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QSAT is PSPACE-complete

Theorem: QSAT is PSPACE-complete.
* Proof:
— in PSPACE: 3x1Vx23x3 ... Qxn (X1, X2, ..., Xn)?
— “3x1": for both x1= 0, x1 = 1, recursively solve
Vx23x3 ... Qxn Q(X1, X2, ..., Xn)?
« if at least one “yes”, return “yes”; else return “no”
— “vx1": for both x1=0, x1 = 1, recursively solve
IX2VX3 ... Qxn P(X1, X2, ..., Xn)?
« if at least one “no”, return “no”; else return “yes”
— base case: evaluating a 3-CNF expression

— poly(n) recursion depth
— poly(n) bits of state at each level
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QSAT is PSPACE-complete

—given TM M deciding L € PSPACE; input x
— 2" possible configurations
—single START configuration

—assume single ACCEPT configuration

— define:
REACH(X, Y, i) & configuration Y reachable from
configuration X in at most 2' steps.
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QSAT is PSPACE-complete

REACH(X, Y, i) & configuration Y reachable from
configuration X in at most 2' steps.

— Goal: produce 3-CNF ¢(wW,,W,,Ws,...,w,) such

that
AW YW, ... IW,, QW .., W)
< REACH(START, ACCEPT, n¥)

QSAT is PSPACE-complete

—fori=0, 1, ... n produce quantified Boolean
expressions Wi(A, B, W) such that v AB:
Aw, Yw, ... W(A, B, W) & REACH(A, B, i)
— convert W,k to 3-CNF ¢

* add variables V
— hardwire A = START, B = ACCEPT
Iw,vw, ... 3V eW, V) & xel
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QSAT is PSPACE-complete

— W,(A, B) = true iff )
«A=Bor Boolean expression
of size O(n*)
* Avyields B in one step of M

‘HHH‘HHH‘H\H‘"- ‘HHHK:OMEQ.

STEP STEP STEP STEP
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— Key observation:

REACH(A, B, i+1)

=4

(why?)
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— cannot define yi+1(A; B; Z, W, W’) to be
3Z [awivwz ... wi(A, Z, W) A 3wr’ vwz'... @i(Z, B, W) ]

QSAT is PSPACE-complete

3Z[REACH(A, Z, i) A REACH(Z, B, i)]

QSAT is PSPACE-complete

— Key idea: use quantifiers
—couldn’t do wi.1(A; B; Z, W, W) =
3Z [awivwz ... wi(A, Z, W) A 3we’ vwz'... @i(Z, B, W) ]

—define .1 (A; B; Z, X, Y, W) to be
AZuXVY[(X=AA Y=Z) Vv (X=Z A Y=B)) =

Iwvw, ... (X, Y, W)
—wi(X, Y, W) is preceded by quantifiers

—move to front (they don’t involve X)Y,Z,AB)
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Yer(A B Z, X Y, W) =

= |Wiea| = O(n) + |y

— total size of y,«is O(n¥)? = poly(n)
—reduction runs in polynomial time
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QSAT is PSPACE-complete
W,(A, B) = true iff A= B or Ayields B in 1 step
IZVXVY[(X=AA Y=Z)V (X=Z AY=B)) =

Iw,vw, . (X, Y, W)
—|Wol = O(n*)

PSPACE and games

» General phenomenon: many 2-player
games are PSPACE-complete.

—2players |, Il

pasadena
i auck\and& athens
— alternate pick-
ing edges san o

—lose whenno "%
unvisited choice

* GEOGRAPHY ={(G, s) : G is a directed
graph and player | can win from node s}

~“davis

oakland
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PSPACE and games

QSAT ={¢ : ¢is a 3-CNF, and
X4 VX IX3 VX IXs. .. VX O(X1, X2, X3, .- Xq) }
« Think of as 2-player game (player 1 trying
to satisfy @; player 2 adversary):
— player 1 picks truth value for x,
— player 2 picks truth value for x,
— player 1 picks truth value for xs...

¢ € QSAT iff player 1 can win no matter
what player 2 does.
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PSPACE

Theorem: GEOGRAPHY is PSPACE-
complete.

Proof:
—in PSPACE (proof?)

— PSPACE-hard. reduction from QSAT.
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GEOGRAPHY is PSPACE-complete

» We are reducing from the language:

QSAT ={¢p: ¢is a 3-CNF, and
X, VX IX3 VXI5 .. VX P(Xq, X, Xay .- Xq) }

to the language:

GEOGRAPHY ={(G, s) : G is a directed graph
and player | can win from node s}
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PSPACE

X VX A% VX IXs. .. VX, P(Xq, Xp, Xg, .. Xp)?

clause choice
true false  gadget

variable
gadget for xi G G Cn
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Outline

+ Challenges to Extended Church-Turing
—randomized computation
— quantum computation
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X VX 3X3 .« (X1 VXV —X3 )A(X3 VX )AL A(XV —Xz)
I alternately pick truth
I; R assignment
o \
: |
II |
i
I% \ | picka
|/ clause
I
pick a true
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Extended Church-Turing Thesis

« the belief that TMs formalize our intuitive
notion of an efficient algorithm is:

The “extended” Church-Turing Thesis
everything we can compute in time t(n)
on a physical computer can be

computed on a Turing Machine in time
t(n)°( (polynomial slowdown)

» randomized computation challenges this belief
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Randomness in computation

» Example of the power of randomness

» Randomized complexity classes
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Communication complexity

two parties: Alice and Bob
function f:{0,1}" x {0,1}» — {0,1}
Alice holds x €{0,1}"; Bob holds y €{0,1}"

» Goal: compute f(x, y) while communicating as
few bits as possible between Alice and Bob

+ count number of bits exchanged (computation free)

« at each step: one party sends bits that are a
function of held input and received bits so far
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Communication complexity

» Can we do better?
— deterministic protocol?
— probabilistic protocol?
« at each step: one party sends bits that are
a function of held input and received bits so
far and the result of some coin tosses

* required to output f(x, y) with high
probability over all coin tosses
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Communication complexity

simple function (equality):
EQ(x,y)=1iffx=y

simple protocol:

— Alice sends x to Bob (n bits)
—Bob sends EQ(x, y) to Alice (1 bit)
—total: n + 1 bits

— (works for any predicate f)
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Communication complexity

Theorem: no deterministic protocol can
compute EQ(x, y) while exchanging fewer
than n+1 bits.

Y ={01}

X={o1 /

foxy) —

* Proof:
— “input matrix”:
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Communication complexity
—assume 1 bit sent at a time (but proof works
for general case)
— A sends 1 bit depending only on x:
y={01)
inputfs x causing
Atosendl
X={01 _
inputs x causing
A tosend O
23

Communication complexity

— B sends 1 bit depending only on y and

received bit:
y={01)"
inputs y causing
B to send 1
X={01 e

inputs y causing
B to send 0

— —
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Communication complexity

—at end of protocol involving k bits of
communication, matrix is partitioned into at
most 2% combinatorial rectangles

— bits sent in protocol are the same for every
input (x, y) in given rectangle

— conclude: f(x,y) must be constant on each
rectangle
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Communication complexity

y={01)"
Matrix for EQ: 1 0
X={01 o ﬁ

— any partition into combinatorial rectangles with
constant f(x,y) must have at least 2" + 1 rectangles

— protocol that exchanges < n bits can only create 2"
rectangles, so must exchange at least n+1 bits.
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