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What is a cut?

• Given a graph (V ,E ) with edge weights wij ≥ 0,
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a cut S is a subset of the vertices S ⊂ V .

• The weight of the cut ω(S) is the sum of the weights of the
edges that ”cross the cut”:

ω(S) =
∑

i∈S, j /∈S

wij
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Cut Example

• Here, S = {1, 4, 5}.
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• The weight of the cut ω({1, 4, 5}) is

ω({1, 4, 5}) = w12 + w13 + w24 + w25 + w34. (1)
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MAXCUT

• Determining a subset S ⊂ V that maximizes ω(S) is the
MAXCUT problem:

maximize ω(S)
subject to S ⊂ V

(MAXCUT)

• Equiavelently, we can write MAXCUT as

maximize 1
4

∑
i ,j wij(1− σiσj)

subject to σi = ±1 for all i ∈ V
(MAXCUT’)

• Equivalent by setting i ∈ S ⇐⇒ σi = +1.

• MAXCUT is known to be NP-complete.
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Relax

• Key Idea: Replace integers |σi | = 1 with norm-1 vectors
‖ui‖ = 1, and scalar multiplication with vector multiplication.

maximize 1
4

∑
i ,j wij(1− 〈ui , uj〉)

subject to ‖ui‖ = 1 for all i in V
(RELAX)

• This is a relaxation of MAXCUT since the original problem is
contained in this problem, e.g., take ui = (±1, 0, . . . , 0).

• We will show later how to compute the ui ’s using a
semidefinite program.
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A key result

Lemma
Let r be a random1 vector. For any unit vectors ui and uj ,

P
(
sign(〈ui , r〉) 6= sign(〈uj , r〉)

)
=

arccos(〈ui , uj〉)
π

.

As an immediate consequence of this Lemma, we have that

E
[

1

2
− 1

2
sign(〈ui , r〉) sign(〈uj , r〉)

]
=

1

π
arccos(〈ui , uj〉).

1By which me mean that r is drawn from a spherically symmetric
distribution with zero mass at the origin.
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Proof.
Using a suitable rotation, we can assume without loss that
ui = (1, 0, . . . , 0) and uj = (a, b, 0, . . . , 0). (Why?)

θij

uj

ui

〈ui , uj〉
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Proof.
The signs of 〈ui , r〉 and 〈uj , r〉 are different if and only if the
tangent plane of r separates ui and uj .

θij

uj

ui

〈ui , uj〉
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Proof.
The signs of 〈ui , r〉 and 〈uj , r〉 are different if and only if the
tangent plane of r separates ui and uj .

Here, the tangent plane does not separate ui and uj .

r
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Proof.
The signs of 〈ui , r〉 and 〈uj , r〉 are different if and only if the
tangent plane of r separates ui and uj .

Here, the tangent plane separates ui and uj .
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Proof.
A random line bisects an angle of θij with probability

θij
π ,

θij

uj

ui

〈ui , uj〉
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Proof.
A random line bisects an angle of θij with probability

θij
π ,

but cos(θij) = 〈ui , uj〉,

θij

uj

ui

〈ui , uj〉
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Proof.
A random line bisects an angle of θij with probability

θij
π ,

but cos(θij) = 〈ui , uj〉,
so that

θij
π =

arccos(〈ui ,uj〉)
π .

θij

uj

ui

〈ui , uj〉
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Converting back to scalars

Suppose we have the vectors ui that solve RELAX. Then do the
following:

1. Choose a random vector r .

2. Set σ̂i = sign(〈ui , r〉) for all i ∈ V .

3. Equivalently, set i ∈ Ŝ if sign(〈ui , r〉) ≥ 0.
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Converting back to scalars

Theorem
Let S∗ be a cut that optimizes MAXCUT. Then

E[ω
(
Ŝ
)
] ≥ αω(S∗),

where α > 0.87.

For the proof, we will use the fact that

arccos(y)

π
≥ α1− y

2
for all − 1 ≤ y ≤ 1,

where

α = min
0≤θ≤π

2θ

π(1− cos(θ))
> 0.87.
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Proof.
By the corollary to the Lemma and our fact,

E[ω
(
Ŝ
)
] =

1

2

∑
i ,j

wij
arccos 〈ui , uj〉

π
≥ α

4

∑
i ,j

wij(1− 〈ui , uj〉).

Since ui and uj maximize maximize the right-hand side over the
unit sphere, by restriction, we have

E[ω
(
Ŝ
)
] ≥ α

4

∑
i ,j

wij(1− σiσj).

for any σi = ±1. In particular, the inequality holds for the
maximum possible choice of signs, which by definition is
αω(S∗).
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The step to semidefinite

• For a square matrix Σ, following are equivalent:

1. Σ < 0, Σii = 1, and rank(Σ) = 1,
2. Σ = σσt , where σi = ±1.

• Setting (W )ij = wij , note that∑
i ,j

wijσiσj = tr(Wσσt) (2)

• Thus, MAXCUT is equivalent to

maximize 1
4

∑
i ,j wij − 1

4 tr(WΣ)

subject to Σ < 0, Σii = 1, and rank(Σ) = 1.
(3)
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Semidefinite relaxation

• By dropping the rank-1 restriction, (3) becomes a semidefinite
program:

minimize tr(WΣ)

subject to

{
Σ < 0,
Σii = 1

(4)

• Setting Σ = UtU via a Cholesky factorization, the restriction
Σii = 1 implies that U has unit-norm columns.

• That is, (4) is equivalent to RELAX.
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How to compute it

• For large problems, the current state-of-the-art algorithm for
computing the solution to these semidefinite programs is
available in Burer and Montiero [2].

• For moderately sized problems, use Matlab’s CVX

package [3].

The entire code using CVX:

... % define W, N

cvx_begin sdp

variable

Sigma(N,N) symmetric

minimize

trace(W*Sigma)

subject to

Sigma >= 0;

diag(Sigma) == ones(N,1);

cvx_end

U = chol(Sigma);

sigma = sign(U*randn(N,1));
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