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coNP

* language L is in coNP iff its complement
(co-L)is in NP

* itis believed that NP # coNP

* note: P = NP implies NP = coNP
— proving NP # coNP would prove P # NP
— another major open problem...
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1
coNP
+ canonical coNP-complete language:
UNSAT = {0 : ¢ is an unsatisfiable 3-CNF
formula}
— proof?
3

coNP Disjunctive
Normal Form
= OR of ANDs

+ another example
3-DNF-TAUTOLOGY = {¢p : ¢ is a 3-DNF
formula and for all x, @(x) =1}
— proof?
» another example:

EQUIV-CIRCUIT = {(C4, Cz) : C1and C, are
Boolean circuits and for all x, C1(x) = Ca(x)}

— proof?
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Quantifier characterization of coNP

« recall that a language L is in NP if and only
if it is expressible as:

L={x13y, IyI<IX* (x,y) e R}
where R is a language in P.

Theorem: language L is in coNP if and only
if it is expressible as:
L={x|Vy Iyl=<Ix (x,y) e R}
where R is a language in P.
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Proof interpretation of coNP

* What is a proof?
Good formalization comes from NP:

L={x|3y, lyl<x (x,y) € R}, and ReP
“proof” "short" proof “proof verifier”

* NP languages have short proofs of membership

» co-NP languages have short proofs of non-
membership

» coNP-complete languages are least likely to
have short proofs of membership
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coNP

what complexity class do the following

languages belong in?

— COMPOSITES = {x : integer x is a composite}

—PRIMES = {x : integer x is a prime number}

— GRAPH-NONISOMORPHISM = {(G, H) : G
and H are graphs that are not isomorphic}

— EXPANSION = {(G = (V,E), « > 0): every

subset S € V of size at most |V|/2 has at least
a|S| neighbors}
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NP n coNP

* Might guess NP n coNP = P by analogy
with RE (since RE n coRE = DECIDABLE)

* Not believed to be true.

» A problem in NP n coNP not believed to
be in P:
L ={(x, k): integer x has a prime factor p < k}
(decision version of factoring)
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PRIMES in NP

Theorem: (Pratt 1975) PRIMES is in NP.
PRIMES = {x : V 1 <y <X, y does not divide x}
* Proof outline:

— Step 1: give “3” characterization of PRIMES
— Step 2: this = short certificate of primality
— Step 3: certificate checkable in poly time
(we will skip, because...)
Theorem: (M. Agrawal, N. Kayal, N. Saxena 2002)
PRIMES is in P.
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coNP
* Picture of the way we believe things are:
EXP coNP
decidable
languages
P NP
NP n coNP
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NP n coNP

» Theorem: This language is in NP n coNP:
L ={(x, k): integer x has a prime factor p < k}

Proof:
—In NP (why?)

—In coNP (what certificate demonstrates that x
has no small prime factor?)
— Use this claim: PRIMES is in NP:

PRIMES ={x : V 1 <y <X, y does not divide x}

February 28, 2024 CS21 Lecture 23

10

Summary

* Picture of the way we believe things are:

EXP

(decision version of ) coNP

FACTORING

decidable
languages

NP n coNP
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Space complexity

Definition: the space complexity of a TM M
is a function

ffN— N

where f(n) is the maximum number of tape
cells M scans on any input of length n.

* “M uses space f(n),” “M is a f(n) space TM”
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PSPACE
EXP NP pspace
D
decidable
languages
P NP

* NP < PSPACE, coNP < PSPACE (proof?)
* PSPACE < EXP (proof?)
» containments believed to be proper
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Space complexity

Definition: SPACE(t(n)) = {L : there exists a
TM M that decides L in space O(t(n))}

PSPACE = Uy 1 SPACE(nK)
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PSPACE

* A PSPACE-complete problem:
* Quantified Satisfiability:

QSAT ={op : ¢ is a 3-CNF, and
AX1VX23X3VX43X5. .. VXn (X1, X2, X3, ... Xn) }

« example: @ = (X4 V Xo V =X3) A (=X V —1X3)
AX4q VXo AX397?
YES: x4=T; if xo=T, set x3=F; if xo=F, set xz=T
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PSPACE

* A PSPACE-complete problem:
+ Quantified Satisfiability:

QSAT ={¢ : @ is a 3-CNF, and
AX1VX23X3VX43X5... VXn (X1, X2, X3, ... Xn) }

« example: @ = (X4 V XV =1 X3) A (= Xp)
x4 VXp IX3 97
NO: x4=T; if xo=T...; x1=F; if xo=T...
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QSAT is PSPACE-complete

Theorem: QSAT is PSPACE-complete.
* Proof:
— in PSPACE: 3x1VX23X3 ... QX, @(X1, X2, ..., Xn)?
— “3Ix¢”: for both x4 = 0, x4 = 1, recursively solve
VX3X3 ... QX O(X1, X, +-., Xn)?
« if at least one “yes”, return “yes”; else return “no”
— “vx4": for both x1 = 0, x4 = 1, recursively solve
AXVX3 ... QX @(X1, X2, .oy Xn)?
« if at least one “no”, return “no”; else return “yes”
— base case: evaluating a 3-CNF expression
— poly(n) recursion depth
— poly(n) bits of state at each level
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QSAT is PSPACE-complete

—given TM M deciding L € PSPACE; input x
— 2" possible configurations

—single START configuration

—assume single ACCEPT configuration

— define:
REACH(X, Y, i) & configuration Y reachable from
configuration X in at most 2i steps.
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QSAT is PSPACE-complete

REACH(X, Y, i) & configuration Y reachable from
configuration X in at most 2 steps.

— Goal: produce 3-CNF @(w1,W2,ws3,...,Wn) such
that

AW1YW2 ... IWm @(W1,...,Wn)
< REACH(START, ACCEPT, nk)
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QSAT is PSPACE-complete

—fori=0, 1, ... n* produce quantified Boolean
expressions Yi(A, B, W) such that v A,B:

Iwivwse ... Wi(A, B, W) © REACH(A, B, i)
— convert wnk to 3-CNF ¢

* add variables V

— hardwire A = START, B = ACCEPT
Awivwe ... IV (W, V) © xeL
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