our discussion of
concrete examples of time-data tradeoffs.

Example 1: The p-dimensional simplex is an example of an LP
representable set:

Δp ¼ fxj1′x ¼ 1; x≥ 0g; [4]

where 1 ∈ R p is the all-ones vector.
The p-simplex is the set of probability vectors in Rp. The next

example is one of an SDP-representable set that is commonly
encountered both in optimization and in statistics.

Example 2: The elliptope, or the set of correlation matrices, in
the space of m × m symmetrical matrices is defined as follows:

Em×m ¼ fXjX� 0;Xii ¼ 1 ∀ig: [5]

Conic representations are somewhat limited in their modeling
capacity, and an important generalization is obtained by con-
sidering lifted representations. In particular, the notion of lift-
and-project plays a critical role in many examples of efficient
representations of convex sets. The lift-and-project concept is
simple: We wish to express a convex set C ∈ Rp as the projection
of a convex set C′ ∈ Rp′ in some higher dimensional space (i.e.,
p′ > p). The complexity of solving the associated convex pro-
grams is now a function of the lifting dimension p′. Thus, lift-
and-project techniques are useful if p′ is not too much larger
than p and if C′ has an efficient representation in the higher

dimensional space Rp′. Lift-and-project provides a very powerful
representation tool, as seen in the following example.

Example 3: The cross-polytope is the unit ball of the ℓ1-norm:

Bp
ℓ1 ¼

�
x∈Rp

��∑
i
jxij≤ 1

�
:

The ℓ1-norm has been the focus of much attention recently
in statistical model selection and feature selection due to its
sparsity-inducing properties (21, 22). Although the cross-polytope
has 2p vertices, a direct specification in terms of linear constraints
involves 2p inequalities:

Bp
ℓ1 ¼

�
x∈Rp

��∑
i
zi xi ≤ 1; ∀z∈f− 1;þ1gp�:

However, we can obtain a tractable representation by lifting
to R 2p and then projecting onto the first p coordinates:

Bp
ℓ1 ¼

�
x∈Rpj ∃z∈Rp s:t: − zi ≤ xi ≤ zi ∀i;∑

i
zi ≤ 1

�
:

Note that in R 2p with the additional variables z, we have only
2p+1 inequalities.
Another example of a polytope that requires many inequalities

in a direct description is the permutahedron (23), the convex hull
of all the permutations of the vector [1,. . ., p]′ ∈ Rp. In fact, the
permutahedron requires exponentially many linear inequalities
in a direct description, whereas a lifted representation involves
O(p log(p)) additional variables and aboutO(p log(p)) inequalities
in the higher dimensional space (24). We refer the reader to the
literature on conic representations for other examples (ref. 25 and
references therein), including lifted semidefinite representations.

Hierarchies of Convex Relaxations. In many cases of interest, convex
sets may not have tractable representations. Lifted representations
in such cases have lifting dimensions that are superpolynomially
large in the dimension of the original convex set; thus, the asso-
ciated numerical techniques lead to intractable computational
procedures that have superpolynomial runtime with respect to the
dimension of the original set. A prominent example of a convex
set that is difficult to compute is the cut polytope:

CUTm×m ¼ convfmm′jm∈f− 1;þ1gmg: [6]

Rank-one signed matrices and their convex combinations are
of interest in collaborative filtering and clustering problems
(see Time-Data Tradeoffs). There is no known tractable repre-
sentation of the cut polytope; lifted linear or semidefinite repre-
sentations have lifting dimensions that are superpolynomial in
size. Such computational issues have led to a large literature on
approximating intractable convex sets by tractable ones. For the
purposes of this paper, and following the dominant trend in
the literature, we focus on outer approximations. For example,
the elliptope [5] is an outer relaxation of the cut polytope, and
it has been used in approximation algorithms for intractable
combinatorial optimization problems, such as finding the maximum-
weight cut in a graph (26). More generally, one can imagine a
hierarchy of increasingly tighter approximations {Ci} of a convex
set C as follows:

C⊆⋯⊆ C3 ⊆ C2 ⊆ C1:
There exist several mechanisms for deriving such hierarchies,

and we describe three frameworks here.
In the first framework, which was developed by Sherali and

Adams (27), the set C is assumed to be polyhedral and each
element of the family {Ci} is also polyhedral. Specifically, each
Ci is expressed via a lifted LP representation. Tighter approx-
imations are obtained by resorting to larger sized lifts such that
the lifting dimension increases with the level i in the hierarchy.
The second framework is similar in spirit to the first one, but
the set C is now a convex basic, closed semialgebraic set and the
approximations {Ci} are given by lifted SDP representations. [A
basic, closed semialgebraic set is the collection of solutions of a
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system of polynomial equations and polynomial inequalities (28).]
Again, the lifting dimension increases with the level i in the hier-
archy. This method was initially pioneered by Parrilo (29, 30) and by
Lasserre (31), and it was studied in greater detail subsequently by
Gouveia et al. (32). Both of these first and second frameworks are
similar in spirit in that tighter approximations are obtained via lifted
representations with successively larger lifting dimensions. The
third framework that we mention here is qualitatively different from
the first two. Suppose C is a convex set that has a K-representation;
by successively weakening the coneK itself, one obtains increasingly
weaker approximations to C. Specifically, we consider the setting in
which the cone K is a hyperbolicity cone (33). Such cones have rich
geometric and algebraic structure, and their boundary is given in
terms of the vanishing of hyperbolic polynomials. They include the
orthant and the semidefinite cone as special cases. We do not go
into further technical details and formal definitions of these cones
here; instead, we refer the interested reader to the work of Renegar
(33). The main idea is that one can obtain a family of relaxations
{Ki} to a hyperbolicity cone K ⊆ Rp, where each Ki is a convex
cone (in fact, hyperbolic) and is a subset of Rp:

K⊆⋯⊆K3 ⊆K2 ⊆K1: [7]

These outer conic approximations are obtained by taking
certain derivatives of the hyperbolic polynomial used to define
the original cone K (more details are provided in ref. 33). One
then constructs a hierarchy of approximations {Ci} to C by
replacing the cone K in the representation of C by the family of
conic approximations {Ki}. From 3 and 7, it is clear that the
approximations {Ci} so defined satisfy C ⊆ . . . ⊆ C3 ⊆ C2 ⊆ C1.
The important point in these three frameworks is that the family

of approximations {Ci} obtained in each case is ordered both by
approximation quality and by computational complexity; that is, the
weaker approximations in the hierarchy are also the ones that are
more tractable to compute. This observation leads to an algorithm-
weakening mechanism that is useful for processing larger datasets
more coarsely. As demonstrated concretely in the next section, the
estimator [2] based on a weaker approximation to C can provide
the same statistical performance as one based on a stronger ap-
proximation to C, provided that the former estimator is evaluated
with more data. The upshot is that the first estimator is more
tractable to compute than the second. Thus, we obtain a technique
for reducing the runtime required to process a larger dataset.

Estimation via Convex Optimization
In this section, we investigate the statistical properties of the
estimator [2] for the denoising problem [1]. The signal set S in 1
differs based on the application of interest. For example, S may
be the set of sparse vectors in a fixed basis, which could correspond
to the problem of denoising sparse vectors in wavelet bases (6).
The signal set S may be the set of low-rank matrices, which leads to
problems of collaborative filtering (34). Finally, S may be a set of
permutation matrices corresponding to rankings over a collection
of items. Our analysis in this section is general, and it is applicable
to these and other settings (concrete examples are provided in
Time-Data Tradeoffs). In some denoising problems, one is interested
in noise models other than Gaussian. We comment on the per-
formance of the estimator [2] in settings with non-Gaussian noise,
although we primarily focus on the Gaussian case for simplicity.

Convex Programming Estimators.To analyze the performance of the
estimator [2], we introduce a few concepts from convex analysis
(35). Given a closed convex set C ∈ Rp and a point a ∈ C, we
define the tangent cone at a with respect to C as

TCðaÞ ¼ conefb− ajb∈ Cg: [8]

Here, cone(·) refers to the conic hull of a set obtained by
taking nonnegative linear combinations of elements of the set.
The cone TC(a) is the set of directions to points in C from the
point a. The polar K* ⊆ Rp of a cone K ⊆ Rp is the cone

K* ¼ fh∈Rpjhh; di≤ 0∀ d∈Kg:
The normal cone NC(a) at a with respect to the convex set C is

the polar cone of the tangent cone TC(a):

NCðaÞ ¼ TCðaÞ* : [9]

Thus, the normal cone consists of vectors that form an obtuse
angle with every vector in the tangent cone TC(x). Both the
tangent and normal cones are convex cones.
A key quantity that will appear in our error bounds is the

following notion of the complexity or “size” of a tangent cone.
Definition 3: The Gaussian squared-complexity of a set D ∈ Rp

is defined as:

gðDÞ ¼ E
�
sup
a∈D

ha; gi2
�
;

where the expectation is with respect to g ∼ N (0, Ip×p).
This quantity is closely related to the Gaussian complexity of

a set (36, 37), which consists of no squaring of the term inside
the expectation. The Gaussian squared-complexity shares many
properties in common with the Gaussian complexity, and we
describe those that are relevant to this paper in the next sub-
section. Specifically, we discuss methods to estimate this quantity
for sets D that have some structure.
With these definitions and letting Bp

ℓ2 denote the ℓ2 ball in Rp,
we have the following result on the error between x̂nðCÞ and x*.
Proposition 4.
For x* ∈ S ⊂ Rp and with C ⊆ Rp convex such that S ⊆ C, we

have the error bound

E
���x*− x̂nðCÞ

��2
ℓ2

�
≤
σ2

n
g
�
TCðx* Þ∩Bp

ℓ2

	
:

Proof: We have that y ¼ x* þ σffiffi
n

p z. We begin by establishing a
bound that is derived by conditioning on z ¼ ~z. Subsequently,
taking expectations concludes the proof. We have from the
optimality conditions (35) of the convex program [2] that

x* þ σ

n
~z− x̂nðCÞjz¼~z ∈NC

�
x̂nðCÞjz¼~z

�
:

Here, x̂nðCÞjz¼~z represents the optimal value of [2] conditioned
on z ¼ ~z. Because x* ∈ S ⊆ C, we have that x* − x̂nðCÞjz¼~z
∈TCðx̂nðCÞjz¼~zÞ. Because the normal and tangent cones are
polar to each other, we have thatD

x* þ σffiffiffi
n

p ~z− x̂nðCÞjz¼~z; x* − x̂nðCÞjz¼~z
E
≤ 0:

It then follows that

��x*− x̂nðCÞjz¼~z
��2
ℓ2
≤

σffiffiffi
n

p 
x̂nðCÞjz¼~z − x* ;~z

�

¼ σffiffiffi
n

p ��x̂nðCÞjz¼~z − x*
��
ℓ2

*
x̂nðCÞjz¼~z − x*��x̂nðCÞjz¼~z − x*

��
ℓ2

;~z

+

≤
σffiffiffi
n

p ��x̂nðCÞjz¼~z − x*
��
ℓ2

�
sup

d∈TCðx*Þ;kdkℓ2≤1


d;~z

��
:

Dividing both sides by kx̂nðCÞjz¼~z−x*kℓ2 , squaring both sides,
and finally taking expectations completes the proof. □
Note that the basic structure of the error bound provided by

the estimator [2] in fact holds for an arbitrary distribution on the
noise z with the Gaussian squared-complexity suitably modified.
However, we focus for the rest of this paper on the Gaussian
case, z ∼ N (0, Ip×p).
To summarize in words, the mean squared error is bounded by

the noise variance times the Gaussian squared-complexity of the
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normalized tangent cone with respect to C at the true parameter
x*. Essentially, it measures the amount of noise restricted to the
tangent cone, which is intuitively reasonable because only the
noise that moves one away from x* in a feasible direction in C
must contribute toward the error. Therefore, if the convex con-
straint set C is “sharp” at x* so that the cone TC(x*) is “narrow,”
the error is then small. At the other extreme, if the constraint set
C = Rp, the error is then σ2

n p as one would expect.
Although Proposition 4 is useful and indeed will suffice for the

purposes of demonstrating time-data tradeoffs in the next section,
there are a couple of shortcomings in the result as stated. First,
suppose the signal set S is contained in a ball around the
origin, with the radius of the ball being small relative to the
noise variance σ2

n . In such a setting, the estimator x̂ ¼ 0 leads to a
smaller mean squared error than one would obtain from Prop-
osition 4. Second, and somewhat more subtly, suppose that one
does not have a perfect bound on the size of the signal set. For
concreteness, consider a setting in which S is a set of sparse
vectors with bounded ℓ1 norm, in which case a good choice for
the constraint set C in the estimator [1] is an appropriately scaled
ℓ1 ball. However, if we do not know the ℓ1 norm of x* a priori, we
may then end up using a constraint set C such that x* does not
belong to C (hence, x* is an infeasible solution) or such that x*
lies strictly in the interior of C [hence, TC(x*) is all of Rp]. Both
these situations are undesirable because they limit the applica-
bility of Proposition 4 and provide very loose error bounds. The
following result addresses these shortcomings by weakening the
assumptions of Proposition 4.
Proposition 5.
Let x* ∈ S ⊂ R p, and let C ⊆ R p be a convex set. Suppose there

exists a point ~x∈ C such that C− ~x ¼ Q1⊕Q2, with Q1, Q2 lying
in orthogonal subspaces of Rp and Q2 ⊆ αBp

ℓ2 for α ≥ 0. We then
have that

E
���x*− x̂nðCÞ

��2
ℓ2

�
≤ 6

�
σ2

n
g
�
coneðQ1Þ∩Bp

ℓ2

	þ ��x*− ~x
��2
ℓ2
þ α2

�
:

Here, cone(Q1) is the conic hull of Q1.
The proof of this result is presented in SI Appendix. A number

of remarks are in order here. With respect to the first short-
coming in Proposition 4 stated above, if C is chosen such that
S ⊂ C, one can set ~x ¼ x* ;Q1 ¼ 0 and Q2 ¼ C−~x in Proposition 5
and can readily obtain a bound that scales only with the diameter
of the convex constraint set C. With regard to the second short-
coming in Proposition 4 described above, if a point ~x∈ C near x*
has a narrow tangent cone TCð~xÞ, one can then provide an error
bound with respect to gðTCð~xÞÞ with an extra additive term that
depends on kx*−~xk2ℓ2 ; this is done by setting Q1 ¼ C− ~x and
Q2 = 0 (thus, α = 0) in Proposition 5. More generally, Proposition 5
incorporates both of these improvements in a single error bound
with respect to an arbitrary point ~x∈ C; thus, one can further
optimize the error bound over the choice of ~x∈ C (as well as the
choice of the decomposition Q1 and Q2).

Properties and Computation of Gaussian Squared-Complexity. We
record some properties of the Gaussian squared-complexity that
are subsequently useful when we demonstrate concrete time-data
tradeoffs. It is clear that g(·) is monotonic with respect to set
nesting [i.e., g(D1) ≤ g(D2) for sets D1 ⊆ D2]. If D is a subspace,
one can then check that g(D) = dim(D). To estimate squared-
complexities of families of cones, one can imagine appealing to
techniques similar to those used for estimating Gaussian com-
plexities of sets (36, 37). Most prominent among these are argu-
ments based on covering number and metric entropy bounds.
However, these arguments are frequently not sharp and introduce
extraneous log-factors in the resulting error bounds.
In a recent paper by Chandrasekaran et al. (38), sharp upper

bounds on the Gaussian complexities of normalized cones have
been established for families of cones of interest in a class of
linear inverse problems. The (square of the) Gaussian complexity

can be upper-bounded by the Gaussian squared-complexity g(D)
via Jensen’s inequality:

E
�
sup
d∈D

hd; gi
�2
≤ gðDÞ;

where g is a standard normal vector. In fact, most of the bounds in
the paper by Chandrasekaran et al. (38) were obtained by bounding
g(D); thus, they are directly relevant to our setting. In the rest of
this section, we present the bounds on g(D) from the paper by
Chandrasekaran et al. (38) that will be used in this paper, de-
ferring to that paper for proofs in most cases. In some cases, the
proofs do require modifications with respect to their counterparts
in the paper by Chandrasekaran et al. (38), and for these cases,
we give full proofs in SI Appendix.
The first result, proved in (38), is a direct consequence of

convex duality and provides a fruitful general technique to
compute sharp estimates of Gaussian squared-complexities. Let
dist(a, D) denote the ℓ2 distance from a point a to the set D.
Lemma 1.
Let K ⊆ Rp be a convex cone, and let K* ⊆ Rp be its polar. We

then have for any a ∈ Rp that

sup
d∈K∩Bp

ℓ2

hd; ai ¼ distða;K* Þ:

Therefore, we have the following result as a simple corollary.
Corollary 6.
Let K ⊆ Rp be a convex cone, and let K* ⊆ Rp be its polar. For

g ∼ N (0, Ip×p), we have that

g
�K∩Bp

ℓ2

	 ¼ E
h
distðg;K* Þ2

i
:

Based on the duality result of Lemma 1 and Corollary 6, one
can compute the following sharp bounds on the Gaussian squared-
complexities of tangent cones with respect to the ℓ1 norm and
nuclear norm balls. These are especially relevant when one wishes
to estimate sparse signals or low-rank matrices; in these settings,
the ℓ1 and nuclear norm balls serve as useful constraint sets for
denoising because the tangent cones with respect to these sets at
sparse vectors and at low-rank matrices are particularly narrow.
Both of these results, proved in (38), are used when we describe
time-data tradeoffs.
Proposition 7.
Let x ∈ R p be a vector containing s nonzero entries. Let T be the

tangent cone at x with respect to an ℓ1 norm ball scaled so that x lies
on the boundary of the ball (i.e., a scaling of the unit ℓ1 norm ball
by a factor kxkℓ1 ). Then,

g
�
T ∩Bp

ℓ2

	
≤ 2s log

�p
s

�
þ 5
4
s:

Next, we state a result, proved in (38), for low-rank matrices
and the nuclear norm ball.
Proposition 8.
Let X∈Rm1 ×m2 be a matrix of rank r. Let T be the tangent cone

at X with respect to a nuclear norm ball scaled so that X lies on the
boundary of the ball (i.e., a scaling of the unit nuclear norm ball by
a factor equal to the nuclear norm of X). Then,

g
�
T ∩Bm1m2

ℓ2

	
≤ 3rðm1 þm2 − rÞ:

Next, we state and prove a result that allows us to estimate
Gaussian squared-complexities of general cones. The bound is
based on the volume of the dual of the cone of interest, and the
proof involves an appeal to Gaussian isoperimetry (39). A similar
result on Gaussian complexities of cones (without the square)
was proved by Chandrasekaran et al. (38), but that result does
not directly imply our statement, and we therefore give a com-
plete self-contained proof in SI Appendix. The volume of a cone
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is assumed to be normalized (between 0 and 1); thus, we consider
the relative fraction of a unit Euclidean sphere that is covered by
a cone.
Proposition 9.
Let K ⊂ Rp be a cone such that its polar K* ⊂ Rp has a normalized

volume of μ∈
�
1
4expf− p=20g; 1

4e2

�
. For p ≥ 12, we have that

g
�K∩Bp

ℓ2

	
≤ 20 log

�
1
4μ

�
:

If a cone is narrow, its polar will then be wide, leading to a
large value of μ, and hence a small quantity on the right-hand side
of the bound. This result leads to bounds on Gaussian squared-
complexity in settings in which one can easily obtain estimates of
volumes. One setting in which such estimates are easily obtained
is the case of tangent cones with respect to vertex transitive
polytopes. We recall that a vertex transitive polytope (23) is one
in which there exists a symmetry of the polytope for each pair of
vertices mapping the two vertices isomorphically to each other.
Roughly speaking, all the vertices in such polytopes are the same.
Some examples include the cross-polytope (the ℓ1 norm ball), the
simplex [4], the hypercube (the ℓ∞ norm ball), and many poly-
topes generated by the action of groups (40). We will see many
examples of such polytopes in our examples on time-data tradeoffs;
thus, we will appeal to the following corollary repeatedly.
Corollary 10.
Suppose that P ∈ Rp is a vertex transitive polytope with v vertices,

and let x be a vertex of this polytope. If 4e2 ≤ v ≤ 4 exp{p/20},

gðTPðxÞÞ≤ 20 log ðv=4Þ:
Proof: The normal cones at the vertices of P partition Rp. If the

polytope is vertex-transitive, the normal cones are then all equiva-
lent to each other (up to orthogonal transformations). Con-
sequently, the (normalized) volume of the normal cone at any
vertex is 1/v. Because the normal cone at a vertex is polar to the
tangent cone, we have the desired result from Proposition 9. □

Time-Data Tradeoffs
Preliminaries. We now turn our attention to giving examples of
time-data tradeoffs in denoising problems via convex relaxation.
As described previously, we must set a desired risk to realize a
time-data tradeoff; in the examples in the rest of this section,
we will fix the desired risk to be equal to 1 independent of the
problem dimension p. Thus, these denoising problems belong to
the time-data complexity classes TD (t(p), n(p), 1) for different
runtime constraints t(p) and sample budgets n(p). The fol-
lowing corollary gives the number of samples required to obtain
a mean squared error of 1 via convex optimization in our
denoising setup. (In each of our time-data tradeoff examples,
the signal sets S and the associated convex relaxations are
“symmetric” so that no point in S is distinguished; therefore,
without loss of generality, we compute the risk by considering the
mean squared error at an arbitrary point in S rather than taking
a supremum over x* ∈ S.)
Corollary 11.
For x* ∈ S and with S ⊆ C for a closed, convex set C, if

n≥ σ2g
�
TCðx* Þ∩Bp

ℓ2

	
;

then, E½kx*−x̂nðCÞk2ℓ2 �≤1.
Proof: The result follows by a rearrangement of the terms in the

bound in Proposition 4. □
This corollary states that if we have access to a dataset with n

samples, we can then use any convex constraint set C such that the
term on the right-hand side in the corollary is smaller than n.
Recalling that larger constraint sets C lead to larger tangent cones
TC, we observe that if n is large, one can potentially use very
weak (and computationally inexpensive) relaxations and still obtain

a risk of 1. This observation, combined with the important point
that the hierarchies of convex relaxations described previously are
simultaneously ordered both by approximation quality and by
computational tractability, allows us to realize a time-data tradeoff
by using convex relaxation as an algorithm-weakening mechanism.
A simple demonstration is provided in Fig. 2.
We further consider settings with σ2 = 1 and in which our

signal sets S ⊆ Rp consist of elements that have Euclidean norm
on the order of

ffiffiffi
p

p
(measured from the centroid of S). In such

regimes, the James–Stein shrinkage estimator (41) offers about
the same level of performance as the maximum-likelihood esti-
mator, and both of these are outperformed in statistical risk by
nonlinear estimators of the form [2] based on convex optimization.
Finally, we briefly remark on the runtimes of our estimators.

The runtime for each of the procedures below is calculated by
adding the number of operations required to compute the sample
mean y and the number of operations required to solve [2] to
some accuracy. Hence, if the number of samples used is n and
if fC(p) denotes the number of operations required to project y
onto C, the total runtime is then np + fC(p). Thus, the number of
samples enters the runtime calculations as just an additive term.
As we process larger datasets, the first term in this calculation
becomes larger, but this increase is offset by a more substantial
decrease in the second term due to the use of a computationally
tractable convex relaxation. We note that such a runtime calcu-
lation extends to more general inference problems in which one
employs estimators of the form [2] but with different loss functions
in the objective; specifically, the runtime is calculated as above
so long as the loss function depends only on some sufficient
statistic computed from the data. If the loss function is instead of
the form ∑n

i¼1ℓðx; yiÞ and it cannot be summarized via a sufficient
statistic of the data fyigni¼1, the number of samples then enters
the runtime computation in a multiplicative manner as θ(n)fC(p)
for some function θ(·).

Example 1: Denoising Signed Matrices.We consider the problem of
recovering signed matrices corrupted by noise:

S ¼ �
aa′ja∈f− 1;þ1g

ffiffi
p

p �
:

We have a∈R
ffiffi
p

p
so that S ⊆ Rp. Inferring such signals is of

interest in collaborative filtering, where one wishes to approx-
imate matrices as the sum of a small number of rank-one signed
matrices (34). Such matrices may represent, for example, the
movie preferences of users as in the Netflix problem.
The tightest convex constraint that one could use in this case is

C = conv(S), which is the cut polytope [6]. To obtain a risk of 1

Fig. 2. (Left) Signal set S consisting of x*. (Center) Two convex constraint
sets C and C′, where C is the convex hull of S and C′ is a relaxation that is
more efficiently computable than C. (Right) Tangent cone TC(x*) is con-
tained inside the tangent cone TC′(x*). Consequently, the Gaussian squared-
complexity gðTCðx* Þ∩Bp

ℓ2 Þ is smaller than the complexity gðTC′ðx* Þ∩Bp
ℓ2 Þ, so that

the estimator x̂nðCÞ requires fewer samples than the estimator x̂nðC′Þ for a risk
of at most 1.
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with this constraint, one requires n ¼ c1
ffiffiffi
p

p
by applying Corollary

10 and Corollary 11 based on the symmetry of the cut polytope.
The cut polytope is generally intractable to compute. Hence, the
best-known algorithms to project onto C would require a runtime
that is superpolynomial in p. Consequently, the total runtime of
this algorithm is c1p

1.5 + superpoly(p).
A commonly used tractable relaxation of the cut polytope is

the elliptope [5]. By computing the Gaussian squared-complexity
of the tangent cones at rank-one signed matrices with respect to
this set, it is possible to show that n ¼ c2

ffiffiffi
p

p
leads to a risk of 1

(with c2 > c1). Furthermore, interior point-based convex optimi-
zation algorithms for solving [2] that exploit the special structure
of the elliptope require O(p2.25) operations (8, 42, 43). (The
exponent is a result of the manner in which we define our signal
set so that a rank-one signed matrix lives in Rp.) Hence, the total
runtime of this procedure is c2p

1.5 + O(p2.25).
Finally, an even weaker relaxation of the cut polytope than the

elliptope is the unit ball of the nuclear norm scaled by a factor offfiffiffi
p

p
; one can verify that the elements of S lie on the boundary of

this set and are, in fact, extreme points. Appealing to Proposition
8 (using the fact that the elements of S are rank-one matrices)
and Corollary 11, we conclude that n ¼ c3

ffiffiffi
p

p
samples provide a

mean squared error of 1 (with c3 > c2). Projecting onto the scaled
nuclear norm ball can be done by computing a singular value
decomposition (SVD) and then truncating the sequence of singular
values in descending order when their cumulative sum exceeds

ffiffiffi
p

p
(in effect, projecting the vector of singular values onto an ℓ1 ball
of size

ffiffiffi
p

p
). This operation requires O(p1.5) operations; thus, the

total runtime is c3p
1.5 + O(p1.5).

To summarize, the cut-matrix denoising problem lives in
the time-data class TD(superpoly(p),c1

ffiffiffi
p

p
,1), in TDðOðp2:25Þ;

c2
ffiffiffi
p

p
; 1Þ, and in TDðOðp1:5Þ; c3 ffiffiffi

p
p

; 1Þ, with constants c1 < c2 < c3.

Example 2: Ordering Variables. In many data analysis tasks, one is
given a collection of variables that are suitably ordered so that
the population covariance is banded. Under such a constraint,
thresholding the entries of the empirical covariance matrix based
on their distance from the diagonal has been shown to be a pow-
erful method for estimation in the high-dimensional setting (44).
However, if an ordering of the variables is not known a priori, one
must jointly learn an ordering for the variables and estimate their
underlying covariance. As a stylized version of this variable ordering
problem, let M∈R

ffiffi
p

p
×

ffiffi
p

p
be a known tridiagonal matrix (with

Euclidean norm Oð ffiffiffi
p

p Þ) and consider the following signal set:

S ¼ �
ΠMΠ′jΠ is a

ffiffiffi
p

p
×

ffiffiffi
p

p
permutation matrix

�
:

The matrix M here is to be viewed as a covariance matrix. Thus,
the corresponding denoising problem [1] is that we wish to estimate
a covariance matrix in the absence of knowledge of the ordering of
the underlying variables. In a real-world scenario, one might wish
to consider covariance matrices M that belong to some class of
banded matrices and then construct S as done here, but we stick
with the case of a fixed M for simplicity. Furthermore, the noise
in a practical setting is better modeled as coming from a Wishart
distribution; again, we focus on the Gaussian case for simplicity.
The tightest convex constraint set that one could use in this

case is the convex hull of S, which is generally intractable to com-
pute for arbitrary matrices M. For example, if one were able to
compute this set in polynomial time for any tridiagonal matrixM,
one would be able to solve the intractable longest path problem
(45) (finding the longest path between any two vertices in a
graph) in polynomial time. With this convex constraint set, we
find using Corollary 10 and Corollary 11 that n ¼ c1

ffiffiffi
p

p
logðpÞ

samples would lead to a risk of 1. This follows from the fact that
conv(S) is a vertex-transitive polytope with about ð ffiffiffi

p
p Þ! vertices.

Thus, the total runtime is c1p
1.5log(p) + superpoly(p).

An efficiently computable relaxation of conv(S) is a scaled ℓ1
ball (scaled by the ℓ1 norm of M). Appealing to Proposition 7 on
tangent cones with respect to the ℓ1 ball and to Corollary 11, we
find that n ¼ c2

ffiffiffi
p

p
logðpÞ samples suffice to provide a risk of 1. In

applying Proposition 7, we note that M is assumed to be tri-
diagonal, and therefore has Oð ffiffiffi

p
p Þ nonzero entries. The runtime

of this procedure is c2p
1.5 log(p) + O(p log(p)).

Thus, the variable ordering denoising problem belongs
to TD(superpoly(p),c1

ffiffiffi
p

p
logðpÞ,1) and to TDðOðp1:5logðpÞÞ;

c2
ffiffiffi
p

p
logðpÞ; 1Þ, with constants c1 < c2.

Example 3: Sparse PCA and Network Activity Identification. As our
third example, we consider sparse PCA (18) in which one wishes
to learn from samples a sparse eigenvector that contains most of
the energy of a covariance matrix. As a simplified version of this
problem, one can imagine a matrix M∈R

ffiffi
p

p
×

ffiffi
p

p
with entries

equal to
ffiffiffi
p

p
=k in the top-left k × k block and zeros elsewhere (so

that the Euclidean norm of M is
ffiffiffi
p

p
), and with S defined as:

S ¼ �
ΠMΠ′jΠ is a

ffiffiffi
p

p
×

ffiffiffi
p

p
permutation matrix

�
:

In addition to sparse PCA, such signal sets are of interest in
identifying activity in noisy networks (46) as well as in related
combinatorial optimization problems, such as the planted clique
problem (45). In the sparse PCA context, Amini and Wainwright
(16) study time-data tradeoffs by investigating the sample com-
plexities of two procedures: a simple one based on thresholding
and a more sophisticated one based on semidefinite program-
ming. Kolar et al. (46) investigate the sample complexities of a
number of procedures ranging from a combinatorial search
method to thresholding and sparse SVD. We note that the
time-data tradeoffs studied in these two papers (16, 46) relate
to the problem of learning the support of the leading sparse
eigenvector; in contrast, in our setup, the objective is simply to
denoise an element of S. Furthermore, although the Gaussian
noise setting is of interest in some of these domains, in a more
realistic sparse PCA problem (e.g., the one considered in ref. 16),
the noise is Wishart rather than Gaussian as considered here.
Nevertheless, we stick with our stylized problem setting because
it provides some useful insights on time-data tradeoffs. Finally,
the size of the block k∈f1; . . . ; ffiffiffi

p
p g depends on the application

of interest, and it is typically far from the extremes 1 and
ffiffiffi
p

p
. We

will consider the case k ∼ p1/4 for concreteness. [This setting is an
interesting threshold case in the planted clique context (47–49),
where k = p1/4 is the square root of the number of nodes of the
graph represented by M (viewed as an adjacency matrix).]
As usual, the tightest convex constraint set one can use in this

setting is the convex hull of S, which is generally intractable to
compute; an efficient characterization of this polytope would
lead to an efficient solution of the intractable planted-clique
problem (finding a fully connected subgraph inside a larger graph).
Using this convex constraint set gives an estimator that requires
about n = O(p1/4log(p)) samples to produce a risk-1 estimate.
We obtain this threshold by appealing to Corollary 10 and to
Corollary 11, as well as to the observation that conv(S) is a

vertex-transitive polytope with about
� ffiffiffi

p
p
p1=4

�
vertices. Thus, the

overall runtime is O(p5/4 log(p)) + superpoly(p).
A convex relaxation of conv(S) is the nuclear norm ball scaled

by a factor of
ffiffiffi
p

p
so that the elements of S lie on the boundary.

From Proposition 8 (observing that the elements of S are rank-
one matrices) and Corollary 11, we have that n ¼ c

ffiffiffi
p

p
samples

give a risk-1 estimate with this procedure. As computed in the
example with cut matrices, the overall runtime of this nuclear
norm procedure is cp1.5 + O(p1.5).
In conclusion, the denoising version of sparse PCA lies in

TD(superpoly(p), O(p1/4 log(p)),1) and in TDðOðp1:5Þ;Oð ffiffiffi
p

p Þ; 1Þ.
Example 4: Estimating Matchings. As our final example, we con-
sider signals that represent the set of all perfect matchings in the
complete graph. A matching is any subset of edges of a graph such
that no node of the graph is incident to more than one edge in the
subset, and a perfect matching is a subset of edges in which every
node is incident to exactly one edge in the subset. Graph matchings
arise in a range of inference problems, such as in chemical structure

E1188 | www.pnas.org/cgi/doi/10.1073/pnas.1302293110 Chandrasekaran and Jordan

www.pnas.org/cgi/doi/10.1073/pnas.1302293110


analysis (50) and in network monitoring (51). Letting M be the
adjacency matrix of some perfect matching in the complete graph
on

ffiffiffi
p

p
nodes, our signal set in this case is defined as follows:

S ¼ p1=4
�
ΠMΠ′jΠ is a

ffiffiffi
p

p
×

ffiffiffi
p

p
permutation matrix

�
:

The scaling of p1/4 ensures that the elements of S have Euclidean
norm of

ffiffiffi
p

p
. Note that S ⊂ Rp. The number of elements in S is

ð ffiffi
p

p Þ!� ffiffi
p

p
2

	
! 2

ffiffi
p

p
=2
when

ffiffiffi
p

p
is an even number (this number is obtained

by computing the product of all the odd integers up to
ffiffiffi
p

p
).

The tightest convex relaxation in this case is the convex hull of
S. Unlike the previous three cases, projecting onto this convex
set is, in fact, a polynomial-time operation, with a runtime of
about O(p5). [Edmonds’ blossom algorithm (52) for computing
maximum-weight matchings in polynomial time leads to a sepa-
ration oracle for this perfect matching polytope. Subsequently,
Padberg and Rao (53) developed a faster separation oracle for
the perfect matching polytope. These separation oracles, in turn,
lead to polynomial-time projection algorithms via the ellipsoid
method (42).] Appealing to Corollary 10, to Corollary 11, and to
the fact that conv(S) is a vertex-transitive polytope, we have that
n ¼ c1

ffiffiffi
p

p
logðpÞ samples provides a risk-1 estimate. Hence the

overall runtime is c1p
1.5 log(p) + O(p5).

A tractable relaxation of the perfect matching polytope is
a hypersimplex (23), obtained by taking the convex hull of allffiffiffi
p

p
×

ffiffiffi
p

p
matrices consisting of

ffiffiffi
p

p
ones and the other entries

being equal to zero. We scale this hypersimplex by a factor of
p1/4 so that the elements of S are on the boundary. The hyper-
simplex is also a vertex-transitive polytope, like the perfect

matching polytope, but with about
� pffiffiffi

p
p

�
entries. Hence, from

Corollary 10 and Corollary 11, we have that n ¼ c2
ffiffiffi
p

p
logðpÞ

samples will provide a risk-1 estimate. Furthermore, projecting
onto the hypersimplex is a very efficient operation based on
sorting, and it has a runtime of O(p log(p)). Consequently, the total
runtime of this procedure is c2p

1.5log(p) + O(p log(p)).
In summary, the matching estimation problem is a mem-

ber of TDðOðp5Þ; c1 ffiffiffi
p

p
logðpÞ; 1Þ and of TDðOðp1:5logðpÞÞ;

c2
ffiffiffi
p

p
logðpÞ; 1Þ with constants c1 < c2.

Some Observations. A curious observation that we may take away
from these examples is that it is possible to obtain substantial
speedups computationally with just a constant factor increase in
the size of the dataset. This suggests that in settings in which
obtaining additional data is inexpensive, it may be more econom-
ical to procure more data and use a more basic computational
infrastructure rather than to process limited data using powerful
and expensive computers.
Our second observation is relevant to all the examples above,

but we highlight it in the context of denoising cut matrices. In
that setting, one can use an even weaker relaxation of the cut
polytope than the nuclear norm ball, such as the Euclidean ball
(suitably scaled). Although projection onto this set is extremely
efficient [requiring O(p) operations as opposed to O(p1.5) oper-
ations for projecting onto the nuclear norm ball], the number of
samples required to achieve a risk of 1 with this approach is O(p):
Computing the sample mean with so many samples requires
O(p2) operations, which leads to an overall runtime that is greater
than the runtime O(p1.5) for the nuclear norm approach. This
point highlights an important tradeoff: If our choice of algo-
rithms is between nuclear norm projection and Euclidean pro-
jection, and if we are, in fact, given access to O(p) data samples,
it makes sense computationally to retain only Oð ffiffiffi

p
p Þ samples for

the nuclear norm procedure and to throw away the remaining
data. This provides a concrete illustration of several key issues.
Aggregating massive datasets can frequently be very expensive
computationally (relative to the other subsequent processing), and
the number of operations required for this step must be taken
into account. (Note that the aggregation step is more time-

consuming than the subsequent projection step in the ℓ1-ball
projection procedure for ordering variables and in the hypersimplex
projection method for denoising matchings.) Consequently, in
some cases, it may make sense to throw away some data if pre-
processing the full massive dataset is time-consuming. Hence,
one may not be able to avail oneself of weaker postaggregation
algorithms if these methods require such a large amount of data
to achieve a desired risk that the aggregation step is expensive.
This point goes back to the floor in Fig. 1 in which one imagines
a cutoff in the number of samples beyond which more data are
not helpful in reducing computational runtime. Such a threshold,
of course, depends on the space of algorithms one employs, and
in the cut polytope context with the particular algorithms con-
sidered here, the threshold occurs at Oð ffiffiffi

p
p Þ samples. Our dis-

cussion is premised on the point that both the data aggregation
step and the subsequent projection step use the same computa-
tional infrastructure. In practice, however, the data aggregation
step may be effectively parallelized, and the runtime calculations
associated with such modifications will result in different time-data
tradeoffs and data floors than those described above.

Conclusions
In this paper, we considered the problem of reducing the com-
putational complexity of an inference task as one has access to
larger datasets. The traditional goal in the theory of statistical
inference is to understand the tradeoff in an estimation problem
between the amount of data available and the risk attainable via
some class of procedures. In an age of plentiful data in many
settings and computational resources being the principal bottleneck,
we believe that an increasingly important objective is to investigate
the tradeoffs between computational and sample complexities. As
one pursues this line of thinking, it becomes clear that a central
theme must be the ability to weaken an inference procedure as one
has access to larger datasets. Accordingly, we proposed convex re-
laxation as an algorithm-weakening mechanism, and we investigated
its efficacy in a class of denoising tasks. Our results suggest that
such methods are especially effective in achieving time-data trade-
offs in high-dimensional parameter estimation.
We close our discussion by outlining some exciting future re-

search directions. Because algorithm weakening is central to the
viewpoint described in this paper, it should come as no surprise
that several of the directions listed below involve interaction with
important themes in computer science.

Computation with Streaming or Inhomogeneous Data. In some
massive data problems, one is presented with a stream of input
data rather than a large fixed dataset, and an estimate may be
desired after a fixed amount of time independent of the rate of
the input stream. In other domains, the data may be heterogeneous
or may be generated from a nonstationary source, as opposed to
the stationary case considered in this paper. In these settings, al-
ternative viewpoints on tradeoffs to the one presented in this paper
might be more appropriate. For example, with streaming data, one
could keep the runtime fixed and trade-off the risk with the rate of
the input stream. One can imagine algorithm-weakening mecha-
nisms, dependent on the rate of the data stream, in which the initial
data points are processed using sophisticated algorithms and sub-
sequent samples are processed more coarsely. Understanding the
tradeoffs in such settings with streaming or inhomogeneous data is
of interest in a range of applications.

Alternative Algorithm-Weakening Mechanisms. The notion of weak-
ening an inference algorithm is key to realizing a time-data tradeoff.
Although convex relaxation methods provide a powerful and gen-
eral approach, a number of other weakening mechanisms are
potentially relevant. For example, processing data more coarsely
by quantization, dimension reduction, and clustering may be
natural in some contexts. Coresets, which originated in the
computational geometry community, summarize a large set of
points via a small collection (e.g., ref. 54 and the references therein),
and they could also provide a powerful algorithm-weakening
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mechanism. Finally, we would like to mention a computer hardware
concept that has implications for massive data analysis. Recent
approaches to designing computer chips are premised on the
idea that many tasks do not require extremely accurate compu-
tation. If one is willing to tolerate small, random errors in arith-
metic computations (e.g., addition, multiplication), it may be
possible to design chips that consume less power and are faster
than traditional, more accurate chips. Translated to a data analysis
context, such design principles may provide a hardware-based
algorithm-weakening mechanism.

Measuring Quality of Approximation of Convex Sets. In the mathe-
matical optimization and theoretical computer science commu-
nities, relaxations of convex sets have provided a powerful toolbox
for designing approximation algorithms for intractable problems,
most notably those arising in combinatorial optimization. The
manner in which the quality of a relaxation translates to the quality
of an approximation algorithm is usually quantified based on the
integrality gap between the original convex set and its approximation
(4). However, the quantity of interest in a statistical inference
context in characterizing the quality of approximations is based

on ratios of Gaussian squared-complexities of tangent cones. These
two quantifications can be radically different; indeed, several of the
relaxations presented in our time-data tradeoff examples that are
useful in an inferential setting would provide poor performance in
a combinatorial optimization context. More broadly, those exam-
ples demonstrate that weak relaxations frequently provide as good
estimation performance as tighter ones with just an increase of
a constant factor in the number of data samples. This observation
suggests a potentially deeper result along the following lines.
Many computationally intractable convex sets for which there
exist no tight efficiently computable approximations as measured
by integrality gap can nonetheless be well-approximated by com-
putationally tractable convex sets if the quality of approximation
is measured based on statistical inference objectives.

ACKNOWLEDGMENTS. We thank Pablo Parrilo, Benjamin Recht, and Parikshit
Shah for many insightful conversations. We also thank Alekh Agarwal, Peter
Bühlmann, Emmanuel Candès, Robert Nowak, James Saunderson, Leonard
Schulman, and Martin Wainwright for helpful questions and discussions. This
material is based on work supported, in part, by the US Army Research Labora-
tory and the US Army Research Office under Contract/Grant W911NF-11-1-0391.

1. Lai TL (2001) Sequential analysis: Some classical problems and new challenges.
Statistica Sinica 11(2):303–408.

2. Arora S, Barak B (2009) Computational Complexity: A Modern Approach (Cambridge
Univ Press, New York).

3. Bühlmann P, van de Geer S (2011) Statistics for High-Dimensional Data: Methods, Theory
and Applications (Springer, Berlin).

4. Vazirani V (2004) Approximation Algorithms (Springer, Berlin).
5. Johnstone IM (2011) Gaussian estimation: Sequence and wavelet models. Available

at www-stat.stanford.edu/~imj/. Last accessed February 26, 2013.
6. Donoho DL (1995) Denoising by soft thresholding. IEEE Trans Inf Theory 41:613–627.
7. Donoho DL, Johnstone IM (1998) Minimax estimation via wavelet shrinkage. Annals

of Statistics 26(3):879–921.
8. Boyd SP, Vandenberghe L (2004) Convex Optimization (Cambridge Univ Press, New

York).
9. Shalev-Shwartz S, Shamir O, Tromer E (2012) Using more data to speed up training

time. Proceedings of the Fifteenth International Conference on Artificial Intelligence
and Statistics, April 21–23, 2012, La Palma, Canary Islands, pp 1019–1027.

10. Decatur S, Goldreich O, Ron D (1998) Computational sample complexity. SIAM J Sci
Comput 29:854–879.

11. Servedio R (2000) Computational sample complexity and attribute-efficient learning.
Journal of Computer and Systems Sciences 60(1):161–178.

12. Birnbaum A, Shalev-Shwartz S (2012) Learning halfspaces with the zero-one loss:
time-accuracy tradeoffs. Advances in Neural Information Processing Systems 25, eds
Bartlett P, Pereira FCN, Burges CJC, Bottou L, Weinberger KQ, pp 935–943.

13. Bottou L, Bousquet O (2008) The tradeoffs of large scale learning. Advances in Neural
Information Processing Systems 20, eds Platt JC, Koller D, Singer Y, Roweis S (MIT
Press, Cambridge, MA), pp 161–168.

14. Shalev-Schwartz S, Srebro N (2008) SVM optimization: Inverse dependence on training
set size. Proceedings of the 25th Annual International Conference on Machine Learning,
eds McCallum A, Roweis S (Omnipress, Helsinki, Finland), pp 928–935.

15. Perkins TJ, Hallett MT (2010) A trade-off between sample complexity and computational
complexity in learning Boolean networks from time-series data. IEEE/ ACM Trans Comput
Biol Bioinformatics 7(1):118–125.

16. Amini A, Wainwright M (2009) High-dimensional analysis of semidefinite programming
relaxations for sparse principal component analysis. Ann Stat 37:2877–2921.

17. Kolda T (2001) Orthogonal tensor decompositions. SIAM Journal on Matrix Analysis
23:243–255.

18. Johnstone IM, Lu AY (2009) On consistency and sparsity for principal components
analysis in high dimensions. J Am Stat Assoc 104(486):682–693.

19. Agarwal A, Bartlett P, Duchi J (2012) Oracle inequalities for computationally adaptive
model selection. arXiv:1208.0129.

20. Nesterov Y, Nemirovskii A (1995) Interior-Point Polynomial Algorithms in Convex
Programming (Society for Industrial and Applied Mathematics, Philadelphia).

21. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory
52:489–509.

22. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52:1289–1306.
23. Ziegler G (1995) Lectures on Polytopes (Springer, Berlin).
24. Goemans M (2012) Smallest Compact Formulation for the Permutahedron. Technical

Report (Department of Mathematics, Massachusetts Institute of Technology, Cambridge,
MA).

25. Gouveia J, Parrilo P, Thomas R (2012) Lifts of convex sets and cone factorizations.
Mathematics of Operations Research, 10.1287/moor.1120.0575.

26. Goemans M, Williamson D (1995) Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM
42(6):1115–1145.

27. Sherali HD, Adams WP (1990) A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics 3(3):411–430.

28. Bochnak J, Coste M, Roy M (1988) Real Algebraic Geometry (Springer, Berlin).
29. Parrilo PA (2000) Structured semidefinite programs and semialgebraic geometry

methods in robustness and optimization. PhD thesis (California Institute of
Technology, Pasadena, CA).

30. Parrilo PA (2003) Semidefinite programming relaxations for semialgebraic problems.
Mathematical Programming 96(2):293–320.

31. Lasserre JB (2001) Global optimization with polynomials and the problem of moments.
SIAM J Optim 11:796–817.

32. Gouveia J, Parrilo P, Thomas R (2010) Theta bodies for polynomial ideals. SIAM J Optim
20:2097–2118.

33. Renegar J (2006) Hyperbolic programs and their derivative relaxations. Foundations of
Computational Mathematics 6(1):59–79.

34. Srebro N, Shraibman A (2005) Learning Theory. 18th Annual Conference on Learning
Theory, June 27–30, 2005, Bertinoro, Italy. Lecture Notes in Computer Science 3559,
eds Auer P, Meir R (Springer).

35. Rockafellar RT (1970) Convex Analysis (Princeton Univ Press, Princeton).
36. Dudley RM (1967) The sizes of compact subsets of Hilbert space and continuity of

Gaussian processes. Journal of Functional Analysis 1(3):290–330.
37. Bartlett P, Mendelson S (2002) Rademacher and Gaussian complexities: risk bounds

and structural results. J Mach Learn Res 3:463–482.
38. Chandrasekaran V, Recht B, Parrilo P, Willsky A (2012) The convex geometry of linear

inverse problems. Foundations of Computational Mathematics 12(6):805–849.
39. Ledoux M (2000) The Concentration of Measure Phenomenon (American Mathematical

Society, Providence, RI).
40. Sanyal R, Sottile F, Sturmfels B (2011) Orbitopes. Mathematika 57:275–314.
41. James W, Stein C (1961) Estimation with quadratic loss. Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability, ed Neyman J
(University of California Press, Berkeley, CA), pp 361–379.

42. Ben Tal A, Nemirovskii A (2001) Lectures on Modern Convex Optimization (Society for
Industrial and Applied Mathematics, Philadelphia).

43. Higham N (2002) Computing the nearest correlation matrix—A problem from
finance. IMA Journal of Numerical Analysis 22(3):329–343.

44. Bickel P, Levina L (2008) Regularized estimation of large covariance matrices.
Annals of Statistics 36(1):199–227.

45. Garey M, Johnson D (1979) Computers and Intractability: A Guide to the Theory of
NP-Completeness (Freeman, New York).

46. Kolar M, Balakrishnan S, Rinaldo A, Singh A (2011) Minimax localization of structural
information in large noisy matrices. Neural Information Processing Systems 24, eds
Shawe-Taylor J, Zemel RS, Bartlett P, Pereira, FCN, Weinberger, pp 909–917.

47. Alon N, Krivelevich M, Sudakov B (1998) Finding a large hidden clique in a random
graph. Random Structures Algorithms 13:457–466.

48. Feige U, Krauthgamer R (2000) Finding and certifying a large hidden clique in a
semirandom graph. Random Structures Algorithms 16:195–208.

49. Ames BPW, Vavasis SA (2011) Nuclear norm minimization for the planted clique and
biclique problems. Mathematical Programming, Series B 129:69–89.

50. Rouvray DH, Balaban AT (1979) Chemical applications of graph theory. Applications
of Graph Theory (Academic Press, London), pp 177–221.

51. Shoubridge P, Krarne M, Ray D (1999) Detection of abnormal change in dynamic
networks. Proceedings of Information, Decision, and Control, pp 557–562.

52. Edmonds J (1965) Maximum matching and a polyhedron with 0-1 vertices. J Res Natl
Bur Stand 69B:125–130.

53. Padberg M, Rao M (1982) Odd minimum cut-sets and b-matchings. Mathematics of
Operations Research 7(1):67–80.

54. Feldman D, Langberg M (2011) A unified framework for approximating and clustering
data. Proceedings of the Symposium on the Theory of Computing, pp 569–578.

E1190 | www.pnas.org/cgi/doi/10.1073/pnas.1302293110 Chandrasekaran and Jordan

http://www-stat.stanford.edu/~imj/
www.pnas.org/cgi/doi/10.1073/pnas.1302293110


Supplementary Appendix

Venkat Chandrasekaran and Michael I. Jordan

Proof of Proposition 5

As with the proof of Proposition 4, we condition on z = z̃. Setting δ = x − x̃ and setting δ̂n(C) =
x̂n(C)|z=z̃ − x̃, we can rewrite the estimation problem [2] from the main paper as follows:

δ̂n(C) = arg min
δ∈Rp

1

2

∥∥∥(x∗ − x̃) + σ√
n
z̃− δ

∥∥∥2
ℓ2

s.t. δ ∈ C − x̃.

Letting R1 and R2 denote orthogonal subspaces that contain Q1 and Q2, i.e., Q1 ⊆ R1 and Q2 ⊆ R2, and

letting δ(1) = PR1(δ), δ
(2) = PR2(δ), δ̂

(1)

n (C) = PR1(δ̂n(C)), δ̂
(2)

n (C) = PR2(δ̂n(C)) denote the projections of

δ, δ̂n(C) onto R1, R2, we can rewrite the above reformulated optimization problem as:[
δ̂
(1)

n (C), δ̂
(2)

n (C)
]
= arg min

δ(1)∈Q1,δ(2)∈Q2

1

2

∥∥∥PR1

[
(x∗ − x̃) + σ√

n
z̃
]
− δ(1)

∥∥∥2
ℓ2

+
1

2

∥∥∥PR2

[
(x∗ − x̃) + σ√

n
z̃
]
− δ(2)

∥∥∥2
ℓ2
.

As the sets Q1, Q2 live in orthogonal subspaces, the two variables δ(1), δ(2) in this problem can be optimized

separately. Consequently, we have that ∥δ̂
(2)

n (C)∥ℓ2 ≤ α and that

∥δ̂
(1)

n (C)∥ℓ2 ≤ sup
δ̄∈cone(Q1)∩Bp

ℓ2

⟨δ̄, σ√
n
z̃+ (x∗ − x̃)⟩.

This bound can be established following the same sequence of steps as in the proof of Proposition 4. Com-

bining the two bounds on δ̂
(1)

n (C) and δ̂
(2)

n (C), one can then check that

∥δ̂
(1)

n (C)∥2ℓ2 + ∥δ̂
(2)

n (C)∥2ℓ2 ≤ 2
[
σ2

n g(cone(Q1) ∩Bpℓ2) + ∥x∗ − x̃∥2ℓ2
]

+ α2.

To obtain a bound on ∥x̂n(C)|z=z̃ − x∗∥2ℓ2 we note that

∥x̂n(C)|z=z̃ − x∗∥2ℓ2 ≤ 2
[
∥x̂n(C)|z=z̃ − x̃∥2ℓ2 + ∥x∗ − x̃∥2ℓ2

]
≤ 2∥δ̂

(1)

n (C)∥2ℓ2 + 2∥δ̂
(2)

n (C)∥2ℓ2 + 2∥x∗ − x̃∥2ℓ2 .

Taking expectations concludes the proof. �

Proof of Proposition 9

The main steps of this proof follow the steps of a similar result in [1], with the principal difference being
that we wish to bound Gaussian squared-complexity rather than Gaussian complexity. A central theme in
this proof is the appeal to Gaussian isoperimetry. Let Sp−1 denote the sphere in p dimensions. Then in
bounding the expected squared-distance to the dual cone K∗ with K∗ ∩ Sp−1 having a volume of µ, we need
only consider the extremal case of a spherical cap in Sp−1 having a volume of µ. The manner in which this
is made precise will become clear in the proof. Before proceeding with the main proof, we state and derive
a result on the solid angle subtended by a spherical cap in Sp−1 to which we will need to appeal repeatedly:

1



Lemma 2 Let ψ(µ) denote the solid angle subtended by a spherical cap in Sp−1 with volume µ ∈
(
1
4 exp{−

p
20},

1
4e2

)
. Then

ψ(µ) ≥ π

2

1−

√√√√2 log
(

1
4µ

)
p− 1

 .

Proof of Lemma 2: Consider the following definition of a spherical cap, parametrized by height h:

J = {a ∈ Sp−1 | a1 ≥ h}.

Here a1 denotes the first coordinate of a ∈ Rp. Given a spherical cap of height h ∈ [0, 1], the solid angle ψ
is given by:

ψ =
π

2
− sin−1(h). (10)

We can thus obtain bounds on the solid angle of a spherical cap via bounds on its height. The following
result from [2] relates the volume of a spherical cap to its height:

Lemma 3 [2] For 2√
p ≤ h ≤ 1 the volume µ̃(p, h) of a spherical cap of height h in Sp−1 is bounded as

1

10h
√
p
(1− h2)

p−1
2 ≤ µ̃(p, h) ≤ 1

2h
√
p
(1− h2)

p−1
2 .

Continuing with the proof of Lemma 2, note that for 2√
p ≤ h ≤ 1

1

2h
√
p
(1− h2)

p−1
2 ≤ 1

4
(1− h2)

p−1
2 ≤ 1

4
exp

(
−p−1

2 h2
)
.

Choosing h =

√
2 log

(
1
4µ

)
p−1 we have 2√

p ≤ h ≤ 1 based on the assumption µ ∈
(
1
4 exp{−p/20},

1
4e2

)
. Conse-

quently, we can apply Lemma 3 with this value of h combined with (10) to conclude that

µ̃

p,
√√√√2 log

(
1
4µ

)
p− 1

 ≤ µ.

Hence the solid angle ψ

(
µ̃

(
p,

√
2 log

(
1
4µ

)
p−1

))
is less than the solid angle ψ(µ). Consequently, we use (10)

to conclude that

ψ(µ) ≥ π

2
− sin−1


√√√√2 log

(
1
4µ

)
p− 1

 .

Using the bound sin−1(h) ≤ π
2h, we obtain the desired bound. �

Proof of Proposition 9: We bound the Gaussian squared-complexity of K by bounding the expected
squared-distance to the polar cone K∗. Let µ̄(U ; t) for U ⊆ Sp−1 and t > 0 denote the volume of the set of
points in Sp−1 that are within a Euclidean distance of at most t from U (recall that the volume of this set
is equivalent to the measure of the set with respect to the normalized Haar measure on Sp−1). We have the

2



following sequence of relations by appealing to the independence of the direction g/∥g∥ℓ2 and of the length
∥g∥ℓ2 of a standard normal vector g:

E[dist(g,K∗)2] = E[∥g∥2ℓ2dist(g/∥g∥ℓ2 ,K
∗)2]

= p E[dist(g/∥g∥ℓ2 ,K∗)2]

≤ p E[dist(g/∥g∥ℓ2 ,K∗ ∩ Sp−1)2]

= p

∫ ∞

0

P[dist(g/∥g∥ℓ2 ,K∗ ∩ Sp−1)2 > t]dt

= p

∫ ∞

0

P[dist(g/∥g∥ℓ2 ,K∗ ∩ Sp−1) >
√
t]dt

= 2p

∫ ∞

0

sP[dist(g/∥g∥ℓ2 ,K∗ ∩ Sp−1) > s]ds

= 2p

∫ ∞

0

s[1− µ̄(K∗ ∩ Sp−1; s)]ds.

Here the third equality follows based on the integral version of the expected value. Let V ⊆ Sp−1 denote a
spherical cap with the same volume µ as K∗ ∩ Sp−1. Then we have by spherical isoperimetry that µ̄(V ; s) ≥
µ̄(K∗ ∩ Sp−1; s) for all s ≥ 0 [3]. Thus

E[dist(g,K∗)2] ≤ 2p

∫ ∞

0

s[1− µ̄(V ; s)]ds. (11)

From here onward, we focus exclusively on bounding the integral.
Let τ(ψ) denote the volume of a spherical cap subtending a solid angle of ψ radians. Recall that ψ is a

quantity between 0 and π. As in Lemma 2 let ψ(µ) denote the solid angle of a spherical cone subtending a
solid angle of µ. Since the Euclidean distance between points on a sphere is always smaller than the geodesic
distance, we have that µ̄(V ; s) ≥ τ(ψ(µ) + s). Further, we have the following explicit formula for τ(ψ) [4]:

τ(ψ) = ω−1
p

∫ ψ

0

sinp−1(v)dv,

where ωp =
∫ π
0
sinp−1(v)dv is the normalization constant. Combining these latter two observations, we can

bound the integral in (11) as:∫ ∞

0

s[1− µ̄(V ; s)]ds ≤
∫ ∞

0

s[1− τ(ψ(µ) + s)]ds

=

∫ π−ψ(µ)

0

s[1− τ(ψ(µ) + s)]ds

=
(π − ψ(µ))2

2
−
∫ π−ψ(µ)

0

sτ(ψ(µ) + s)ds

=
(π − ψ(µ))2

2
− ω−1

p

∫ π−ψ(µ)

0

∫ ψ(µ)+s

0

s sinp−1(v)dvds

3



Next we change the order of integration to obtain:∫ ∞

0

s[1− µ̄(V ; s)]ds ≤ (π − ψ(µ))2

2
− ω−1

p

∫ π

0

∫ π−ψ(µ)

max{v−ψ(µ),0}
sinp−1(v)sdsdv

=
(π − ψ(µ))2

2
− ω−1

p

∫ π

0

1

2

[
(π − ψ(µ))2 − (max{v − ψ(µ), 0})2

]
sinp−1(v)dv

=
ω−1
p

2

∫ π

0

(max{v − ψ(µ), 0})2 sinp−1(v)dv

=
ω−1
p

2

∫ π

ψ(µ)

(v − ψ(µ))2 sinp−1(v)dv.

We now appeal to the inequalities ω−1
p ≤

√
p− 1/2 and sin(x) ≤ exp(−(x− π

2 )
2/2) for x ∈ [0, π] to obtain∫ ∞

0

s[1− µ̄(V ; s)]ds ≤
√
p− 1

2

∫ π

ψ(µ)

(v − ψ(µ))2 exp
[
−p−1

2 (v − π
2 )

2
]
dv.

Performing a change of variables with a =
√
p− 1(v − π

2 ), we have∫ ∞

0

s[1− µ̄(V ; s)]ds ≤ 1

2

∫ √
p−1π/2

√
p−1(ψ(µ)−π/2)

( a√
p−1

+ (π2 − ψ(µ)))2 exp[−a2

2 ]da

=
1

2

∫ √
p−1π/2

√
p−1(ψ(µ)−π/2)

[
a2

p−1 + (π2 − ψ(µ))2 + 2a√
p−1

(π2 − ψ(µ))
]
exp[−a2

2 ]da

≤ 1

2

[∫ ∞

−∞

a2

p−1 exp[−
a2

2 ]da+

∫ ∞

−∞
(π2 − ψ(µ))2 exp[−a2

2 ]da+

∫ ∞

0

2a√
p−1

(π2 − ψ(µ)) exp[−a2

2 ]da

]
=

1

2

[√
2π

p−1 +
√
2π(π2 − ψ(µ))2 + 2√

p−1
(π2 − ψ(µ)) · (− exp[−a2

2 ])|∞0
]

=
1

2

[√
2π

p−1 +
√
2π(π2 − ψ(µ))2 + 2√

p−1
(π2 − ψ(µ))

]
Here the inequality was obtained by suitably changing the limits of integration. We now employ Lemma 2
to obtain the final bound:

g(K ∩Bpℓ2) ≤ p

√
2π

p−1 +
√
2π

(
π
2

√
2 log

(
1
4µ

)
p−1

)2

+ 2√
p−1

(
π
2

√
2 log

(
1
4µ

)
p−1

)
= p

√
2π

p−1

[
1 + π log

(
1
4µ

)
+
√
π

√
log
(

1
4µ

)]
≤ 20 log

(
1
4µ

)
.

Here the final bound holds because µ < 1/4e2 and p ≥ 12. �
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