CS21
Decidability
and

Tractability

Lecture 6
January 17, 2024

Context-free grammars and
languages

* languages recognized by a (N)FA are
exactly the languages described by
regular expressions, and they are called
the regular languages

* languages recognized by a NPDA are
exactly the languages described by
context-free grammars, and they are
called the context-free languages

January 17, 2024 CS21 Lecture 6 2

Context-Free Grammars

start terminal
symbol\ ,‘// symbols
A — 0A1
A—B
B # non-terminal
74 symbols
production

January 17, 2024 CS21 Lecture 6

Context-Free Grammars

 generate strings by repeated replacement
of non-terminals with string of terminals
and non-terminals
— write down start symbol (non-terminal)

— replace a non-terminal with the right-hand-
side of a rule that has that non-terminal as its
left-hand-side.

— repeat above until no more non-terminals

January 17, 2024 CS21 Lecture 6 4

Context-Free Grammars

Example: A— OA1

A = 0A1 = 00A11 = A—B
000A111 = 000B111 = B—#
000#111

+ a derivation of the string 000#111

« set of all strings generated in this way is
the language of the grammar L(G)

« called a Context-Free Language

January 17, 2024 CS21 Lecture 6

Context-Free Grammars

+ Natural languages (e.g. English) | shorthand for

structure: multiple rules
<sentence> — <noun-phrase><vgrb-phrase> with same |hs

<noun-phrase> — <cpx-noun> f <cpx-noun><prep=prirase
<verb-phrase> — <cpx-verb> | <cpx-verb><prep-phrase>
<prep-phrase> — <prep><cpx-noun>

<cpx-noun> — <article><noun>

<cpx-verb> — <verb>|<verb><noun-phrase>

<article> — a | the

<noun> — dog | cat | flower Generate a string in
<verb> — eats | sees the language of this
<prep> — with grammar.

January 17, 2024 CS21 Lecture 6 6




Context-Free Grammars

» CFGs don’t capture natural languages
completely

» computer languages often defined by CFG
— hierarchical structure

— slightly different notation often used “Backus-
Naur form”

— see next slide for example

January 17, 2024

CS21 Lecture 6 7

Example CFG

<stmt> — <if-stmt> | <while-stmt> | <begin-stmt>

| <asgn-stmt>
<if-stmt> — IF <bool-expr> THEN <stmt> ELSE <stmt>
<while-stmt> — WHILE <bool-expr> DO <stmt>
<begin-stmt> — BEGIN <stmt-list> END
<stmt-list> — <stmt> | <stmt>; <stmt-list>
<asgn-stmt> — <var> := <arith-expr>
<bool-expr> — <arith-expr><compare-op><arith-expr>
<compare-op> —<|>|<|2]|=
<arith-expr> — <var> | <const>

| (<arith-expr><arith-op><arith-expr>)

<arith-op> —+ |- | *|/
<const>—0|1]2|3]|4|5]|6|7]|8]|9

<var>—a|b|c]|...|x]|y]|z
January 17, 2024 CS821 Lecture 6 8

CFG formal definition

+ A context-free grammar is a 4-tuple
(V,%,R,S)
where
— Vis afinite set called the non-terminals
— Zis afinite set (disjoint from V) called the terminals

— Ris afinite set of productions where each production
is a non-terminal and a string of terminals and non-
terminals.

— S e Vis the start variable (or start non-terminal)

January 17, 2024

CS21 Lecture 6 9

CFG formal definition

* u, v, w are strings of non-terminals and
terminals, and A — w is a production:
“UAv yields uwv”  notation: uAv = uwv
also: “yields in 1 step” notation: uAv =1 uwv

* in general:
“vields in k steps”  notation: u =¥ v
— meaning: there exists strings us,uy,...Ux.1 for
which u =2lu; 21u, =21, =2ty =2

January 17, 2024 CS21 Lecture 6 10

CFG formal definition

* notation: u =*v
—meaning: 3 k = 0 and strings uy,...,ux1 for
which u =tuy 21u, =21, sty =2y
\( J
« if u = start symbol, this is a derivation of v
» The language of G, denoted L(G) is:
{wex*:S="w}

CS21 Lecture 6 "

January 17, 2024

10

11

CFG example

» Balanced parentheses:
-()
-(OCO0)))

« astringwin Z*={(,) }* is balanced iff:
—#“("s equals # “)’s, and
—forany prefix of w, #“("s 2#“)’s

Exercise: design a CFG for balanced parentheses.

January 17, 2024 CS21 Lecture 6 12

12




CFG example
S—(S)|SS|e

Proof that w € L(G) implies w is balanced
—induction on length of derivation
—base case: length 1: S = ¢
— general case: length n
*S=(§) ="t W) =w

+ S=>SS=>" 1wy =w

January 17, 2024

CS21 Lecture 6

13

CFG example
S—(S)[SS|e

* Proof that w is balanced implies w € L(G)
—induction on length of w
—base case: length 0: w = ¢
— general case: length n
— consider shortest prefix in language
— if whole string then w = (w’) and w’ balanced
— if proper prefix then w = w'w” with w’ and w”

balanced

January 17, 2024 CS21 Lecture 6

14




