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Challenges to Extended Church-Turing
—randomized computation
— quantum computation

Course review
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Extended Church-Turing Thesis

« the belief that TMs formalize our intuitive
notion of an efficient algorithm is:

The “extended” Church-Turing Thesis
everything we can compute in time t(n)
on a physical computer can be

computed on a Turing Machine in time
t(n)° (polynomial slowdown)

+ randomized computation challenges this belief
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Polynomial identity testing

* Given: polynomial p(x4, Xz, ..., Xn) @S
arithmetic formula (fan-out 1):

*

» multiplication (fan-in 2) PN

_ *
« addition (fan-in 2) / PN
* negation (fan-in 1) M -
AN

X1 X2 X3 .. Xn

variables take values in finite field F
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RP,coRP, BPP

zZPP
coRP
P RPopp PSPACE

EXP

« from definitions: ZPP < RP, coRP < BPP
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Polynomial identity testing

* Question: Is p identically zero?
—i.e., is p(x) =0 for all x € F»
— (assume |F| larger than degree...)

« “polynomial identity testing” because given

two polynomials p, g, we can check the
identity p = q by checking if (p —q) =0
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Polynomial identity testing

Lemma (Schwartz-Zippel): Let
P(X1, X2, ..., Xn)
be a total degree d polynomial over a field

F and let S be any subset of F. Then if p is
not identically O,

Pl o sl P, 2y o 12) = O] S S,

H
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Polynomial identity testing

 Given: polynomial p(x4, Xz, ..., X,) over
field F *

*
PN
PO
AN N
X1 X2 X3 .. Xn

* Is p identically zero? -

*

* Note: degree d is at most the size of input
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Polynomial identity testing

randomized algorithm: pick a subset S c F
of size 2d

—pick ry, 1y, ..., r, from S uniformly at random
—ifp(ry, 1z, ..., 1,) = 0, answer “yes”

—if p(ry, 1, ..., 1,) # 0, answer “no”

if p identically zero, never wrong

if not, Schwartz-Zippel ensures probability
of error at most /2

=
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Randomized complexity classes

* We have shown:
—Polynomial Identity Testing is in coRP

—note: no sub-exponential time
deterministic algorithm know
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Randomized complexity classes

* How powerful is randomized computation?
* We have seen an example of a problem in
BPP

that we only know how to solve
deterministically in EXP.

Is randomness a panacea
for intractability?
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Randomized complexity classes

p P§PACE

| Exp

 believed that P = ZPP = RP = coRP = BPP (1)
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Course
Review
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Review

* Highest level: 2 main points

2. Tractability

— problem solvable in polynomial time =
problem is tractable

—some problems are not tractable (EXP-
complete problems)

—huge number of problems are likely not to be
tractable (NP-complete problems)
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Review

Important ideas (continued):

— simulation used to show one model at least as
powerful as another

— diagonalization used to show one model
strictly more powerful than another
« also Pumping Lemma

—reduction used to compare one problem to
another
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Review

* Highest level: 2 main points

1. Decidability

— problem solvable by an algorithm = problem is
decidable

— some problems are not decidable (e.g. HALT)
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Review

* Important ideas
— “problem” formalized as language
* language = set of strings
— “computation” formalized as simple machine
« finite automata
« pushdown automata
* Turing Machine
— “power” of machine formalized as the set of
languages it recognizes
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Review

Important ideas (continued):

— complexity theory investigates the resources

required to solve problems
« time, space, others...

— complexity class = set of languages

—language L is C-hard if every problem in C
reduces to L

—language L is C-complete if L is C-hard and L
isin C.
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Review

* Important ideas (continued):

A complete problem is a surrogate
for the entire class.
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Finite Automata

(single) start state

alphabet
>={0,1}

(several) accept states

transition for each symbol

\\/“0.1

* read input one symbol at a time; follow
arrows; accept if end in accept state
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Pushdown Automata
- input tape
finite
control ]?1‘1‘0‘0‘111010‘0‘1‘0‘1‘
New capabilities:
« can push symbol onto
(infinite) stack
stack « can pop symbol off of
stack
23

Summary

Part |: automata
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Finite Automata

* Non-deterministic variant: NFA

» Regular expressions built up from:
—unions
— concatenations
— star operations

Main results: same set of languages
recognized by FA, NFA and regular
expressions (“regular languages”).
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Context-Free Grammars

start _ terminal

symbol .~ symbols
ol oare Y
A—B

B # \non—terminal

symbols

production
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Pushdown Automata

Main results: same set of languages
recognized by NPDA, and context-free
grammars (“context-free languages”).

« and DPDA’s weaker than NPDA’s...
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Non-regular languages

Pumping Lemma: Let L be a regular
language. There exists an integer p
(“pumping length”) for which every w € L
with |w| = p can be written as

w=xyz such that
1. foreveryi >0, xyzelL, and

25

Pumping Lemma for CFLs

CFL Pumping Lemma: Let L be a CFL.
There exists an integer p (“pumping
length”) for which every w € L with |w| >
p can be written as

w =uvxyz such that
1. foreveryi >0, uvixyz €L, and
2. |vy| >0, and
3. |vxy| <p.
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Turing Machines

input tape

[l efe AT e[ [ele T -

finite N
control read/write
m head

* New capabilities:
—infinite tape
—can read OR write to tape
— read/write head can move left and right
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2. ly|>0,and
3. Ixy| <p.
26
Summary
Part II: Turing Machines and
decidability
28

Deciding and Recognizing

input M— « reject
« TMM: |_machine | {

« loop forever

—L(M) is the language it recognizes

—if M rejects every x & L(M) it decides L

— set of languages recognized by some TM is
called Turing-recognizable or recursively
enumerable (RE)

— set of languages decided by some TM is
called Turing-decidable or decidable or
recursive
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Church-Turing Thesis

« the belief that TMs formalize our intuitive
notion of an algorithm is:

The Church-Turing Thesis

everything we can compute on a
physical computer

can be computed on a Turing Machine
* Note: this is a belief, not a theorem.
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Decidable, RE, coRE...
{ab" 0} co-HALT some language
a"b":nz \ -
U7 deciable 0 °E
_ | all languages
regular __ )
languages /
context free o
languages RE
{a""c":n=20} HALT
some problems (e.g HALT) have no
algorithms
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Using reductions

Used reductions to prove lots of problems
were:
—undecidable (reduce from undecidable)
—non-RE (reduce from non-RE)

« or show undecidable, and coRE
—non-coRE (reduce from non-coRE)

* or show undecidable, and RE
Rice’s Theorem: Every nontrivial TM
property is undecidable.
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The Halting Problem

inputs ?l\?lxx)'
. { ———does M
Turing halt on
Machines X2

The existence of
H which tells us
yes/no for each
box allows us to
constructa TM H’
that cannot be in
the table.

H:[n[Y[n [Y[Y]n Y]
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Definition of reduction

» More refined notion of reduction:
— “many-one” reduction (commonly)
— “mapping” reduction (book)

A ‘ B
e e reduction from
f language A to
0o o language B
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March 6, 2024

The Recursion Theorem

Theorem: Let T be a TM that computes fn:
(SR AN
There is a TM R that computes the fn:
nEr 3t
defined as r(w) = t(w, <R>).

* In the course of computation, a Turing
Machine can output its own description.
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Summary

Part Ill: Complexity
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Time and Space Complexity

Definition: the time complexity of a TM M is a
function f:N — N, where f(n) is the maximum
number of steps M uses on any input of length n.

Definition: the space complexity of a TM M is a
function f:N — N, where f(n) is the maximum
number of tape cells M scans on any input of
length n.
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Complexity Classes

Definition: NTIME(t(n)) = {L : there exists a
NTM M that decides L in time O(t(n))}
NP= Uy > 1 NTIME(n¥)
* Theorem: P ¢ EXP
* P < NP c PSPACE c EXP

Don’t know if any of the containments are
proper.
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Complexity

» Complexity Theory = study of what is

computationally feasible (or tractable) with
limited resources:

— running time e
— storage space

— number of random bits
— degree of parallelism
— rounds of interaction

— others...

not in this course
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Complexity Classes

Definition: TIME(t(n)) = {L : there exists a
TM M that decides L in time O(t(n))}
P = Uk 1 TIME(n¥)
EXP = Uy » 1 TIME(2™)

Definition: SPACE(t(n)) = {L : there exists a
TM M that decides L in space O(t(n))}

PSPACE= Uy 1 SPACE(n¥)
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Alternate definition of NP

Theorem: language L is in NP if and only if
it is expressible as:

L={x]3y Iyl sIx (x,y) R}
where R is a language in P.
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Poly-time reductions

* Type of reduction we will use:
—“many-one” poly-time reduction (commonly)
—“mapping” poly-time reduction (book)
1. f poly-time
f computable

2. YES maps
o f o to YES

3. NO maps
to NO
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Complete problems

* EXP-complete: ATMg = {<M, x, m>: Mis a
TM that accepts x within at most m steps}

* PSPACE-complete: QSAT ={¢ : ¢ is a 3-
CNF, and 3x1VX23X3... VX, @(X1, X2, ... Xn) }

* NP-complete: 3SAT ={p: @isa
satisfiable 3-CNF formula}

March 6, 2024 Cs21 Lecture 26 45

45

Other complexity classes

* coNP — complement of NP
— complete problems: UNSAT, DNF-TAUTOLOGY

* NP intersect coNP
— contains (decision version of ) FACTORING

+ PSPACE
— complete problems: QSAT, GEOGRAPHY
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Hardness and completeness

Definition: a language L is C-hard if for
every language A € C, A poly-time
reducestolL;i.e, A<plL.

can show L is C-hard by reducing from a known
C-hard problem

Definition: a language L is C-complete if L
isC-hardandL e C
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Lots of NP-complete problems

Indendent Set

Vertex Cover

Clique

Hamilton Path (directed and undirected)

Hamilton Cycle and TSP

Subset Sum

NAE3SAT

Max Cut

Problem sets: max/min Bisection, 3-coloring, subgraph

isomorphism, subset sum, (3,3)-SAT, Partition,
Knapsack, Max2SAT...
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Complexity classes

EXP —

coNP

PSPACE
)

decidable
languages

all containments believed to be proper
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Quantum
Computation
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Extended Church-Turing Thesis

« the belief that TMs formalize our intuitive
notion of an efficient algorithm is:

The “extended” Church-Turing Thesis

everything we can compute in time t(n)
on a physical computer can be
computed on a (probaiiistic) TUring Machine
in time t(n)°(" (polynomial slowdown)

* Quantum computation challenges this belief
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For use later...

* Fourier transform:
/\ 7\ /\

\/ \ |

time domain frequency domain

\ /

r can recover r
]’ ]’ " I I |:> / from position
oo leooloeoe S N
time domain frequency domain
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Model of deterministic computation
1 0 0 0
8 c1> ? 8 / 2n possible
offoro 0 basic states
0JNeIA0 ! state at
state at time t \ time t+1
one 1 per 0000 0 o
column 1000 1| _[o
0010 o| |o
0101 0 1

53
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A different model

« infinite tape of a Turing Machine is an
idealized model of computer

* real computer is a Finite Automaton (!)
—n bits of memory
— 27 states
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Model of randomized computation

po / possible states at time t:

pP1

2 Yiri=1 PpER
I’:3
pon1 state at
state at time t \ time t+1
“stochastic olol o) 3
matrix ” \ 11 0 1 % ¥
sum in each g % 1 ; o= %
column =1 1
0300 5 §
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Model of randomized computation

« at end of computation, see specific state
» demand correct result with high probability
« think of as “measuring” system:

PO 0 see i basic state
P1 0 with probability p;
P2 |1
P3 0

pon_1 0
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