Cs21
Decidability
and
Tractability

Lecture 2

January 5, 2024 E

Terminology

« finite alphabet X : a set of symbols
* language L < X*: subset of strings over
* a machine takes an input string and either
— accepts, rejects, or
— loops forever

» a machine recognizes the set of strings
that lead to accept

» a machine decides a language L if it
accepts x € Land rejects x € L
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What is computation?

+ accept

machine 4{ « reject

+ loop forever

input

* We want the simplest mathematical
formalization of computation possible.
« Strategy:
— endow box with a feature of computation
— try to characterize the languages decided

— identify language we “know” real computers can
decide that machine cannot

— add new feature to overcome limits
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Finite Automata

« simple model of computation

* reads input from left to right, one symbol at
atime

* maintains state: information about what
seen so far (“memory”)

— finite automaton has finite # of states: cannot
remember more things for longer inputs

» 2 ways to describe: by diagram, or formally
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FA diagrams

(single) start state alphabet

$={0,1}

(several) accept states

transition for each symbol

* read input one symbol at a time; follow
arrows; accept if end in accept state
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FA operation

» Example of FA operation:

0,1 input: 0101

not accepted
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FA operation

* Example of FA operation:

input: 10 1
/MN0,1

accepted
What language does this FA
decide?

L={x:x€{0,1}", x; =1}

\/!‘0,1

January 5, 2024 ©s21 Lecture 2

BBBBBBB — - . ”
cose - 35 cents
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Example FA

‘N~ No
@ .
» What language does this FA decide?

L ={x:x€{0,1}*, x has even # of 1s}
« illustrates fundamental feature/limitation of
FA:
— “tiny” memory
—in this example only “remembers” 1 bit of info.
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FA formal definition

A finite automaton is a 5-tuple
(Q, Z,8,q0,F)
— Qs a finite set called the states
— 2 is afinite set called the alphabet

—-3:Qx X — Qs a function called the transition
function

— o is an element of Q called the start state
—F is a subset of Q called the accept states
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Formal description of FA operation

finite automaton
M=(Q, %, 3, qo, F)
accepts a string
W = WiWoWs.. W, € Z*
if 3 sequence ro,r4,r,. .., of states for which

=Tl =q
—8(N, Wier) =g fori=0,1,2, ..., n-1
-r€F
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FA formal definition
‘N ()o
+ Specification of this FA in formal terms:
—Q = {even, odd} function &:
-¥={0,1} 5(even, 0) = even
—q, = even 5(even, 1) = odd
5(odd, 0) = odd
—F ={even} 5(0dd, 1) = even
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What now?

* We have a model of computation

(Maybe this is it. Maybe everything we can do
with real computers we can do with FA...)

« try to characterize the languages FAs can
recognize

—investigate closure under certain operations
« show that some languages not of this type
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Characterizing FA languages
* union “C=(AuB)’
(AUB)={x:x€AorxeB or both}
+ concatenation “C = (A~ B)"
(AeB)={xy:x€eAandyeB}
e star“C=A*" (note: € always in A*)
A* = {X,XX3...X: k =20 and each x, € A}
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Concatenation attempt

{0 o] ¥R
00 (0. -9

» Need it to happen “for free”: label with € (?)

« allows construct with multiple transitions with the
same label (1?)
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Characterizing FA languages

» We will show that the set of languages
recognized by FA is closed under:

—union “C = (A uB)”

— concatenation “C = (A o B)”

—star“C=A*"

Meaning: if A and B are languages
recognized by a FA, then C is a language
recognized by a FA
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Concatenation attempt

(AeB)={xy:xeAandyeB}

What label do we put on the new transitions?
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Nondeterministic FA

» We will make life easier by describing an
additional feature (nondeterminism) that
helps us to “program” FAs

* We will prove that FAs with this new
feature can be simulated by ordinary FA

— same spirit as programming constructs like
procedures

» The concept of nondeterminism has a
significant role in TCS and this course.
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NFA diagrams

(single) start state

states < transitions:

* may have several with
a given label (or none)

\/ - may be labeled with £

At each step, several choices for next state
— if possible to reach accept, then input accepted
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NFA operation
* Example of NFA operation: ;'ih{aot??;
- 1 0, 1
Vo 0,1 ‘\/“

input: 110

accepted
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NFA formal definition

=+ “powerset of Q™:
the set of all
subsets of Q

A nondeterministic F,

— 2 is a finite Set called the alphabet

—-0:Qx (ZU{e}) — P(Q) is a function called the
transition function

— Qo is an element of Q called the start state
—F is a subset of Q called the accept states
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NFA operation
« Example of NFA operation: g'ihﬁlf%
o 1 0.€ 1
o 011/
input: 01 0
not accepted
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NFA operation

» One way to think of NFA operation:

* string x = X1X2X3...X, accepted if and only if
—there exists a way of inserting €'s into x
X1EEXy X3. . .EXy
— so that there exists a path of transitions from
the start state to an accept state
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NFA formal definition

0,1}
Voa \/

+ Specification of this NFA in formal terms:
-Q= {31, S, Sa, 54} 5(s1, 0) = {s1} 8(s3,0)={}

~3={0,1} 5(s1,1)={s1, 52 (s3, 1) = {s4}

_ B(s1,6) = {} B(ss, €)= {)
~% =8 5(s2, 0) = {s3} 5(s4, 0) = {s4}
—F={ss} 5(s2, 1) ={} B(s4, 1) = {s4}

B(s2, €) = {s3} B(s4, €)= {)
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Formal description of NFA operation

NFA M=(Q, %, 8, qo, F)
accepts a string w = wiw,ows...w, € £*
if w can be written (by inserting €'s) as:
Y = ViYaYs...Ym € (X U {})*
and 3 sequence ro,r4,...,Im of states for which
=Tl =qo
— i €0(r, Yieq) fori=0,1,2, ..., m-1
—rm€F
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