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Introduction: MAXCUT
What is a cut?

e Given a graph (V, E) with edge weights w;; > 0,

a cut S is a subset of the vertices S C V.

e The weight of the cut w(S) is the sum of the weights of the
edges that "cross the cut”:

w(S) = Z wij

i€S, j¢S
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Cut Example

e Here, S ={1,4,5}.

e The weight of the cut w({1,4,5}) is

w({1,4,5}) = wiz + w13 + wog + was + wag. (1)



Introduction: MAXCUT

MAXCUT

e Determining a subset S C V that maximizes w(S) is the
MAXCUT problem:

maximize w(S)

subjectto SC V (MAXCUT)
e Equiavelently, we can write MAXCUT as
maximize } >oijwi(l—oio)) (MAXCUT')

subjectto o;=+41forallie V

e Equivalent by setting i € § <— o; = +1.
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MAXCUT

e Determining a subset S C V that maximizes w(S) is the
MAXCUT problem:

maximize w(S)

subjectto SC V (MAXCUT)
e Equiavelently, we can write MAXCUT as
maximize %Zi,j wii(1 — ojoj) (MAXCUT')

subjectto o;=+41forallie V

e Equivalent by setting i € § <— o; = +1.
e MAXCUT is known to be NP-complete.



Relaxation

Relax

e Key Idea: Replace integers |o;| = 1 with norm-1 vectors
||uil| = 1, and scalar multiplication with vector multiplication.
. . 1
maximize 7 > wi(1 — (uj, u;)) RELAX
subject to ||uj|| =1 for all i in V ( )

e This is a relaxation of MAXCUT since the original problem is
contained in this problem, e.g., take u; = (£1,0,...,0).

e We will show later how to compute the u;'s using a
semidefinite program.



Key Lemma

A key result

Lemma
Let r be a random® vector. For any unit vectors u; and uj,

_arccos((uj, uj))

P(sign((uj, r)) # sign({uj,r))) = —————22.

™

1By which me mean that r is drawn from a spherically symmetric
distribution with zero mass at the origin.
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A key result

Lemma
Let r be a random® vector. For any unit vectors u; and uj,

_arccos((uj, uj))

P(sign((uj, r)) # sign({uj,r))) = —————22.

™

As an immediate consequence of this Lemma, we have that

E % - %sign(<ul-, r))sign({uj, r))| = %arccos(@iv uj)).

1By which me mean that r is drawn from a spherically symmetric
distribution with zero mass at the origin.



Key Lemma

Proof.
Using a suitable rotation, we can assume without loss that
ui=(1,0,...,0) and u; = (a, b,0,...,0). (Why?)




Key Lemma

Proof.
The signs of (uj, r) and (uj, r) are different if and only if the
tangent plane of r separates u; and u;.




Key Lemma

Proof.
The signs of (uj, r) and (uj, r) are different if and only if the

tangent plane of r separates u; and u;.

Here, the tangent plane does not separate u; and u;.
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Key Lemma

Proof.
The signs of (uj, r) and (uj, r) are different if and only if the

tangent plane of r separates u; and u;.

Here, the tangent plane separates u; and u;.
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Proof.

A random line bisects an angle of 8;; with probability %
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Proof.

A random line bisects an angle of 6;; with probability %
but cos(0;) = (uj, u;),
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Proof.
A random line bisects an angle of 8;; with probability %
but COS(Q,'J') = <u;, Uj>,

0; _ arccos( u,-,uj->)
so that -} = ———+. O
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Converting back to scalars

Suppose we have the vectors u; that solve RELAX. Then do the
following:

1. Choose a random vector r.
2. Set 6; = sign((uj, r)) for all i € V.
3. Equivalently, set i € S if sign((uj, r)) > 0.



Introduction: MAXCUT Relaxation Key Lemma The Theorem The SDP
Converting back to scalars
Theorem
Let S, be a cut that optimizes MAXCUT. Then
E[w(5)] > aw(S.),

where o« > 0.87.
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Converting back to scalars

Theorem
Let S, be a cut that optimizes MAXCUT. Then

E[w(5)] > aw(S.),

where o« > 0.87.

For the proof, we will use the fact that

1—
arccos(y) >« 4 forall —1<y <1,
T 2
where 20
o= mn —— > 0.87.

0<6<x m(1 — cos(6))

The SDP



The Theorem

Proof.

By the corollary to the Lemma and our fact,
arccos (uj, uj)
E[w ZWU - LIl > - ZWU (ui, uj)).

Since u; and u; maximize maximize the right-hand side over the
unit sphere, by restriction, we have

PN o
Elw(5)] > 4 Z wii(1 — o))
ij
for any o; = 1. In particular, the inequality holds for the

maximum possible choice of signs, which by definition is
aw(Sy).



The SDP

The step to semidefinite

e For a square matrix X, following are equivalent:
1. X0, %; =1, and rank(X) =1,
2. ¥ =ocot, where g; = +1.

e Setting (W);; = wjj, note that

Z wijojoj = tr(Waoo') (2)
i

e Thus, MAXCUT is equivalent to
maximize %Zi’j wij — 5 tr(WX)

. 3
subjectto X =0, ¥; =1, and rank(X) =1. (3)



The SDP

Semidefinite relaxation

¢ By dropping the rank-1 restriction, (3) becomes a semidefinite
program:
minimize tr(WX)
> =0, (4)

subject to { Y. =1

e Setting ¥ = U'U via a Cholesky factorization, the restriction
> ;i = 1 implies that U has unit-norm columns.

e That is, (4) is equivalent to RELAX.



The SDP

How to compute it

e For large problems, the current state-of-the-art algorithm for
computing the solution to these semidefinite programs is
available in Burer and Montiero [2].

e For moderately sized problems, use MATLAB's CVX
package [3].



The SDP

How to compute it

e For large problems, the current state-of-the-art algorithm for
computing the solution to these semidefinite programs is
available in Burer and Montiero [2].

e For moderately sized problems, use MATLAB's CVX
package [3].

The entire code using CVX:

... % define W, N
cvx_begin sdp
variable
Sigma(N,N) symmetric
minimize
trace(WxSigma)
subject to
Sigma >= 0;
diag(Sigma) == ones(N,1);
cvx_end

U = chol(Sigma);

sigma = sign(U*randn(N,1));
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How to compute it

e For large problems, the current state-of-the-art algorithm for
computing the solution to these semidefinite programs is
available in Burer and Montiero [2].

e For moderately sized problems, use MATLAB's CVX
package [3].

The entire code using CVX:

... % define W, N
cvx_begin sdp
variable
Sigma(N,N) symmetric
minimize
trace(WxSigma)
subject to
Sigma >= 0;
diag(Sigma) == omes(N,1);
cvx_end

U = chol(Sigma); % May fail occasionally due to numerical inaccuracy

sigma = sign(U*randn(N,1));



Introduction: MAXCUT Relaxation Key Lemma The Theorem The SDP

For More Details
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