
1

CS21
Decidability
and
Tractability

Lecture 6
January 17, 2024

1

January 17, 2024 CS21 Lecture 6 2

Context-free grammars and
languages

• languages recognized by a (N)FA are
exactly the languages described by
regular expressions, and they are called
the regular languages

• languages recognized by a NPDA are
exactly the languages described by
context-free grammars, and they are
called the context-free languages

2

January 17, 2024 CS21 Lecture 6 3

Context-Free Grammars

A → 0A1
A → B
B → #

start
symbol

terminal
symbols

non-terminal
symbols

production

3

January 17, 2024 CS21 Lecture 6 4

Context-Free Grammars

• generate strings by repeated replacement
of non-terminals with string of terminals
and non-terminals
– write down start symbol (non-terminal)
– replace a non-terminal with the right-hand-

side of a rule that has that non-terminal as its
left-hand-side.

– repeat above until no more non-terminals

4

January 17, 2024 CS21 Lecture 6 5

Context-Free Grammars
Example:
A ⇒ 0A1 ⇒ 00A11 ⇒

000A111 ⇒ 000B111 ⇒
000#111

• a derivation of the string 000#111
• set of all strings generated in this way is

the language of the grammar L(G)
• called a Context-Free Language

A → 0A1
A → B
B → #

5

January 17, 2024 CS21 Lecture 6 6

Context-Free Grammars
• Natural languages (e.g. English) have this sort of

structure:
<sentence> → <noun-phrase><verb-phrase>
<noun-phrase> → <cpx-noun> | <cpx-noun><prep-phrase>
<verb-phrase> → <cpx-verb> | <cpx-verb><prep-phrase>
<prep-phrase> → <prep><cpx-noun>
<cpx-noun> → <article><noun>
<cpx-verb> → <verb>|<verb><noun-phrase>
<article> → a | the
<noun> → dog | cat | flower
<verb> → eats | sees
<prep> → with

Generate a string in
the language of this
grammar.

shorthand for
multiple rules
with same lhs

6

2

January 17, 2024 CS21 Lecture 6 7

Context-Free Grammars

• CFGs don’t capture natural languages
completely

• computer languages often defined by CFG
– hierarchical structure
– slightly different notation often used “Backus-

Naur form”
– see next slide for example

7

Example CFG
<stmt> → <if-stmt> | <while-stmt> | <begin-stmt>

| <asgn-stmt>
<if-stmt> → IF <bool-expr> THEN <stmt> ELSE <stmt>
<while-stmt> → WHILE <bool-expr> DO <stmt>
<begin-stmt> → BEGIN <stmt-list> END
<stmt-list> → <stmt> | <stmt>; <stmt-list>
<asgn-stmt> → <var> := <arith-expr>
<bool-expr> → <arith-expr><compare-op><arith-expr>
<compare-op> → < | > | ≤ | ≥ | =
<arith-expr> → <var> | <const>

| (<arith-expr><arith-op><arith-expr>)
<arith-op> → + | - | * | /
<const> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<var> → a | b | c | … | x | y | z
January 17, 2024 8CS21 Lecture 6

8

January 17, 2024 CS21 Lecture 6 9

CFG formal definition
• A context-free grammar is a 4-tuple

(V, Σ, R, S)
where

– V is a finite set called the non-terminals
– Σ is a finite set (disjoint from V) called the terminals
– R is a finite set of productions where each production

is a non-terminal and a string of terminals and non-
terminals.

– S ∈V is the start variable (or start non-terminal)

9

January 17, 2024 CS21 Lecture 6 10

CFG formal definition
• u, v, w are strings of non-terminals and

terminals, and A → w is a production:
“uAv yields uwv” notation: uAv ⇒ uwv

also: “yields in 1 step” notation: uAv ⇒! uwv

• in general:
“yields in k steps” notation: u ⇒" v

– meaning: there exists strings u1,u2,…uk-1 for
which u ⇒!u1 ⇒!u2 ⇒!… ⇒!uk-1 ⇒!v

10

January 17, 2024 CS21 Lecture 6 11

CFG formal definition

• notation: u ⇒∗v
– meaning: ∃ k ≥ 0 and strings u1,…,uk-1 for

which u ⇒!u1 ⇒!u2 ⇒!… ⇒!uk-1 ⇒!v

• if u = start symbol, this is a derivation of v
• The language of G, denoted L(G) is:

{w ∈Σ* : S ⇒∗ w}

11

January 17, 2024 CS21 Lecture 6 12

CFG example
• Balanced parentheses:

– ()
– (() ((() ())))

• a string w in Σ* = { (,) }* is balanced iff:
– # “(”s equals # “)”s, and
– for any prefix of w, # “(”s ≥ # “)”s

Exercise: design a CFG for balanced parentheses.

12

3

CFG example

S → (S) | SS | 𝜖

• Proof that w ∈ L(G) implies w is balanced
– induction on length of derivation
– base case: length 1: S ⇒ 𝜖
– general case: length n

• S ⇒ (S)⇒!"# w$ =w
• S ⇒ SS⇒!"#𝑤$𝑤′′ = w

January 17, 2024 CS21 Lecture 6 13

13

CFG example

S → (S) | SS | 𝜖

• Proof that w is balanced implies w ∈ L(G)
– induction on length of w
– base case: length 0: w = 𝜖
– general case: length n
– consider shortest prefix in language
– if whole string then w = (w’) and w’ balanced
– if proper prefix then w = w’w’’ with w’ and w’’

balanced
January 17, 2024 CS21 Lecture 6 14

14

