
CS 21 Decidability and Tractability Winter 2024

Problem Set 7

Out: February 28 Due: March 6

Reminder: you are encouraged to work in groups of two or three; however you must turn in your own
write-up and note with whom you worked. You may consult the course notes and the text (Sipser).
The full honor code guidelines and collaboration policy can be found in the course syllabus.

Please attempt all problems. Please select one among Problem 1 and Problem 3 to be graded
completely (and indicate clearly which one); the other one will receive 1 point for a credible
attempt. Please turn in your solutions via Gradescope, by 1pm on the due date.

1. A function f : Σ∗ → Σ∗ is called length preserving if for all x ∈ Σ∗,

|f(x)| = |x|.

A length-preserving function f is called a permutation if it is onto, and note that in this
case the inverse f−1 is a well-defined function. Informally, such an f is one-way if it can be
computed in polynomial time, but it is hard to invert. Much of cryptography is based on the
assumption that there exist length-preserving, one-way permutations; indeed the multiplica-
tion of two primes (whose inverse is factoring) can be expressed in this way.

Let f : Σ∗ → Σ∗ be a length-preserving, one-way permutation, and let g : Σ∗ → {0, 1} be a
polynomial-time computable predicate. A typical scenario is this: you hold a secret x, and
you reveal y = f(x) (which is easy to compute). If an adversary can obtain x from y, she
is able to compute a bit g(x) that she is not supposed to know. In this problem you will
show that the adversary’s task is in NP ∩ coNP; in other words, you should show that the
following language is in NP ∩ coNP:

L =
{
y : g(f−1(y)) = 1

}
.

A side comment: this shows that it is possible (if P = NP ∩ coNP) for the adversary’s task to
become easy, and much of cryptography to become insecure, while it might still be the case
that P 6= NP.

2. In this problem we consider a model of distributed computation. We have n processes, modeled
as directed graphs G1 = (V1, E1), . . . , Gn = (Vn, En). The nodes of graph Gi are the states of
process i; it can potentially move from state v to state w iff there is an edge (v, w) ∈ Ei. Here
is how we model the distributed nature of the computation performed by these n processes:
we are given a list of pairs of edges P = ((e1, e

′
1), (e2, e

′
2), . . . , (em, e′m)) such that for each i,

ei and e′i belong to the edge sets of two different graphs from among G1, . . . , Gn. These are
intended to specify the possible communications between processes: if process i is in state
v ∈ Vi and process j is in state v′ ∈ Vj , then (with some communication), they can move into
state w and w′ respectively iff the pair ((v, w), (v′, w′)) is in the list P .

7-1

7-2

Thus the state of the overall system is specified by a vertex in each of the n graphs; i.e., it
is an element of V = V1 × V2 × · · · × Vn. The relation T ⊆ V × V (which is determined
by G1, . . . , Gn and P) describes all possible transitions from one overall state to another.
T consists of all pairs ((v1, v2, . . . , vn), (v′1, v

′
2, . . . , v

′
n)) for which there are two indices i, j for

which ((vi, v
′
i), (vj , v

′
j)) ∈ P and for every other index k, vk = v′k. In other words, at each step,

one of the communications specified in list P may occur, changing the state of the associated
two processes, while the other processes remain unchanged.

A central problem in designing distributed systems is avoiding deadlock. In this model, a
deadlock state is a state v ∈ V for which there is no w ∈ V with (v, w) ∈ T .

(a) It would be nice to be able to automatically examine a system modelled in this way and
determine if there is a deadlock state. Unfortunately this is likely to be hard. Show that
the following language is NP-complete:

deadlock = {(G1, G2, . . . , Gn, P) : directed graphs G1, G2, . . . , Gn and the list P

specify a system with a deadlock state.}

Hint: reduce from 3-SAT, producing one process for each clause.

(b) In certain scenarios, it is difficult to design a system with no deadlock state. Instead, we
aim to design a system in which a deadlock state is not reachable from an initial state of
the system. As before it would be nice to be able to automatically verify this property.
Unfortunately this is likely to be even harder. Show that the following language is
PSPACE-hard (it is in fact PSPACE-complete, but in this problem you are not required
to show that it is in PSPACE):

reachable deadlock = {(G1, G2, . . . , Gn, P, v) : directed graphs G1, G2, . . . , Gn

and the list P specify a system with a deadlock state

that is reachable from state v ∈ V }

Hint: refer to a tableau, in which each cell is either an alphabet symbol x, or a pair
(x, q) indicating that the machine is reading this cell, which contains symbol x, while in
state q. The number of processes will be the width of the tableau.

3. In class we defined what it meant for a language to be decidable in space t(n). To properly
define what it means for a function to be computable in space t(n), we need to use multitape
Turing Machines. We treat tape 1 as a read-only input tape, tape 3 as a write-only output
tape, tape 2 as a read/write work tape, and we only count the space used on tape 2.

Formally, a function f : Σ∗ → Σ∗ is computable in space t(n) if there exists a 3-tape Turing
Machine M with the following property: for every w ∈ Σ∗, if M is started with w written
on tape 1, then M halts with f(w) written on tape 3, while touching at most t(|w|) cells on
tape 2, never writing to tape 1, and never reading from tape 3.

Notice that it is possible to perform non-trivial computations while using sub-linear space.
In fact, many important functions can be computed using only O(log n) space.

7-3

When we are discussing function computable in polynomial time, we often implicitly use the
(simple) fact that if f and g are computable in polynomial time, then their composition is
computable in polynomial time. The analogous fact for space-bounded computation is not
so obvious, but it is true nonetheless. Suppose functions f : Σ∗ → Σ∗ and g : Σ∗ → Σ∗

are both computable in space O(log n). Show that the function h : Σ∗ → Σ∗ defined by
h(w) = f(g(w)) is computable in O(log n) space.

