
On Multidimensional and Monotone k-SUM
Chloe Ching-Yun Hsu1 and Chris Umans ∗2

1 Department of Computing and Mathematical Sciences, California Institute of
Technology, Pasadena, USA
chhsu@caltech.edu

2 Department of Computing and Mathematical Sciences, California Institute of
Technology, Pasadena, USA
umans@cms.caltech.edu

Abstract
The well-known k-SUM conjecture is that integer k-SUM requires time Ω(ndk/2e−o(1)). Recent
work has studied multidimensional k-SUM in Fdp, where the best known algorithm takes time
Õ(ndk/2e). Bhattacharyya et al. [ICS 2011] proved a min(2Ω(d), nΩ(k)) lower bound for k-SUM
in Fdp under the Exponential Time Hypothesis. We give a more refined lower bound under the
standard k-SUM conjecture: for sufficiently large p, k-SUM in Fdp requires time Ω(nk/2−o(1)) if k
is even, and Ω(ndk/2e−2k log k

log p−o(1)) if k is odd.
For a special case of the multidimensional problem, bounded monotone d-dimensional 3SUM,

Chan and Lewenstein [STOC 2015] gave a surprising Õ(n2−2/(d+13)) algorithm using additive
combinatorics. We show this algorithm is essentially optimal. To be more precise, bounded
monotone d-dimensional 3SUM requires time Ω(n2− 4

d−o(1)) under the standard 3SUM conjecture,
and time Ω(n2− 2

d−o(1)) under the so-called strong 3SUM conjecture. Thus, even though one might
hope to further exploit the structural advantage of monotonicity, no substantial improvements
beyond those obtained by Chan and Lewenstein are possible for bounded monotone d-dimensional
3SUM.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

Keywords and phrases 3SUM; kSUM; monotone 3SUM; strong 3SUM conjecture

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.50

1 Introduction

The k-SUM problem and the k-SUM conjecture are related to a large number of problems
in computational geometry [11], dynamic data structures, and graph theory. For example,
Pătraşcu [17] showed lower bounds for dynamic problems under the 3SUM conjecture, and
Kopelowitz, Pettie, and Porat [16] improved Pătraşcu’s framework to give better reductions
from 3SUM to SetIntersection, SetDisjointness, and triangle enumeration. Goldstein, Ko-
pelowitz, Lewenstein, and Porat [13] showed several reporting problems are 3SUM-hard.
Vassilevska and Williams [19], and Jafargholi and Viola [15] used 3SUM to study triangle
problems. Abboud and Lewi [1] proved tight lower and upper bounds for the exact-weight
subgraph finding problem under the k-SUM conjecture.

I Definition 1 (k-SUM). Given subsets A1, . . . , Ak of size n of an abelian group G, the
k-SUM problem asks whether there are a1 ∈ A1, . . . , ak ∈ Ak such that

∑k
i=1 ai = 0.

∗ Supported by NSF grant CCF-1423544 and a Simons Foundation Investigator grant.

© Chloe Ching-Yun Hsu and Christopher Umans;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 50; pp. 50:1–50:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


50:2 On Multidimensional and Monotone k-SUM

A simple meet-in-the-middle algorithm can solve k-SUM in time Õ(ndk/2e),1 and it is widely
believed that this is the optimal time up to polylogarithmic factors. This is known as the
k-SUM conjecture:

I Conjecture 2 (k-SUM Conjecture). For k ≥ 2, k-SUM in Z requires randomized time
Ω(ndk/2e−o(1)).

To support the k-SUM conjecture, Erickson [9] and Ailon and Chazelle [3] proved that
k-linear decision trees cannot solve k-SUM with fewer than ndk/2e queries. On the other
hand, Freund [10], and Gold and Sharir [12] recently gave O(n2 log logn/ logn) algorithms
for 3SUM. Hence, the standard 3SUM conjecture (Conjecture 7) is stated as an Ω(n2−o(1))
lower bound instead of Ω(n2).

Intriguingly, in non-uniform models, substantially lower complexities are known: Grønlund
and Pettie [14] showed that the decision tree complexity of 3SUM is O(n3/2 logn). Gold and
Sharir [12] showed that the randomized (2k − 2)-linear decision tree complexity of k-SUM is
O(nk/2) for any odd k ≥ 3.

Multidimensional k-SUM in Fd
p

One can also consider the k-SUM problem over domains other than Z. The focus of this
paper will be on the multidimensional case, where the domain is Fdp. The k-SUM problem in
Fdp is a problem of independent interest. For example, Jafargholi and Viola [15, 20] reduced
listing triangles to 3SUM in Fd2. In coding theory, k-SUM in Fdp is studied and known as
WeightDistribution [8].

Bhattacharyya et. al. [6] recently gave a min(2Ω(d), nΩ(k)) lower bound for k-SUM in
Fdp under the Exponential Time Hypothesis. Pătraşcu and Williams [18] proved that the
Exponential Time Hypothesis implies a weak version of the k-SUM conjecture - there is no
no(k) algorithm for k-SUM for all k. However, prior to this paper, no connection was known
between integer k-SUM and k-SUM in Fdp. In this paper, we use the k-SUM conjecture to
prove a more refined lower bound for k-SUM in Fdp:

I Theorem 3. Under the k-SUM conjecture, for any k ≥ 2, k-SUM in Fdp requires time
Ω(nk/2−o(1)) for even k, and time Ω(ndk/2e−2k log k

log p−o(1)) for odd k, when p is sufficiently
large.

Like the one-dimensional case, the fastest known algorithm for k-SUM in Fdp is the
meet-in-the-middle algorithm in time Õ(ndk/2e), which matches with the above conditional
lower bound for even k.

Our conditional lower bound is meaningful for each k ≥ 2, which is a stronger statement
than the asymptotic result by Bhattacharyya et. al.

Monotone d-dimensional 3SUM
Chan and Lewenstein [7] first studied bounded monotone d-dimensional 3SUM, motivated by
bounded monotone (min,+)-convolution and histogram indexing. Chan and Lewenstein gave
a remarkable Õ(n2− 2

d+13 ) algorithm with techniques from additive combinatorics. One of
our main result is to show this algorithm is essentially optimal under the 3SUM conjecture.

1 Õ(f(n)) is a notation for O(f(n)polylog(n)).



C. Hsu and C. Umans 50:3

I Definition 4 (Bounded Monotone d-dimensional 3SUM). A set A ⊂ Zd is monotone
increasing if it can be sorted as A = {a1, . . . , an} such that the j-th coordinates of a1, . . . , an
form a monotone increasing sequence for each j = 1, . . . , d. Given monotone sets A,B, S ⊂
[n]d, bounded monotone d-dimensional 3SUM asks if there exist a ∈ A, b ∈ B, s ∈ S such
that a+ b = s.2

Chan and Lewenstein’s subquadratic Õ(n2− 2
d+13 ) algorithm shows that bounded monotone

d-dimensional 3SUM is easier than integer 3SUM, but how much easier? Since monotonicity
is a strong restriction on the set structure, one may wonder whether further improvements
are possible. We show, under the 3SUM conjecture, the answer is no:

I Theorem 5. Under the standard 3SUM conjecture, bounded d-dimensional monotone
3SUM requires time Ω(n2− 4

d−o(1)).

One can also define a strong version of the 3SUM conjecture (see Conjecture 8) and this
yields a slightly stronger result:

I Theorem 6. Under the strong 3SUM conjecture, bounded d-dimensional monotone 3SUM
requires time Ω(n2− 2

d−o(1)).

In Chan and Lewenstein’s Õ(n2− 2
d+13 ) upper bound, the exponent 2− 2/(d+ 13) comes

from solving a quadratic equation capturing a fairly involved recurrence; it is surprising to
see essentially the same exponent arise for completely different reasons in our lower bound.

Standard vs Strong 3SUM Conjecture
In this section we discuss the so-called “strong” 3SUM conjecture. For clarity, we refer to
the well-known 3SUM conjecture (a special case of Conjecture 2) as the “standard” 3SUM
conjecture:

I Conjecture 7 (Standard 3SUM Conjecture). Integer 3SUM requires time Ω(n2−o(1)).

It is known that 3SUM on a set of n integers can be reduced to the bounded domain
of {−n3, . . . , n3} via a randomized reduction [5, 17]. The strong 3SUM conjecture further
restricts the domain to {−n2, . . . , n2}. It was first proposed by Amir, Chan, Lewenstein, and
Lewenstein to obtain better conditional lower bounds for jumbled indexing [4]. 3

I Conjecture 8 (Strong 3SUM Conjecture). 3SUM on a set of n integers in the domain of
{−n2, . . . , n2} requires time Ω(n2−o(1)).

As a context for the strong 3SUM conjecture, 3SUM in the domain of {−n2−δ, . . . , n2−δ}
can be solved in time Õ(n2−δ) by Fast Fourier Transform (FFT). However, it is a long-
standing open problem whether there is a truly subquadratic algorithm for 3SUM in the
domain of {−n2, . . . , n2}.

It is an open problem whether the strong 3SUM conjecture is equivalent to the standard
3SUM conjecture. In this paper, we prove a partial result along these lines in Theorem 9.
This result may be a folklore in some communities, but it seems that it has not been written
down, so we include a formal analysis for completeness.

2 [m] is a notation for {0, 1, . . . , m− 1}.
3 Recently, Goldstein, Kopelowitz, Lewenstein, and Porat [13] showed that the strong 3SUM conjecture is

not necessary for the hardness of jumbled indexing, and improved the result by basing on the standard
3SUM conjecture.

MFCS 2017



50:4 On Multidimensional and Monotone k-SUM

I Theorem 9. Under the standard 3SUM conjecture, 3SUM+ in the domain of {−n2+δ, ..., n2+δ}
requires time Ω(n2−o(1)) for any δ > 0.

Here, 3SUM+ is the extension of 3SUM that reports all a3 ∈ A3 such that a1 +a2 +a3 = 0
for some a1 ∈ A1, a2 ∈ A2, i.e. it outputs A3∩−(A1 +A2). As noted by Chan and Lewenstein
[7], all the known 3SUM algorithms actually solve 3SUM+, including Fast Fourier Transfrom
and Baren et al.’s slightly subquadratic O((n2/ log2 n)(log logn)2) algorithm [5].

If Theorem 9 still holds with δ = 0 and 3SUM in place of 3SUM+, then the strong 3SUM
conjecture would be equivalent to the standard 3SUM conjecture.

Organization
The next three sections contain the technical proofs of the main theorems. In Section 2, we
prove Theorem 3, the lower bound for k-SUM in Fdp under the k-SUM conjecture. Section
3 contains the proofs for Theorem 5 and Theorem 6, which are lower bounds for bounded
monotone 3SUM under the standard and strong 3SUM conjectures. In Section 4, we prove
Theorem 9.

2 Reductions Used for the Lower Bound for k-SUM in Fd
p

Underlying the lower bound for k-SUM in Fdp is a pair of reductions: a reduction from integer
k-SUM in Fdp to integer (k+ 1)-SUM, and a reduction from integer k-SUM to (k+ 1)-SUM in
Fdp. From the reductions, we deduce conditional lower bounds for k-SUM in Fdp, for bounded
monotone d-dimensional 3SUM, and for 3SUM+ in bounded domain {−n2+δ, ..., n2+δ}.

A natural idea for reduction is to use the bijection between Fdp and [pd] ⊂ Z, seeing
Fdp as a base-p representation of integers. However, the bijection is not an abelian group
homomorphism, due to the “carries” in integer addition and the mod p effect in Fdp-addition.
The main challenge is to simulate the carries while preserving the k-SUM structure.

Lemma 10 is the reduction from k-SUM in Fdp to integer (k + 1)-SUM. This is the easier
direction among the two reductions. We map a = (a0, ..., ad−1) ∈ Fdp 7→

∑d−1
i=0 ai(kp)i ∈ Z,

treating Fdp coordinates as digits in a base-kp number. Since the digits are blown up by
powers of kp, there are no “carries” in integer addition.

I Lemma 10. Given a k-SUM instance in Fdp on k sets A(1), · · · , A(k) of size n, it can be
reduced to an integer (k + 1)-SUM instance on k sets of size n and an additional set of size
kd.

Proof. Let g : Fdp → Z be the injective map a = (a0, ..., ad−1) 7→
∑d−1
i=0 ai(kp)i.

For any a(1), . . . , a(k) ∈ Fdp, the sum a(1) + · · · + a(k) is zero in Fdp if and only if the
i-th coordinate sum

∑k
j=1 a

(j)
i is a multiple of p for all 0 ≤ i < d. Since a(j)

i < p, we
know

∑k
j=1 a

(j)
i < kp. The above condition can be rewritten as

∑k
j=1 a

(j)
i = λip, where

λi ∈ {0, ..., k − 1}. This is further equivalent to

g(a(1)) + · · ·+ g(a(k)) =
d−1∑
i=0

λip(kp)i for some (λ1, . . . , λd) ∈ [k]d.

Therefore, the original k-SUM instance in Fdp can be reduced to the integer (k + 1)-SUM
instance on g(A(1)), . . . , g(A(k)), and an additional set {−

∑d−1
i=0 λip(kp)i : (λi) ∈ [k]d}.

J



C. Hsu and C. Umans 50:5

I Corollary 11. Given a k-SUM instance in Fdp on k sets of size n, it can be reduced to kd
instances of integer k-SUM.

Proof. Using the reduction in Lemma 10, we can solve the (k + 1)-SUM instance by
enumerating the additional set of size kd. For each element a in the additional set of size kd,
subtract a from the first set, and solve the k-SUM instance on the first k sets. J

Since the proof only uses the additive structure of Fdp, Lemma 10 also holds more generally
for k-SUM instance in Zdq , where q is not necessarily a prime number. In fact, all proofs in
this section can be adapted to Zdq with some modification.

In the reverse direction, it is more challenging to design a reduction from integer to Fdp,
since the reduction needs to simulate integer addition carries with Fdp.

In the proof of Lemma 12, we start with the bijection between Fdp and [pd] ⊂ Z, viewing
Fdp as a base-p representation of integers. This provides a way to map integers to Fdp, but
unfortunately the map does not preserve the additive structure in k-SUM. To fix this problem,
the key observation is that the map does preserve the additive structure with respect to
k-SUM when all coordinates are between 0 and

⌊
p
k

⌋
. Points in {0, . . . ,

⌊
p
k

⌋
}d ⊂ Fdp behaves

nicely for our purpose. Therefore, we divide Fp into k chunks: {0, . . . ,
⌊
p
k

⌋
}, {
⌈
p
k

⌉
, . . . , 2

⌊
p
k

⌋
},

. . . , {λ
⌈
p
k

⌉
, . . . , (λ+ 1)

⌊
p
k

⌋
}, and so on. Accordingly, Fdp is divided into kd cubes {Sλ : λ =

(λ1, . . . , λd) ∈ [k]d}. For each cube, we shift it to align with the nice cube S0 = {0, . . . ,
⌊
p
k

⌋
}d

where the reduction preserves the additive structure, perform the reduction, and then shift it
back.

A similar technique was first used by Abboud, Lewi, and Williams [2] to reduce integer
k-SUM to k-VECTOR-SUM.

I Lemma 12. Assume p > k2. Given an integer k-SUM instance on k sets X(1), ..., X(k) of
size n in the bounded universe [m], it can be reduced to a (k + 1)-SUM instance in F2d

p on k
sets of size n and a set of size k2d, where d = logpm.

Proof. Let f : Fdp → {0, ...,m} be the bijection a = (a0, ..., ad−1) 7→
∑d−1
i=1 aip

i. Note this is
a bijection but does not preserve the additive structure.

Define µ : Fdp → [k]d as the following index function. For any a = (a0, ..., ad−1) ∈ Fdp,
µ(a) = (µ0, ..., µd−1), where µi is defined to be the integer such that µi

⌈
p
k

⌉
≤ ai < (µi+1)b pk c.

For any λ ∈ [k]d, define Sλ := {a ∈ Fdp : µ(a) = λ}. Define a = a−
⌊
p
k

⌋
· µ(a), then we

can write

a = a+
⌊p
k

⌋
· µ(a),

where a ∈ S0.

f(a) = f(a) +
d−1∑
i=1

µi(a)
⌊p
k

⌋
pi.

Observe that for any a(1), ..., a(k) ∈ S0, it is true that
∑k
j=1 f(a(j)) = f(

∑k
j=1 a

(j)). This
equality does not hold in general for elements outside S0.

Thus, for any a(1), ..., a(k) ∈ Fdp,

k∑
j=1

f(a(j)) =
k∑
j=1

f(a(j)) +
d∑
i=1

 k∑
j=1

µi(a(j))

⌊p
k

⌋
pi.

MFCS 2017



50:6 On Multidimensional and Monotone k-SUM

Fix λ(1), ..., λ(k) ∈ [k]d. For any (x1, ..., x(k)) where x(j) ∈ X(j) ∩ Sλ(j) , if we denote
a(j) = f−1(x(j)), then

k∑
j=1

x(j) =
k∑
j=1

f(a(j)) =
k∑
j=1

f(a(j))+
d∑
i=1

k∑
j=1

λ
(j)
i

⌊p
k

⌋
pi = f(

k∑
j=1

a(j))+
d∑
i=1

k∑
j=1

λ
(j)
i

⌊p
k

⌋
pi.

Thus,

k∑
j=1

x(j) = 0 ⇐⇒ f(
k∑
j=1

a(j)) +
d∑
i=1

k∑
j=1

λ
(j)
i

⌊p
k

⌋
pi = 0,

and

k∑
j=1

x(j) = 0 ⇐⇒
k∑
j=1

a(j) = f−1

− d∑
i=1

k∑
j=1

λ
(j)
i

⌊p
k

⌋
pi

 . (*)

Note that the right hand side only depends on λ(1), ..., λ(k), or more specifically
∑k
j=1 λ

(j)
i .

This gives a reduction from the integer k-SUM instance to a (k + 1)-SUM instance on k
sets of size n in Fdp × Zd of the form

A(j) = {(a, µ(a)) : f(a) ∈ X(j)},

and a set of size k2d consisting of elements in the form of

−

(
f−1(−

d∑
i=1

σi

⌊p
k

⌋
pi), σ

)
,

for all σ ∈ [k2]d ⊂ Zd. The range [k2]d is determined by the fact that since λ(j) ∈ [k]d for
each j, the sum σ is bounded above by k2 in each coordinate. The Zd component in Fdp ×Zd
is always bounded in [k2]d, so Fdp × Zd can be viewed as F2d

p when p > k2. J

The assumption p > k2 in Lemma 12 is adopted only to simplify some details at the
end when turning Fdp × [k2]d into F2d

p . When p ≤ k2, the same techniques apply with more
care in dealing with the [k2]d component. All previous parts before (*) in the proof hold for
p > k, so the following corollary only requires p > k.

I Corollary 13. Assume p > k. Given an integer k-SUM instance on k sets of size n in the
bounded universe [m], it can be reduced to k2d instances of k-SUM in Fdp on k sets of size n,
where d = logpm.

Proof. This follows from the reduction up to (*) in the proof of the previous theorem. J

Lower Bound for k-SUM in Fd
p

The following lower bound under the k-SUM conjecture follows from Lemma 12. For even
k, our result matches with the Õ(nk/2) upper bound. For odd k, our lower bound is
Ω(ndk/2e−2k log k

log p−o(1)), while the best known upper bound is Õ(ndk/2e). The conditional
lower bound converges to the upper bound as p→∞, which is expected since the group Fp
behaves “more and more like Z” as p increases.

The assumption that p is large enough such that p ≥ k2k is still a meaningful assumption,
because k2k is a constant for fixed k.



C. Hsu and C. Umans 50:7

I Theorem 3. (Restated) For any k ≥ 2, assume p is sufficiently large such that p ≥ k2k.
Under the k-SUM conjecture, k-SUM in Fdp requires time Ω(nk/2−o(1)) for even k, and
Ω(ndk/2e−2k log k

log p−o(1)) for odd k, for d ≥ 2k logp n.

Proof. Using a randomized reduction [5, 17], we can assume without loss of generality that
a given integer k-SUM instance is in the bounded domain [nk] = {0, . . . , nk − 1}.

Suppose k is even. By Lemma 12, any integer (k − 1)-SUM instance can be reduced to a
k-SUM instance in Fdp on k−1 sets of size n and a set of size (k−1)d, where d = 2 logp n(k−1).
(The d used here is 2d in Lemma 12.) Assuming p > k2k, then the size of the last set can be
bounded above by (k − 1)d ≤ kd = n2k log k

log p ≤ n. Hence, integer (k − 1)-SUM can be reduced
to k-SUM in Fdp on k sets of size n. If k-SUM in Fdp can be solved in time O(nk/2−ε), then
integer (k− 1)-SUM could be solved in time O(nk/2−ε) = O(nd

k−1
2 e−ε), violating the k-SUM

conjecture.
Suppose k is odd. By Corollary 13, integer k-SUM can be reduced to kd instances of

k-SUM in Fdp. If k-SUM in Fdp can be solved in time O(ndk/2e−2k log k
log p−ε), then integer (k− 1)-

SUM could be solved in time kd ×O(ndk/2e−2k log k
log p−ε). Since d = 2 logp n(k−1) ≤ 2k logn

log p , we
can bound kd by kd = nd

log k
logn ≤ n2k log k

log p . Therefore, integer (k − 1)-SUM could be solved in
time kd ×O(ndk/2e−2k log k

log p−ε) ≤ O(ndk/2e−ε), violating the k-SUM conjecture.
J

In particular, under the 3SUM conjecture, 3SUM in Fdp requires time Ω(n2− 6
log3 p

−o(1)).
This implies that there does not exist an ε > 0 such that 3SUM in Fdp can be solved in
O(n2−ε) for all prime p, under the 3SUM conjecture. Combined with the reduction in Lemma
10, we obtain the following weak equivalence between integer k-SUM and k-SUM in Fdp.

I Theorem 14. For any k ≥ 2, integer k-SUM can be solved in O(ndk/2e−δ) time for some
δ > 0 if and only if there exists an ε > 0 such that k-SUM in Fdp can be solved in O(ndk/2e−ε)
for all sufficiently large prime p.

Proof. Suppose integer k-SUM can be solved in O(ndk/2e−δ) time for some 0 < δ < 1. Take
ε = δ/2, and take p large enough such that k log k

log p < δ/2. Using a randomized reduction,
we may assume without loss of generality that d ≤ k logp n. By Corollary 11, k-SUM in Fdp
can be reduced to kd instances of integer k-SUM, so k-SUM in Fdp can be solved in time
kd ·O(ndk/2e−δ) ≤ nk

log k
log p ·O(ndk/2e−δ) = O(ndk/2e−δ/2).

Conversely, suppose there exists an ε > 0 such that k-SUM in Fdp can be solved in
O(ndk/2e−ε) for all sufficiently large prime p. Then, there exists some p large enough
such that ε > 2k log k

log p . By the proof of Theorem 3, integer k-SUM can be solved in time
O(ndk/2e−ε+2k log k

log p ).
J

3 Proof of Lower Bound for Monotone 3SUM in [n]d

In Definition 4, we defined bounded monotone d-dimensional 3SUM to be 3SUM on a
monotone set in [n]d, where n is the range of the coordinates. Alternatively, one could also
define bounded monotone 3SUM to be on a monotone set of size n. Note that a monotone
set in [n]d can have size at most dn, so the two definitions are equivalent up to a factor of d.

To prove the lower bound for bounded monotone 3SUM, we reduce from Convolution-
3SUM to bounded monotone 3SUM. The Convolution-3SUM problem is a more restricted
version of 3SUM:

MFCS 2017



50:8 On Multidimensional and Monotone k-SUM

I Definition 15 (Convolution-3SUM). Given an array A[1 . . . n], determine whether there
exist i 6= j with A[i] +A[j] = A[i+ j].

Pătraşcu [17] first proved that if 3SUM requires Ω(n2−o(1)) time, then so does Convolution-
3SUM. Kopelowitz, Pettie, and Porat [16] showed that the randomized complexities of 3SUM
and Convolution-3SUM differ by at most a logarithmic factor.

Note that the brute force algorithm for Convolution-3SUM runs in O(n2) time, as there
are only O(n2) possible pairs to try. Amir, Chan, Lewenstein, and Lewenstein [4] pointed out
a (randomized) reduction from Convolution-3SUM in any large domain to Convolution-3SUM
in {−n2, . . . , n2}.

The above results imply that the 3SUM conjecture is equivalent to the hardness of
Convolution-3SUM in {−n2, . . . , n2}, making Convolution-3SUM a useful tool for our purpose.
Amir, Chan, Lewenstein, and Lewenstein [4] also restated the strong 3SUM conjecture as:
Any algorithm for Convolution-3SUM in the domain of {−n, . . . , n} requires Ω(n2−o(1)) time.

Previously we defined k-SUM as determining whether there exists a1 + · · ·+ ak = 0 for
ai ∈ Ai. In this section, for convenience we use an equivalent formulation of 3SUM: given
sets A,B, S, determine whether there exist a ∈ A, b ∈ B, s ∈ S such that a + b = s. The
benefit is to avoid negative integer values. For 3SUM or Convolution-3SUM on A,B, S in
{−u, . . . , u}, add u to all values in A,B, and add 2u to all values in S. Therefore, it is
sufficient to work with Convolution-3SUM in [n2] instead of {−n2, . . . , n2}, and [n] instead
of {−n, . . . , n}.

Convolution-3SUM in [m] is a special case of 3SUM in [n]× [m], by mapping the array
indices to the first coordinate, i.e. integer ai in a Convolution-3SUM instance is mapped to
the pair (i, ai) ∈ [n]× [m]. We will use this notation for simplicity. Since array indices are
unique, no two values have the same first coordinate.

First, we reduce integer Convolution-3SUM to d-dimensional Convolution-3SUM, using
the same techniques as in Lemma 12 (the reduction from integer 3SUM to d-dimensional
3SUM). Here we replace Fdp with [p]d, but the proof is nearly identical to Lemma 12, so we
do not repeat it here.

I Lemma 16. For any given dimension d, Convolution-3SUM in [nc] can be reduced to 4d
instances of Convolution-3SUM in [nc/d]d.

Next we reduce from d-dimensional Convolution-3SUM to monotone d-dimensional
Convolution-3SUM, by blowing up the bounded domain.

I Lemma 17. Convolution-3SUM in [m]d can be reduced to Convolution-3SUM on monotone
sets in [nm]d.

Proof. Let f : [n]× [m]d → [n]× [nm]d be the map (a0, a1, ..., ad) 7→ (a0,ma0 + a1, ...,ma0 +
ad). Take A′ = f(A), B′ = f(B), S′ = f(S). Since f is linear in each coordinate, a+b+s = 0
implies f(a) + f(b) + f(s) = 0. Conversely, if f(a) + f(b) + f(s) = 0, the first coordinate
guarantees a0 + b0 + s0 = 0, and then it follows that ai + bi + si = 0 in each coordinate.

Since no two points in A (resp. B, S) share the same first coordinate, the new sets A′
(resp. B′, S′) are monotone if we order them in increasing a0 (resp. b0, s0), because the a0
dominates in ma0 + ai.

J

The following lemma is the main technical lemma from which Theorem 5 and Theorem 6
easily follow.



C. Hsu and C. Umans 50:9

I Lemma 18. Let c be a real constant between 1 ≤ c ≤ 2, let d > c be an integer, and let
δ > 0 be an arbitrarily small constant. Assume n is large enough such that n > 24d/δ. If
3SUM for monotone sets in [n]d can be solved in time O(n2−2c/d−δ), then Convolution-3SUM
in [nc] can be solved in time O(n2−δ/2).

Proof. Let γ = c
d < 1. By Lemma 16 and Lemma 17, Convolution-3SUM in [nc] can be

reduced to 4d instances of Convolution-3SUM on monotone sets in [n(1+γ)]d. By writing the
array index as an additional dimension, i.e. mapping ai in a Convolution-3SUM instance
to (i, ai), each of the 4d Convolution-3SUM instances can be seen as (d + 1)-dimensional
monotone 3SUM in [n(1+γ)](d+1).

By assumption, 4d instances of (d+ 1)-dimensional monotone 3SUM in [n(1+γ)](d+1) can
be solved in time

4d ·O(n(1+γ)(2−2c/d−δ)) = O(n
d

log4 n
+(1+γ)(2(1−c/d)−δ)).

The exponent can be simplified as follows. When n > 24d/δ,

d

log4 n
+ (1 + γ)(2(1− c/d)− δ) = 2− δ − γδ − 2γ2 + d

log4 n
< 2− δ/2.

Thus, when n is sufficiently large, the 4d instances of (d+1)-dimensional monotone 3SUM
can be solved in time O(n2−δ/2).

J

I Theorem 5. (Restated) Under the standard 3SUM conjecture, bounded d-dimensional
monotone 3SUM requires time Ω(n2− 4

d−o(1)).

Proof. This is a immediate corollary to Lemma 18 with c = 2. J

The lower bound can be improved to Ω(n2− 4
d+1−o(1)) specifically for c = 2 with a little

extra computation.
One can also define a strong version of the 3SUM conjecture (see Definition 8) and this

yields a slightly stronger result:

I Theorem 6. (Restated) Under the strong 3SUM conjecture, bounded d-dimensional
monotone 3SUM requires time Ω(n2− 2

d−o(1)).

Proof. This is a immediate corollary to Lemma 18 with c = 1. J

4 Strong 3SUM Conjecture vs 3SUM Conjecture

The 3SUM conjecture states that integer 3SUM requires time Ω(n2−o(1)), while the strong
3SUM conjecture states that integer 3SUM in the bounded domain of {−n2, . . . , n2} requires
time Ω(n2−o(1)). We would like to understand whether the 3SUM conjecture is equivalent to
the strong 3SUM conjecture. To add evidence to this, we prove a partial result that 3SUM+

in the domain of {−n2+δ, ..., n2+δ} is as hard as unbounded integer 3SUM, using ideas about
multidimensional 3SUM from previous sections.

I Lemma 19 (Lemma 1, [5]). Let A be a sorted list of n integers. For any fixed c ∈ A, we
can decide whether c is a hit (i.e., whether there exist a, b ∈ A such that a+ b = c) in O(n)
time.

MFCS 2017



50:10 On Multidimensional and Monotone k-SUM

The proof idea for Lemma 20 is similar to our reduction from multidimensional 3SUM to
integer 3SUM in Lemma 10. Instead of F3

p, we consider 3SUM in the group Fp1 × Fp2 × Fp3

for three different primes.

I Lemma 20. Let 0 < ε < 1. If 3SUM+ in [M ] can be solved in O(n2−ε) time, then for any
primes p1, p2, p3 such that p1p2p3 ≤ M

32 , 3SUM
+ in Fp1 × Fp2 × Fp3 can be solved in O(n2−ε)

time.

Proof. Let S ⊂ Fp1 × Fp2 × Fp3 be a subset of size n. Let ϕ : Fp1 × Fp2 × Fp3 × {0, 1}3 →
[32p1p2p3] ⊂ Z be the injective map

ϕ : (a1, a2, a3, t1, t2, t3) 7→ϕ (t1p1 + a1) · (16p2p3) + (t2p2 + a2) · (4p3) + (t3p3 + a3).

Let A be the image A := ϕ(S × {0, 1}3). The size of A is 8n.
It is easy to check ϕ(a1, a2, a3, t1, t2, t3) + ϕ(b1, b2, b3, r1, r2, r3) = ϕ(c1, c2, c3, w1, w2, w3)

implies (a1, a2, a3) + (b1, b2, b3) = (c1, c2, c3) in Fp1 × Fp2 × Fp3 .
Conversely, suppose (a1, a2, a3)+(b1, b2, b3) = (c1, c2, c3) in Fp1×Fp2×Fp3 . For i = 1, 2, 3,

since ai+bi = ci (mod pi), either ai+bi = ci or ai+bi = ci+pi. Thus, there exists w1, w2, w3 ∈
{0, 1} such that ϕ(a1, a2, a3, 0, 0, 0) + ϕ(b1, b2, b3, 0, 0, 0) = ϕ(c1, c2, c3, w1, w2, w3).

To solve 3SUM+ on S, first solve 3SUM+ on A, which reports all (A+A)∩A. The 3SUM+

instance on S then outputs all (c1, c2, c3) ∈ S such that ϕ(c1, c2, c3, w1, w2, w3) ∈ (A+A)∩A
for some w1, w2, w3 ∈ {0, 1}. The reduction takes O(n) time. J

I Lemma 21. Let a1, . . . , ak be k non-zero integers in the domain {−u, . . . , u}. For any
sufficiently large M ,

Pr
p1,p2,p3∈PM

[
#{i : ai ≡ 0 mod p1p2p3} < 24 log3(M) log3(u)

M3 k

]
≥ 2

3 .

Proof. Let Xi = 1 if ai ≡ 0 mod p1p2p3, and Xi = 0 otherwise. For each i = 1, . . . , k, the
number of distinct prime factors of ai is at most log u. By the Prime Number Theorem,
π(M) ∼ M

logM , where π(M) is the number of primes in {1, . . . ,M}. Hence, for M sufficiently
large, π(M) ≥ 1

2
M

logM , and

Pr
p∈PM

[ai ≡ 0 mod p] ≤ log u
1
2

M
logM

= 2logM log u
M

.

Since p1, p2, p3 are independently chosen primes,

E[Xi] = Pr
p1,p2,p3∈PM

[Xi = 1] =
3∏
j=1

Pr
pj∈PM

[ai ≡ 0 mod pj ] ≤
(

2 logM log u
M

)3
.

Let X =
∑
iXi = #{i : ai ≡ 0 mod p1p2p3}. By linearity of expectation,

E[X] =
∑
i

E[Xi] ≤ k ·
(

2 logM log u
M

)3
.

By Markov’s Inequality, Pr[X ≥ 3E[X]] ≤ 1
3 , as desired. J

I Lemma 22. For any 0 < δ < 1, suppose 3SUM+ in the bounded domain [n2+δ] can be
solved in O(n2−ε) time, then 3SUM can be solved in O(n1+δ +n2−ε +n2−δ log6(n)) time with
probability 2/3. (With probability 2/3, the algorithm answers yes or no correctly, otherwise
it outputs “Don’t Know”.)



C. Hsu and C. Umans 50:11

Proof. Using a randomized reduction [5, 17], assume without loss of generality the given
3SUM instance is in the domain of [n3]. Also assume without loss of generality that the
given 3SUM instance is on the same set A, asking whether there exist a, b, c ∈ A such that
a+ b = c. Consider the following algorithm.

Step 1. Sort A. Choose 2nδ elements in A with uniform probability, and determine
whether each of them is a hit. If a hit is found among the 2nδ elements, output yes and
terminate. Otherwise, proceed to step 2. By Lemma 19, this step takes O(n1+δ) time.

Step 2. Choose three primes p1, p2, p3 independently with uniform probability among
all primes less than n(2+δ)/3. Map A to a set in A′ in Fp1 × Fp2 × Fp3 by a 7→ (amod p1, a

mod p2, amod p3). By Lemma 20, under the given assumption, 3SUM+ on A′ can be solved
in O(n2−ε) time.

Step 3. If the 3SUM+ instance on A′ reports more than 648 log6(n)n1−δ hits, the
algorithm fails and outputs “Don’t Know”.

Step 4. If the 3SUM+ instance on A′ reports no more than 648n1−δ log6(n) hits, for
each pre-image of the hits, determine whether it is a hit in integer 3SUM. If a hit is found,
output yes. Otherwise, output no. By Lemma 19, this step runs in time O(n2−δ log6(n)).

The total runtime of the algorithm is O(n1+δ + n2−ε + n2−δ log6(n)). To analyze the
probability bound:

Suppose there are at least n1−δ hits in A, then each randomly chosen element in Step
1 is a hit with probability at least n−δ. Let X be the total number of hits among the 2nδ
randomly chosen elements in Step 1, and let µ = E[X]. Since µ ≥ 2, by Multiplicative
Chernoff Bound,

Pr[X = 0] ≤ Pr[X < (1− 1
2)µ] <

(
e−

1
2

(1− 1
2 )1− 1

2

)µ
= (2e)−

µ
2 ≤ 1

2e .

Thus, if the integer 3SUM instance on A has more than n1−δ hits, the algorithm correctly
outputs yes in Step 1 with probability at least 1− 1

2e ≥
2
3 .

Suppose the 3SUM instance on A has fewer than n1−δ hits. By applying Lemma 21 to all
non-zero ai + bj − ck (at most n3 triples), we know with probability at least 2/3, the number
of false positive triples is no more than

24n3 log3(n(2+δ)/3) log3(n3)
(n(2+δ)/3)3 ≤ 24(2 + δ)3 log6(n)n1−δ ≤ 648n1−δ log6(n).

Thus, the algorithm outputs yes/no correctly in Step 4 with probability at least 2/3, and
outputs “Don’t Know” in Step 3 with probability at most 1/3.

J

I Theorem 9. (Restated) Under the standard 3SUM conjecture, 3SUM+ in the domain
of {−n2+δ, ..., n2+δ} requires time Ω(n2−o(1)) for any δ > 0.

Proof. This is an immediate corollary to Lemma 22. J

5 Conclusion and Open Problems

Under the standard k-SUM conjecture, we proved lower bounds for k-SUM in Fdp, for bounded
monotone d-dimensional 3SUM, and for 3SUM+ in the bounded domain of {−n2+δ, . . . , n2+δ}
for arbitrarily small δ.

One open problem is whether there is a lower bound for 3XOR (3SUM in Fd2) under the
3SUM conjecture. Our result is only meaningful for p that are sufficiently large as a function

MFCS 2017



50:12 On Multidimensional and Monotone k-SUM

of k. In particular, it does not assert anything for p = 2. 3XOR is related to other well known
problems such as listing triangles [15]. Not much is known about the complexity of 3XOR.
Even an O(n1.99) algorithm or an Ω(n1.01) lower bound for 3XOR would be significant.

Another open problem is to obtain a faster k-SUM algorithm in Fdp for odd k. Our
conditional lower bound for k-SUM in Fdp is tight for even k. However, for odd k, there
is a gap between the best known Õ(ndk/2e) algorithm and our Ω(ndk/2e−2k log k

log p−o(1)) lower
bound. From an optimistic perspective, for odd k, our results suggest that there may be
an O(ndk/2e−2k log k

log p ) algorithm for k-SUM in Fdp without violating the k-SUM conjecture. In
particular, there may be an O(n2− c

log p ) algorithm for 3SUM in Fdp, even under the 3SUM
conjecture.

References

1 Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-SUM conjecture. In In-
ternational Colloquium on Automata, Languages, and Programming, pages 1–12. Springer,
2013.

2 Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges. In
European Symposium on Algorithms, pages 1–12. Springer, 2014.

3 Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy testing. Journal of
the ACM (JACM), 52(2):157–171, 2005.

4 Amihood Amir, Timothy M Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness
of jumbled indexing. In Automata, Languages, and Programming, pages 114–125. Springer,
2014.

5 Ilya Baran, Erik D Demaine, and Mihai Pătraşcu. Subquadratic algorithms for 3SUM.
Algorithmica, 50(4):584–596, 2008.

6 Arnab Bhattacharyya, Piotr Indyk, David P Woodruff, and Ning Xie. The complexity of
linear dependence problems in vector spaces. In ICS, pages 496–508, 2011.

7 Timothy M Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combin-
atorics. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, pages 31–40. ACM, 2015.

8 Rod G Downey, Michael R Fellows, Alexander Vardy, and Geoff Whittle. The parametrized
complexity of some fundamental problems in coding theory. SIAM Journal on Computing,
29(2):545–570, 1999.

9 Jeff Erickson. Lower bounds for linear satisfiability problems. In Chicago Journal of
Theoretical Computer Science, volume 8, 1999.

10 Ari Freund. Improved subquadratic 3sum. Algorithmica, pages 1–19, 2015.
11 Anka Gajentaan and Mark H Overmars. On a class of O(n2) problems in computational

geometry. Computational Geometry, 5(3):165–185, 1995.
12 Omer Gold and Micha Sharir. Improved bounds for 3sum, k-sum, and linear degeneracy.

arXiv preprint arXiv:1512.05279, 2015.
13 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. How hard is it to find

(honest) witnesses? In LIPIcs-Leibniz International Proceedings in Informatics, volume 57.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

14 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. In Founda-
tions of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 621–630.
IEEE, 2014.

15 Zahra Jafargholi and Emanuele Viola. 3SUM, 3XOR, triangles. Algorithmica, 74(1):326–
343, 2016.



C. Hsu and C. Umans 50:13

16 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjec-
ture. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1272–1287. Society for Industrial and Applied Mathematics, 2016.

17 Mihai Pătraşcu. Towards polynomial lower bounds for dynamic problems. In Proceedings
of the Forty-Second ACM Symposium on Theory of computing, pages 603–610. ACM, 2010.

18 Mihai Pătraşcu and Ryan Williams. On the possibility of faster SAT algorithms. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1065–1075. SIAM, 2010.

19 Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting weighted sub-
graphs. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing,
pages 455–464. ACM, 2009.

20 Emanuele Viola. Reducing 3XOR to listing triangles, an exposition. In Electronic Col-
loquium on Computational Complexity (ECCC), volume 18, page 113, 2011.

MFCS 2017


	Introduction
	Reductions Used for the Lower Bound for k-SUM in Fpd
	Proof of Lower Bound for Monotone 3SUM in [n]d
	Strong 3SUM Conjecture vs 3SUM Conjecture
	Conclusion and Open Problems

