CS21
Decidability
and
Tractability

Lecture 4
January 10,
2024

Regular expressions and FA

» Theorem: a language L is recognized by a
FA if and only if L is described by a regular
expression.

Must prove two directions:

(=) L is recognized by a FA implies L is
described by a regular expression

(<) L is described by a regular expression
implies L is recognized by a FA.

January 10, 2024 ©821 Lecture 4

Regular expressions

* Ris aregular expression if R is
—a,forsomeae X
— ¢, the empty string
— @, the empty set
— (R UR;y), where Ry and R, are reg. exprs.
—(R; °Ry), where R, and R, are reg. exprs.
—(R+*), where R; is a regular expression

A reg. expression R describes the language L(R).

January 10, 2024 €521 Lecture 4

Regular expressions and FA

(<) L is described by a regular expression
implies L is recognized by a FA

Proof: given regular expression R we will
build a NFA that recognizes L(R).

then NFA, FA equivalence implies a FA for
L(R).

January 10, 2024 ©S21 Lecture 4

Regular expressions and FA

* Ris aregular expression if R is
OO

— ¢, the empty string »O

— @, the empty set O

January 10, 2024 €821 Lecture 4

—a,forsomeaex

Regular expressions and FA

—(R; URy), where R, and R; are reg. exprs.

January 10, 2024 €821 Lecture 4

Regular expressions and FA

» Theorem: a language L is recognized by a
FA if and only if L is described by a regular
expression.

Must prove two directions:

(=) L is recognized by a FA implies L is
described by a regular expression

(<) L is described by a regular expression
implies L is recognized by a FA.

January 10, 2024 €821 Lecture 4

Regular expressions and FA

* GNFA definition:
—itis a NFA, but may have regular expressions
labeling its transitions
— GNFA accepts string w € X* if can be written
W = WiWoWj... Wy
where each w; € 2*, and there is a path from the
start state to an accept state in which the it

transition traversed is labeled with R for which
w;, €L(R)

January 10, 2024 ©821 Lecture 4

Regular expressions and FA

» converting our FA M into GNFA in normal
form:

January 10, 2024

€821 Lecture 4

11

Regular expressions and FA

(=) L is recognized by a FA implies L is
described by a regular expression

Proof: given FA M that recognizes L, we will

1. build an equivalent machine “Generalized
Nondeterministic Finite Automaton” (GNFA)

2. convert the GNFA into a regular expression

January 10, 2024 €821 Lecture 4

Regular expressions and FA

Recall step 1: build an equivalent GNFA

Our FA M is a GNFA.

We will require “normal form” for GNFA to

make the proof easier:

— single accept state g..cep that has all possible
incoming arrows

— every state has all possible outgoing arrows;
exception: start state g, has no self-loop

nuary 10, 2024 ©S21 Lecture 4

1

0

Regular expressions and FA

» On to step 2: convert the GNFA into a
regular expression

— if normal-form GNFA has two states:

00

the regular expression R labeling the single
transition describes the language recognized
by the GNFA

January 10, 2024 €821 Lecture 4

12

Regular expressions and FA
—if GNFA has more than 2 states:

—select one “qy;,"; delete it; repair transitions so
that machine still recognizes same language.

— repeat until only 2 states.

January 10, 2024 €821 Lecture 4 13

13

Regular expressions and FA

— summary:
FA M — k-state GNFA — (k-1)-state GNFA
— (k-2)-state GNFA —...— 2-state GNFA — R

—want to prove that this procedure is correct,
i.e. L(R) = language recognized by M

« FA M equivalent to k-state GNFA

« i-state GNFA equivalent to (i-1)-state GNFA
(we will prove...)

- 2-state GFNA equivalent to R m

January 10, 2024 ©821 Lecture 4 15

15

Regular expressions and FA

(R)R)*‘(Rs) U (Rs)

\ / Rs
R1\
v

2

January 10, 2024 €821 Lecture 4 17

Regular expressions and FA

— how to repair the transitions:
— for every pair of states ¢, and g;do

f "®

(Ri)R) (Rs) U (Rs)

@ ®

January 10, 2024 €821 Lecture 4 14

14

Regular expressions and FA

— Claim: i-state GNFA G equivalent to (i-1)-
state GNFA G’ (obtained by removing qy,)
— Proof:
« if G accepts string w, then it does so by entering
states: qo, q1, 2, @3, ... , Qaccept
« if none are qrip then G’ accepts w (see slide)
« else, break state sequence into runs of qrip:
qoq1....qiqriprip. - -ripj. . .Qaccept
« transition from qi to gj in G allows all strings taking
G from qi to qj using grip (see slide)
« thus G’ accepts w

January 10, 2024 ©S21 Lecture 4 16

16

17

Regular expressions and FA

(“’7.
)

(Ri)(R.)*(Ra) U (Ry)

January 10, 2024 €821 Lecture 4 18

18

Regular expressions and FA

— Proof (continued):
« if G’ accepts string w, then every transition from g
to gj traversed in G’ corresponds to
either
a transition from gito g in G
or
transitions from gq; to gj via grip in G
* In both cases G accepts w.

« Conclude: G and G’ recognize the same language.

January 10, 2024 €821 Lecture 4 19

19

Limits on the power of FA

* Is every language describable by a
sufficiently complex regular expression?

* If someone asks you to design a FA for a
language that seems hard, how do you
know when to give up?

« Is this language regular?
{w : w has an equal # of “01” and “10” substrings}

January 10, 2024 ©821 Lecture 4 21

21

Limits on the power of FA

How do you prove that there is no Finite
Automaton recognizing a given language?

January 10, 2024 €821 Lecture 4 23

Regular expressions and FA

» Theorem: a language L is recognized by a
FA iff L is described by a regular expr.

Languages recognized by a FA are called

regular languages.

* Rephrasing what we know so far:

—regular languages closed under 3 operations

— NFA recognize exactly the regular languages

—regular expressions describe exactly the
regular languages

January 10, 2024

©S21 Lecture 4 20

20

Limits on the power of FA

Intuition:

— FA can only remember finite amount of
information. They cannot count

—languages that “entail counting” should be
non-regular...

* Intuition not enough:
{w : w has an equal # of “01” and “10” substrings}
=0z*0 U 12*1
but {w: w has an equal # of “0” and “1” substrings} is not regular!

January 10, 2024 ©S21 Lecture 4 22

22

Non-regular languages

Pumping Lemma: Let L be a regular
language. There exists an integer p
(“pumping length”) for which every w € L
with |w| = p can be written as

w=xyz such that
1. foreveryi>0,xyzelL, and
2. |ly|>0,and
3. Ixyl <p.

January 10, 2024 €821 Lecture 4 24

23

24

Non-regular languages

Using the Pumping Lemma to prove L is

not regular:

—assume L is regular

—then there exists a pumping length p

—select a string w € L of length at least p

— argue that for every way of writing w = xyz
that satisfies (2) and (3) of the Lemma,
pumping on y yields a string not in L.

— contradiction.

January 10, 2024 €821 Lecture 4 25

25

Pumping Lemma Examples

— 3 possibilities:
w = 000000000...0111111111...1
\ﬁ(—L‘l—)%/—/
Xy 1
w = 000000000...0111111111...1
X 19 1

w =000000000...0111111111...1

-
z

x y
—in each case, pumping on y gives a string not
in language L.

January 10, 2024 ©821 Lecture 4 27

27

Pumping Lemma Examples

— 3 possibilities:
w =000000000...0111111111...1
A~
oy 1
w =000000000...0111111111...1
pntutubbbbegbate e S i

X y z

w =000000000...0111111111...1

S
X y z

—first 2 cases, pumping on y gives a string not
in language L; 3 case a problem!

January 10, 2024 €821 Lecture 4 29

Pumping Lemma Examples

* Theorem: L ={0"1": n >0} is not regular.
* Proof:
— let p be the pumping length for L
— choose w = 0r1°
w =000000000...0111111111...1

e

— w=xyz, with |y| >0 and |xy| <p.

January 10, 2024 €821 Lecture 4 26

26

Pumping Lemma Examples

* Theorem: L = {w: w has an equal # of Os
and 1s} is not regular.
* Proof:
— let p be the pumping length for L
— choose w = 0r1p
w =000000000...0111111111...1
P P

— w=xyz, with [y| >0 and |xy| <p.

January 10, 2024 ©S21 Lecture 4 28

28

Pumping Lemma Examples

— recall condition 3: [xy] <p
—since w = 0r1? we know more about how it
can be divided, and this case cannot arise:
w =000000000...0111111111...1
%y ¥
—so we do get a contradiction.
—conclude that L is not regular.

January 10, 2024 €821 Lecture 4 30

29

30

