

Theore indepe	em. The dynamic prog endent set in a tree in	gramming algorithm fi <i>O</i> (<i>n</i>) time.	inds a max weighted can also find independent set (not just value)	itse
	WEIGHTED-INDEPENDEN	T-SET-IN-A-TREE (7)		
	Root the tree T at a node	<i>r</i> .		
	$S \leftarrow \emptyset.$			
	FOREACH (node u of T	in postorder)		
	IF (u is a leaf)	\sim		
	$M_{in}[u] = w_u$.	ensures a node is visit	ited	
	$M_{out}[u] = 0.$	after all its children	n	
	Else			
	$M_{in}[u] = W_u + \sum_{v \in children(u)} M_{out}[v].$			
	$M_{out}[u] = \Sigma_{v \in childred}$	en(u) max { <i>Min</i> [v], <i>Mout</i> [v]] }.	
	RETURN max { Min[r],	Mout[r] }.		

22


```
Brute force. O(k n<sup>k+1</sup>).
Try all C(n, k) = O(n<sup>k</sup>) subsets of size k.
```

```
• Takes O(kn) time to check whether a subset is a vertex cover.
```

Goal. Limit to exponential dependency on k, say to $O(2^k k n)$.

Ex. n = 1,000, k = 10. Brute. $kn^{k+1} = 10^{34} \Rightarrow$ infeasible. Better. $2^k kn = 10^7 \Rightarrow$ feasible.

Remark. If k is a constant, then the algorithm is poly-time; if k is a small constant, then it's also practical.

Finding sm	nall vertex covers: algorithm	
Claim. The size ≤ k in	following algorithm determines if G has a vertex cove $O(2^k kn)$ time.	r of
	<pre>Vertex-Cover(G, k) { if (G contains no edges) return true if (G contains ≥ kn edges) return false let (u, v) be any edge of G a = Vertex-Cover(G - {u}, k-1) b = Vertex-Cover(G - {v}, k-1) return a or b</pre>	
Pf. • Correct • There a takes C	} tness follows from previous two claims. are ≤ 2 ^{k+1} nodes in the recursion tree; each invocation (<i>kn</i>) time. •	
		24

	f., 1		
Round up all value	5: $\overline{v}_i = \left \frac{v_i}{\theta} \right \theta$		
Theorem. If S is so	olution found by ro	unding algoi	ithm and S [*] is any other
feasible solution, t	hen $(1+\varepsilon)\sum_{i\in S} v_i \ge$	$\sum_{i \in S^*} \nu_i$	
Pf. Let S* be any f	asible solution sat	isfying weig	nt constraint.
	$\sum_{i \in S^*} v_i \leq$	$\sum_{i \in S^*} \overline{v}_i$	always round up
	s	$\sum_{i \in S} \overline{v}_i$	solve rounded instance optimally
	s	$\sum_{i \in S} (v_i + \theta)$	never round up by more than $\boldsymbol{\theta}$
	5	$\sum_{i \in S} v_i + n\theta$	$ S \le n$ DP alg can take V_n
	≤ ($(1+\varepsilon) \sum v_i$	

Knapsack problem: polynomial-time approximation scheme

Theorem. For any $\epsilon > 0$, the rounding algorithm computes a feasible solution whose value is within a $(1 + \epsilon)$ factor of the optimum in $O(n^3 / \epsilon)$ time.

Pf.

• We have already proved the accuracy bound. • Dynamic program II running time is $O(n^2 \hat{y}_{max})$, where

 $\hat{v}_{\max} = \left[\frac{v_{\max}}{\theta} \right] = \left[\frac{n}{\varepsilon} \right]$

PTAS. $(1 + \epsilon)$ -approximation algorithm for any constant $\epsilon > 0$.

- Produces arbitrarily high quality solution.
- Trades off accuracy for time.
- But such algorithms are unlikely to exist for certain problems...

49