

Hardness and completeness

- Reasonable that can efficiently transform one problem into another.
- Surprising:
- can often find a special language L so that every language in a given complexity class reduces to L!
- powerful tool

May 27, 2014

Hardness and completeness

- Recall:
- a language L is a set of strings
- a complexity class C is a set of languages

Definition: a language L is C -complete if L is C -hard and $\mathrm{L} \in \mathrm{C}$ meaning: L is a "hardest" problem in C

Hardness and completeness

- Recall:
- a language L is a set of strings
- a complexity class C is a set of languages

Definition: a language L is C -hard if for every language $A \in C$, A poly-time reduces to L; i.e., $A \leq_{p} L$.
meaning: L is at least as "hard" as anything in C

May 27, 2014
CS38 Lecture 17

Lots of NP-complete problems

- logic problems
-3-SAT $=\{\varphi: \varphi$ is a satisfiable 3-CNF formula $\}$
- NAE3SAT, $(3,3)$-SAT
- Max-2-SAT
- finding objects in graphs
- independent set
- problems on numbers
- vertex cover
- subset sum
- clique
- knapsack
- partition
- sequencing - splitting things up
- Hamilton Path - max cut
- Hamilton Cycle and TSP - min/max bisection

Example: Integer programming

Definition: Integer Linear Program (ILP) = \{LPs with integer variables that have a feasible solution\}
Theorem: ILP is NP-complete.

- Proof:
- Part 1: ILP \in NP. Proof? (try just for 0/1)
- Part 2: ILP is NP-hard.
- reduce from?

Integer programming

- We are reducing from the language:
$3-$ SAT $=\{\varphi: \varphi$ is a satisfiable 3-CNF formula $\}$ to the language:

ILP = \{LPs with integer variables that have a feasible solution\}

May 27, 2014
CS38 Lecture 17
8

Integer programming

$$
\varphi=(x \vee y \vee \neg z) \wedge(\neg x \vee w \vee z) \wedge \ldots \wedge(\ldots)
$$

- ILP variable x for each Boolean variable x
- $0 \leq x \leq 1$
- represent $\neg x$ by $(1-x)$
- each clause has a natural linear expression:
- e.g. $(x \vee y \vee \neg z) \rightarrow(x+y+(1-z))$
- constrain each such expression to be ≥ 1 is this reduction polynomial time?

Integer programming

$$
\varphi=(x \vee y \vee \neg z) \wedge(\neg x \vee w \vee z) \wedge \ldots \wedge(\ldots)
$$

- ILP variable x for each Boolean variable x
- $0 \leq x \leq 1$
- represent $\neg x$ by $(1-x)$
- each clause has a natural linear expression:
-e.g. $(x \vee y \vee \neg z) \rightarrow(x+y+(1-z))$
- constrain each such expression to be ≥ 1

NO maps to NO?

Coping with intractability

- NP-complete problem cannot have a polynomial-time algorithm, unless $\mathrm{P}=\mathrm{NP}$
- considered unlikely

NP-complete problems are everywhere!
we need strategies to deal with them

Coping with intractability

- Strategies for coping with intractability
- consider special case or more restrictive version of the problem
- parameterized complexity
- problem size n, parameter k
- find $\mathrm{O}\left(\exp (\mathrm{k})\right.$. poly(n)) instead of $\mathrm{O}\left(\mathrm{n}^{k}\right)$ algorithm - approximation algorithms: for optimization problems, find an approximate solution
- heuristics...

May 27, 2014
CS38 Lecture 17

Independent set on trees

Independent set on trees. Given a tree, find a maximum cardinality subset of nodes such that no two are adjacent.

Fact. A tree has at least one node that is a leaf (degree $=1$).

Key observation. If node v is a leaf, there exists
a max cardinality independent set containing v.
Pf. [exchange argument]

- Consider a max cardinality independent set S.

- If $v \in S$, we're done.
- Let (u, v) be some edge.
if $u \notin S$ and $v \notin S$, then $S \cup\{v\}$ is independent $\Rightarrow S$ not maximum
if $u \in S$ and $v \notin S$, then $S u\{v\}-\{u\}$ is independent *

Special case example

Independent set on trees: greedy algorithm

Theorem. The following greedy algorithm finds a max cardinality independent set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. -

Independent-Set-In-A-Forest (F)
$S \leftarrow \emptyset$.
While (F has at least 1 edge)
$e \leftarrow(u, v)$ such that v is a leaf.
$S \leftarrow S \cup\{v\}$
$F \leftarrow F-\{u, v\}$. \longleftarrow delete u and v and all incident edges
Return S.

Remark. Can implement in $O(n)$ time by considering nodes in postorder.

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights $w_{v}>0$,
find an independent set S that maximizes $\Sigma_{v \in S} w_{v}$.

Dynamic programming solution. Root tree at some node, say r.

- $O P T_{i n}(u)=\max$ weight independent set of subtree rooted at u, containing u.
- $O P T_{\text {out }}(u)=$ max weight independent set of subtree rooted at u, not containing u.
- $O P T=\max \left\{O P T_{\text {in }}(r), O P T_{\text {out }}(r)\right\}$.

$$
\begin{aligned}
& O P T_{\text {in }}(u)=w_{u}+\sum_{v \in \operatorname{children}(u)} O P T_{\text {out }}(v) \\
& O P T_{\text {out }}(u)=\sum_{v \in \text { children }(u)} \max \left\{O P T_{\text {in }}(v), O P T_{\text {out }}(v)\right\}
\end{aligned}
$$

children $(\mathrm{u})=\{\mathrm{v}, \mathrm{w}, \mathrm{x}\}$

Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a max weighted independent set in a tree in $O(n)$ time.
can also find independent set itself (not just value)

```
Weighted-Independent-Set-In-A-Tree (T)
Root the tree T at a node r
S\leftarrow\emptyset.
Foreach (node u of T in postorder)
    IF (u is a leaf)
        Min[u]=Wu. ensures a node is visited
        Mour[u]=0. after all its children
    ELSE
```



```
        Mou[u] = \Sigmavechildren(u) max { Min[v], Mout[v]}.
    Return max { Min[r], Mou[r]}.
```

NP-hard problems on trees: context

Independent set on trees. Tractable because we can find a node that breaks the communication among the subproblems in different subtrees.

Linear-time on trees. Vertex-Cover, Dominating-Set, Graph-Isomorphism, ...

Parameterized complexity

 example
Vertex cover

Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ Finding small vertex covers
Q. VertexCover is NP-complete. But what if k is small?

Brute force. $O\left(k n^{k+1}\right)$.

- Try all $C(n, k)=O\left(n^{k}\right)$ subsets of size k.
- Takes $O(k n)$ time to check whether a subset is a vertex cover.

Goal. Limit to exponential dependency on k, say to $\mathrm{O}\left(2^{k} k n\right)$.
Ex. $n=1,000, k=10$.
Brute. $k n^{k+1}=10^{34} \Rightarrow$ infeasible.
Better. $2^{k} k n=10^{7} \Rightarrow$ feasible.

Remark. If k is a constant, then the algorithm is poly-time; if k is a small constant, then it's also practical.

Finding small vertex covers

Claim. Let (u, v) be an edge of G. G has a vertex cover of size $\leq k$ iff at least one of $G-\{u\}$ and $G-\{v\}$ has a vertex cover of size $\leq k-1$.

Pf. (\Rightarrow)

- Suppose G has a vertex cover S of size $\leq k$.
- S contains either u or v (or both). Assume it contains u.
- $S-\{u\}$ is a vertex cover of $G-\{u\}$.

Pf. (\Leftrightarrow)

- Suppose S is a vertex cover of $G-\{u\}$ of size $\leq k-1$.
- Then $S \cup\{u\}$ is a vertex cover of G.

Claim. If G has a vertex cover of size k, it has $\leq k(n-1)$ edges. Pf. Each vertex covers at most $n-1$ edges. -

Finding small vertex covers: algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $\mathrm{O}\left(2^{k} k n\right)$ time.

```
Vertex-Cover(G, k) {
        if (G contains no edges) return true
        if (G contains \geq kn edges) return false
        let (u,v) be any edge of G
        a = Vertex-Cover(G - {u}, k-1)
        b = Vertex-Cover(G - {v}, k-1)
        return a or b
```

Pf.

- Correctness follows from previous two claims.
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes $\mathrm{O}(k n)$ time. .

Approximation algorithms

Optimization Problems

- many hard problems (especially NP-hard) are optimization problems
- e.g. find shortest TSP tour
- e.g. find smallest vertex cover
- e.g. find largest clique
- may be minimization or maximization problem
- "OPT" = value of optimal solution

Approximation Algorithms

- Example approximation algorithm:

Vertex Cover (VC): given a graph G, what is the smallest subset of vertices that touch every edge?
Theorem: decision version of VC is NPcomplete
Proof: in NP (why?)

- reduce from?

May 27, 2014
CS38 Lecture 17 29
,

Approximation Algorithms

- often happy with approximately optimal solution
- warning: lots of heuristics
- we want approximation algorithm with guaranteed approximation ratio of r
- meaning: on every input x, output is guaranteed to have value
at most r*opt for minimization
at least opt/r for maximization

Approximation Algorithms

- Approximation algorithm for VC:
- pick an edge (x, y), add vertices x and y to VC
- discard edges incident to x or y; repeat.
- Claim: approximation ratio is 2 .
- Proof:
- an optimal VC must include at least one endpoint of each edge considered
- therefore 2.OPT \geq actual

May 27, 2014
CS38 Lecture 17

Weighted vertex cover

Given a graph $G=(V, E)$ with vertex weights $w_{i} \geq 0$, find a min weight subset of vertices $S \subseteq V$ such that every edge is incident to at least one vertex in S.

$$
\text { total weight }=6+23+7+9+10=55
$$

Weighted vertex cover: IP formulation

Given a graph $G=(V, E)$ with vertex weights $w_{i} \geq 0$, find a min weight subset of vertices $S \subseteq V$ such that every edge is incident to at least one vertex in S.

Integer programming formulation.

- Model inclusion of each vertex i using a $0 / 1$ variable x_{i}.

$$
x_{i}= \begin{cases}0 & \text { if vertex } i \text { is not in vertex cover } \\ 1 & \text { if vertex } i \text { is in vertex cover }\end{cases}
$$

Vertex covers in 1-1 correspondence with $0 / 1$ assignments:
$S=\left\{i \in V: x_{i}=1\right\}$.

- Objective function: maximize $\Sigma_{i} w_{i} x_{i}$.
- Must take either vertex i or j (or both): $x_{i}+x_{j} \geq 1$.

Weighted vertex cover: IP formulation

Weighted vertex cover. Integer programming formulation.

$$
\begin{array}{rlll}
(I L P) \min & \sum_{i \in V} w_{i} x_{i} & & \\
\text { s.t. } & x_{i}+x_{j} & \geq 1 & (i, j) \in E \\
& x_{i} & \in\{0,1\} & i \in V
\end{array}
$$

Observation. If x^{*} is optimal solution to (ILP), then $S=\left\{i \in V: x_{i}^{*}=1\right\}$ is a min weight vertex cover.

Integer programming

Given integers $a_{i j}, b_{i}$, and c_{j}, find integers x_{j} that satisfy:

$$
\begin{array}{rlrl}
\max c^{\prime} x & \sum_{j=1}^{n} a_{i j} x_{j} & \geq b_{i} & 1 \leq i \leq m \\
\text { s.t. } A x \geq b & x_{j} & \geq 0 & 1 \leq j \leq n \\
x & \text { integral } & x_{j} & \\
& \text { integral } & 1 \leq j \leq n
\end{array}
$$

Linear programming

Given integers $a_{i j}, b_{i}$, and c_{j}, find real numbers x_{j} that satisfy:

LP feasible region

LP geometry in 2D.
(P) $\max c^{t} x$
(P) $\max \sum_{j=1}^{n} c_{j} x_{j}$
s.t. $A x \geq b$
s.t. $\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \quad 1 \leq i \leq m$
$x_{j} \geq 0 \quad 1 \leq j \leq n$

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

Weighted vertex cover: LP relaxation

Linear programming relaxation.

```
(LP) min }\mp@subsup{\sum}{i\inV}{}\mp@subsup{w}{i}{}\mp@subsup{x}{i}{
    s.t. }\begin{array}{lll}{\mp@subsup{x}{i}{}+\mp@subsup{x}{j}{}}&{\geq1}&{(i,j)\inE}\\{\mp@subsup{x}{i}{}}&{\geq0,i\inV}
```

Observation. Optimal value of (LP) is δ optimal value of (ILP).
Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.
Q. How can solving LP help us find a small vertex cover?
A. Solve LP and round fractional values.

Weighted vertex cover: LP rounding algorithm

Lemma. If x^{*} is optimal solution to (LP), then $S=\left\{i \in V: x_{i}^{*} \geq 1 / 2\right\}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- Consider an edge $(i, j) \in E$.
- Since $x_{i}^{*}+x_{j}^{*} \geq 1$, either $x_{i}^{*} \geq 1 / 2$ or $x_{j}^{*} \geq 1 / 2 \Rightarrow$ (i, j) covered.

Pf. [S has desired cost]

- Let S^{*} be optimal vertex cover. Then

Theorem. The rounding algorithm is a 2-approximation algorithm. Pf. Lemma + fact that LP can be solved in poly-time.

Approximation Algorithms

- diverse array of ratios achievable
- some examples:
- (min) Vertex Cover: 2
- MAX-3-SAT (satisfy max \# clauses): 8/7
- (min) Set Cover: In n
- (max) Clique: $n / \log ^{2} n$
- (max) Knapsack: $(1+\varepsilon)$ for any $\varepsilon>0$
- many known to be "correct" unless $\mathrm{P}=\mathrm{NP}$

Approximation Algorithms

$$
\text { (max) Knapsack: }(1+\varepsilon) \text { for any } \varepsilon>0
$$

- called Polynomial Time Approximation Scheme (PTAS)
- algorithm runs in poly time for every fixed $\varepsilon>0$
- poor dependence on ε allowed
- If all NP optimization problems had a PTAS, almost like $\mathbf{P}=\mathbf{N P}$ (!)

May 27, 2014

CS38 Lecture 17

Knapsack problem

Knapsack problem.

- Given n objects and a knapsack.
- Item i has value $v_{i}>0$ and weighs $w_{i}>0$. -we assume $w_{i} \leq \mathrm{W}$ for each i
- Knapsack has weight limit W.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3,4\}$ has value 40 .

item	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7
original instance $(W=11)$		

Knapsack is NP-complete
KNAPSACK. Given a set X, weights $w_{i} \geq 0$, values $v_{i} \geq 0$, a weight limit W, and a target value V, is there a subset $S \subseteq X$ such that:

$$
\begin{aligned}
& \sum_{i \in S} w_{i} \leq W \\
& \sum_{i \in S} v_{i} \geq V
\end{aligned}
$$

SUBSET-SUM. Given a set X, values $u_{i} \geq 0$, and an integer U, is there a subset S $\subseteq X$ whose elements sum to exactly U ?

Theorem. SUBSET-SUM $\leq p$ KnaPSACK.
Pf. Given instance (u_{1}, \ldots, u_{n}, U) of SUBSET-Sum, create KnapsACK instance:

$$
\begin{array}{ll}
v_{i}=w_{i}=u_{i} & \sum_{i \in S} u_{i} \leq U \\
V=W=U & \sum_{i \in S} u_{i} \geq U
\end{array}
$$

Knapsack problem: dynamic programming I

Def. $\operatorname{OPT}(i, w)=\max$ value subset of items $1, \ldots, i$ with weight limit w.

Case 1. OPT does not select item i.

- OPT selects best of $1, \ldots, i-1$ using up to weight limit w.

Case 2. OPT selects item i.

- New weight limit $=w-w_{i}$.
- OPT selects best of $1, \ldots, i-1$ using up to weight limit $w-w_{i}$.

$$
O P T(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ \operatorname{OPT}(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \left\{O P T(i-1, w), \quad v_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)\right\} & \text { otherwise }\end{cases}
$$

Theorem. Computes the optimal value in $O(n W)$ time.

- Not polynomial in input size.
- Polynomial in input size if weights are small integers.

Knapsack problem: dynamic programming II

Def. $\operatorname{OPT}(i, v)=\min$ weight of a knapsack for which we can obtain a solution of value $\geq v$ using a subset of items $1, \ldots, i$.

Note. Optimal value is the largest value v such that $O P T(i, v) \leq W$.

Case 1. OPT does not select item i.

- OPT selects best of $1, \ldots, i-1$ that achieves value v.

Case 2. OPT selects item i.

- Consumes weight w_{i}, need to achieve value $v-v_{i}$.
- OPT selects best of $1, \ldots, i-1$ that achieves value $v-v_{i}$.

$$
O P T(i, v)= \begin{cases}0 & \text { if } v \leq 0 \\ \infty & \text { if } i=0 \text { and } v>0 \\ \min \left\{O P T(i-1, v), w_{i}+O P T\left(i-1, v-v_{i}\right)\right\} & \text { otherwise }\end{cases}
$$

Knapsack problem: dynamic programming II

Theorem. Dynamic programming algorithm II computes the optimal value in $O\left(n^{2} v_{\max }\right)$ time, where $v_{\max }$ is the maximum of any value.
Pf.

- The optimal value $V^{*} \leq n v_{\text {max }}$
- There is one subproblem for each item and for each value $v \leq V^{*}$.
- It takes $O(1)$ time per subproblem. -

Remark 1. Not polynomial in input size!
Remark 2. Polynomial time if values are small integers.

Knapsack problem: polynomial-time approximation scheme
intuition for approximation algorithm.

- Round all values up to lie in smaller range.
- Run dynamic programming algorithm II on rounded instance.
- Return optimal items in rounded instance.

Knapsack problem: polynomial-time approximation scheme

```
Round up all values:
    - }\mp@subsup{v}{\operatorname{max}}{}=\mathrm{ largest value in original instance.
    - \varepsilon = precision parameter
    \mp@subsup{v}{i}{\prime}}=\lceil\frac{\mp@subsup{v}{i}{}}{0}\rceil0,\quad\mp@subsup{\hat{v}}{i}{}=\lceil\frac{\mp@subsup{v}{i}{}}{0}
    - }0=\mathrm{ scaling factor = & v vax /n.
Observation. Optimal solutions to problem with }\overline{v}\mathrm{ are equivalent to
optimal solutions to problem with }\hat{v}\mathrm{ .
Intuition. \(\bar{v}\) close to \(v\) so optimal solution using \(\bar{v}\) is nearly optimal; \(\hat{\boldsymbol{v}}\) small and integral so dynamic programming algorithm II is fast.
```

Knapsack problem: polynomial-time approximation scheme
Round up all values: $\bar{v}_{i}=\left\lceil\frac{v_{t}}{\theta}\right\rceil \theta$

Theorem. If S is solution found by rounding algorithm and S^{*} is any other feasible solution, then $\quad(1+\varepsilon) \sum_{i \in S} v_{i} \geq \sum_{i \in S^{*}} v_{i}$
Pf. Let S^{*} be any feasible solution satisfying weight constraint.

$\sum_{i \in S^{*}} v_{i}$	$\leq \sum_{i \in S^{*}} \bar{v}_{i}$		always round up
	$\leq \sum_{i \in S} \bar{v}_{i}$		solve rounded instance optimally
	$\leq \sum_{i \in S}\left(v_{i}+\theta\right)$		never round up by more than θ
	$\leq \sum_{i \in S} v_{i}+n \theta$		$\|S\| \leq n$
	$\leq(1+\varepsilon) \sum_{i \in S} v_{i}$		$n \theta=\varepsilon v_{\text {max }}, v_{\text {max }} \leq \Sigma_{i \in S} v_{i}$

Knapsack problem: polynomial-time approximation scheme

Theorem. For any $\varepsilon>0$, the rounding algorithm computes a feasible solution whose value is within a $(1+\varepsilon)$ factor of the optimum in $O\left(n^{3} / \varepsilon\right)$ time.

Pf.

- We have already proved the accuracy bound.
- Dynamic program II running time is $O\left(n^{2} \hat{v}_{\max }\right)$, where

$$
\hat{v}_{\max }=\left\lceil\frac{v_{\max }}{\theta}\right\rceil=\left\lceil\frac{n}{\varepsilon}\right\rceil
$$

PTAS. $(1+\varepsilon)$-approximation algorithm for any constant $\varepsilon>0$.

- Produces arbitrarily high quality solution
- Trades off accuracy for time.
- But such algorithms are unlikely to exist for certain problems...

