CS21
Decidability
and
Tractability

Lecture 5

January 13,
2023

Outline

* Non-regular languages: Pumping Lemma

» Pushdown Automata
* Context-Free Grammars and Languages

January 12, 2024 €821 Lecture 5 2

Non-regular languages

Pumping Lemma: Let L be a regular
language. There exists an integer p
(“pumping length”) for which every w € L
with |w| > p can be written as

w =xyz such that
1. foreveryi>0,xyz€elL,and
2. |ly|>0,and
3. |xy| <p.

January 12, 2024 ©821 Lecture 5 3

Non-regular languages

Using the Pumping Lemma to prove L is

not regular:

—assume L is regular

—then there exists a pumping length p

—select a string w € L of length at least p

—argue that for every way of writing w = xyz
that satisfies (2) and (3) of the Lemma,
pumping on y yields a string not in L.

— contradiction.

January 12, 2024 ©S21 Lecture 5 4

Pumping Lemma Examples

* Theorem: L = {0i11: i > j} is not regular.
* Proof:

—let p be the pumping length for L
—choose w = 0p+11p
w = 000000000...01111111...1

p+1 P
—w = xyz, with |y| >0 and |xy| <p.

January 12, 2024 ©S21 Lecture 5 5

Pumping Lemma Examples

— 1 possibility:
w =000000000...0111111111...1
A~ Y
oy 1

— pumping on y gives strings in the language
(?)

— this seems like a problem...
Lemma states that for every i >0, xyz € L
xy°z not in L. So L not regular.

January 12, 2024 ©S21 Lecture 5 6

Proof of the Pumping Lemma

— Let M be a FA that recognizes L.

— Set p = number of states of M.

— Consider w € L with |[w| = p. On input w, M
must go through at least p+1 states. There
must be a repeated state (among first p+1).

-y R

— oo S
‘ N P
N N .

-

January 12, 2024 €821 Lecture 5

FA Summary

* A “problem” is a language

* A “computation” receives an input and
either accepts, rejects, or loops forever.

A “computation” recognizes a language (it
may also decide the language).

« Finite Automata perform simple
computations that read the input from left
to right and employ a finite memory.

January 12, 2024 €821 Lecture 5 8

FA Summary

» The languages recognized by FA are the
regular languages.

* The regular languages are closed under
union, concatenation, and star.

» Nondeterministic Finite Automata may
have several choices at each step.

» NFAs recognize exactly the same
languages that FAs do.

January 12, 2024 ©821 Lecture 5

FA Summary

» Regular expressions are languages built
up from the operations union,
concatenation, and star.

» Regular expressions describe exactly the
same languages that FAs (and NFAs)
recognize.

» Some languages are not regular. This can
be proved using the Pumping Lemma.

January 12, 2024 ©S21 Lecture 5 10

Machine view of FA

input tape

of1J1 oo 111 o 1]o o 1 e 1]

finite
control

January 12, 2024 ©S21 Lecture 5

10

11

Machine view of FA

input tape

[oJ1T#ToJo 1 1 *Jo 1o o * o 1]

finite
control

January 12, 2024 ©S21 Lecture 5 12

12

Machine view of FA

input tape
3 o T 3

finite
control

January 12, 2024 €821 Lecture 5 13

Machine view of FA

input tape
3 o T 3

finite
control etc...
sanuary 12,2024 Cs21 Leoture 5

13

A more powerful machine
« limitation of FA related to fact that they can

only “remember” a bounded amount of
information

* What is the simplest alteration that adds
unbounded “memory” to our machine?

+ Should be able to recognize, e.g., {0"1": n = 0}

January 12, 2024 ©821 Lecture 5 15

15
Pushdown Automata
ini input tape
finite
control T”“M”“W“\OMOM
(infinite)
stack

17

14
Pushdown Automata
finite input tape
A nDnEOOn0nEEno.
m New capabilities:
o] *can push symbol onto
(infinite) stack
stack i}, can pop symbol off of
stack
16
Pushdown Automata
- input tape
finite
control]?0‘1‘1‘0‘111010‘0‘1‘0‘1‘
(infinite)
stack
18

Pushdown Automata

finite input tape

control [oJoJa 1 e a1 e 1 oo 1 e]1]

(infinite)
stack

January 12, 2024 €821 Lecture 5 19

19
Pushdown Automata
finite input tape
e ERLL I L o[o[o[+[o[]
Note: often start by
o pushing $ marker onto
(infinite) ~ stack so that we can
stack detect “empty stack”
21
NPDA diagram

tape alphabet = transition label: (tape symbol read, stack
stack alphabet r symbol popped — stack symbol pushed)
_—

M0,e—=0

start state ——

1,0—¢

states -<?/f:::

/

accept states L

£ . 1,0—¢
transitions

January 12, 2024 ©S21 Lecture 5 23

23

Pushdown Automata

finite input tape

control [oJoJa 1 e t]a1 e 1 o]0 1 e]1]

(infinite)
stack

January 12, 2024 €821 Lecture 5 20

20

Pushdown Automata (PDA)

» We will define nondeterministic pushdown
automata immediately
— potentially several choices of “next step”
* Deterministic PDA defined later
— weaker than NPDA
» Two ways to describe NPDA
—diagram
— formal definition

January 12, 2024 ©S21 Lecture 5 22

22

NPDA operation

 Taking a transition labeled:
a,b—c
—ae(Zuie)
—-b,ce(Tu{e})

— read a from tape, or don’t read from tape ifa =¢
— pop b from stack, or don’t pop from stack if b = ¢

— push c onto stack, or don’t push onto stack if c = €

January 12, 2024 ©S21 Lecture 5 24

24

Example NPDA

>={0, 1}
r={0,1,%} 0,60
1,0—-¢
\\
\J1,0-¢
» tape: 0011 Stack contents: $

January 12, 2024 €821 Lecture 5

25
Example NPDA
£={0, 1}

r={0,1,% M0,e—0

— £, E€—)

1,0—¢
£$—e

/1,0 -¢
 tape: 0011 Stack contents: 00 $

27
Example NPDA
£={0, 1}
r={o,1,$} M0, >0
{)
1,0—¢
1,0—¢
» tape: 0011 Stack contents: 0 $

29

Example NPDA
$={0, 1}
r={0,1,%} 0,60
1,0—-¢
\\
\J1,0—-¢
» tape: 0011 Stack contents: 0 $

26
Example NPDA
£={0, 1}

r={0,1,% M0,e—0

S £, €—)

1,0—¢
£$—e

/1,0 ¢
 tape: 0011 Stack contents: 00 $

28
Example NPDA
=10, 1}
r={0,1,8} M0, e—0
{)
1,0—¢
1,0—¢
» tape: 0011 Stack contents: $
accepted

30

Example NPDA
$={0, 1}
r={0,1,%} 0,60
1,0—-¢
\\
\J1,0-¢
* tape: 001 Stack contents: $
31
Example NPDA
3 ={0, 1}
r={0,1,% M0,e—0
- £, E€—)
1,0—¢
e$—¢
/1,0 -¢
* tape: 001 Stack contents: 00 $
33
Example NPDA
£={0, 1}
r={,1,9%} M\0,e—0
{)
1,0—¢
1,0—¢
 tape: 001 Stack contents: 0 $
not accepted
35

Example NPDA
£={0,1}
r={o,1,8} 0,e-0
1,0—-¢
N
Ut0-e
 tape: 001 Stack contents: 0 $
32
Example NPDA
$={0, 1}
r={0,1,% M0,e—0
- £, €—)
1,0—¢
£$—e
/1,0 ¢
» tape: 001 Stack contents: 00 $
34
Example NPDA
£={0,1}
r={0,1,$}

/M0, e—0
{)

1,0—¢

1,0—¢
» What language does this NPDA accept?

January 12, 2024 ©S21 Lecture 5 36

36

Formal definition of NPDA

*« ANPDA is a 6-tuple (Q, Z, T, 8, qo, F)
where:
—Qis a finite set called the states
— X is afinite set called the tape alphabet
- I'is a finite set called the stack alphabet
-0Qx(Zu{e)x(Tu{e}) » PQx(TU{e})is
a function called the transition function
— o is an element of Q called the start state
—F is a subset of Q called the accept states

January 12, 2024 €821 Lecture 5 37

37
Example of formal definition
© Q={ap.qn a2, a3 + 5(do, & €)= {(a1,)} other
. £={01} - (g1, 0,) = {(qr, O)}
s I={0,1,8} - 8(a, 1, 0) = {(az, &)} values of
+ F={a, g3} . 5(g2 1,0)={(qz &)} O)
* d(q2, € $) ={(g3, €)} equal {}

39

Context-free grammars and
languages

* languages recognized by a (N)FA are
exactly the languages described by
regular expressions, and they are called
the regular languages

* languages recognized by a NPDA are
exactly the languages described by
context-free grammars, and they are
called the context-free languages

January 12, 2024 ©S21 Lecture 5 41

41

Formal definition of NPDA

* NPDAM=(Q, Z, T, §, qo, F) accepts
string w € Z* if w can be written as
W1iWoW3...Wr € (Z U {€})*, and
« there exist states ro, rq, ro, ..., Im, and
« there exist strings sy, s1, ..., Sm in (T U {€})*
—rh=qgoand s, =€

— (isy, b) €8(r;, Wiy, @), where s, = at, s;,, = bt
forsometer*

—rm €F

January 12, 2024 €821 Lecture 5 38

38
Exercise
Design a NPDA for the language
{abic:i,j,k=0andi=jori=k}
40

