
1

CS21
Decidability
and
Tractability

Lecture 16
February 9, 2024

1

February 9, 2024 CS21 Lecture 16 2

Complexity
• Complexity Theory = study of what is

computationally feasible (or tractable) with
limited resources:
– running time
– storage space
– number of random bits
– degree of parallelism
– rounds of interaction
– others…

main focus

not in this course

2

February 9, 2024 CS21 Lecture 16 3

Worst-case analysis
• Always measure resource (e.g. running

time) in the following way:
– as a function of the input length
– value of the fn. is the maximum quantity of

resource used over all inputs of given length
– called “worst-case analysis”

• “input length” is the length of input string,
which might encode another object with a
separate notion of size

3

February 9, 2024 CS21 Lecture 16 4

Time complexity
Definition: the running time (“time

complexity”) of a TM M is a function
f:N → N

where f(n) is the maximum number of
steps M uses on any input of length n.

• “M runs in time f(n),” “M is a f(n) time TM”

4

February 9, 2024 CS21 Lecture 16 5

Time complexity
• Example: TM M deciding L = {0k1k : k ≥ 0}.
On input x:
• scan tape left-to-right, reject if 0 to
right of 1
• repeat while 0’s, 1’s on tape:

• scan, crossing off one 0, one 1
• if only 0’s or only 1’s remain, reject;
if neither 0’s nor 1’s remain, accept

steps?

steps?

steps?

5

February 9, 2024 CS21 Lecture 16 6

Time complexity
• We do not care about fine distinctions

– e.g. how many additional steps M takes to
check that it is at the left of tape

• We care about the behavior on large
inputs
– general-purpose algorithm should be

“scalable”
– overhead for e.g. initialization shouldn’t matter

in big picture

6

2

February 9, 2024 CS21 Lecture 16 7

Time complexity
• Measure time complexity using asymptotic

notation (“big-oh notation”)
– disregard lower-order terms in running time
– disregard coefficient on highest order term

• example:
f(n) = 6n3 + 2n2 + 100n + 102781

– “f(n) is order n3”
– write f(n) = O(n3)

7

February 9, 2024 CS21 Lecture 16 8

Asymptotic notation
Definition: given functions f,g:N → R+, we

say f(n) = O(g(n)) if there exist positive
integers c, n0 such that for all n ≥ n0

f(n) ≤ cg(n).
• meaning: f(n) is (asymptotically) less than

or equal to g(n)
• if g > 0 can assume n0 = 0, by setting

c’ = max0≤n≤n0{c, f(n)/g(n)}

8

February 9, 2024 CS21 Lecture 16 9

Asymptotic notation facts
• “logarithmic”: O(log n)

– logb n = (log2 n)/(log2 b)
– so logbn = O(log2 n) for any constant b;

therefore suppress base when write it

• “polynomial”: O(nc) = nO(1)

– also: cO(log n) = O(nc’) = nO(1)

• “exponential”: O(2nδ) for δ > 0

each bound
asymptotically
less than next

9

February 9, 2024 CS21 Lecture 16 10

Time complexity

• total = O(n) + nO(n) + O(n) = O(n2)

On input x:
• scan tape left-to-right, reject if 0 to
right of 1
• repeat while 0’s, 1’s on tape:

• scan, crossing off one 0, one 1
• if only 0’s or only 1’s remain, reject;
if neither 0’s nor 1’s remain, accept

O(n) steps

O(n) steps

O(n) steps

≤ n repeats

10

February 9, 2024 CS21 Lecture 16 11

Time complexity
• Recall:

– language is a set of strings
– a complexity class is a set of languages
– complexity classes we’ve seen:

• Regular Languages, Context-Free Languages,
Decidable Languages, RE Languages, co-RE
languages

Definition: TIME(t(n)) = {L : there exists a
TM M that decides L in time O(t(n))}

11

February 9, 2024 CS21 Lecture 16 12

Time complexity
• We saw that L = {0k1k : k ≥ 0} is in

TIME(n2).
• Book: it is also in TIME(n log n) by giving a

more clever algorithm
• Can prove: There does not exist a (single

tape) TM which decides L in time
(asymptotically) less than n log n

• How about on a multitape TM?

12

3

February 9, 2024 CS21 Lecture 16 13

Time complexity
• 2-tape TM M deciding L = {0k1k : k ≥ 0}.
On input x:
• scan tape left-to-right, reject if 0 to right of 1
• scan 0’s on tape 1, copying them to tape 2
• scan 1’s on tape 1, crossing off 0’s on tape 2
• if all 0’s crossed off before done with 1’s
reject
• if 0’s remain after done with ones, reject;
otherwise accept.

O(n)
O(n)
O(n)

total:
3*O(n)
= O(n)

13

February 9, 2024 CS21 Lecture 16 14

Multitape TMs
• Convenient to “program” multitape TMs

rather than single ones
– equivalent when talking about decidability
– not equivalent when talking about time

complexity
Theorem: Let t(n) satisfy t(n) ≥ n. Every

multi-tape TM running in time t(n) has an
equivalent TM running in time O(t(n)2).

14

February 9, 2024 CS21 Lecture 16 15

Multitape TMs
simulation of k-tape TM by single-tape TM:

. . . a b a b

a a

b b c d

. . .

. . .

(input tape)

a b a b # a a # b b c d # . . .

• add new symbol
x for each old x

• marks location of
“virtual heads”

15

February 9, 2024 CS21 Lecture 16 16

Multitape TMs
. . . a b a b

a a

b b c d

. . .

. . .

a b a b # a a # b b c d # . . .

Repeat:
• scan tape, remembering the symbols
under each virtual head in the state

• make changes to reflect 1 step of M;
if hit #, shift to right to make room.

when M halts, erase all but 1st string

O(t(n)) times

O(k t(n)) = O(t(n))

O(k t(n)) = O(t(n))

O(t(n))

16

February 9, 2024 CS21 Lecture 16 17

Multitape TMs
• Moral: feel free to use k-tape TMs, but be aware

of slowdown in conversion to TM
– note: if t(n) = O(nc) then t(n)2 = O(n2c)= O(nc’)
– note: if t(n) = O(2nδ) for δ > 0 then t(n)2 = O(22nδ) =

O(2nδ’) for δ’ > 0
• high-level operations you are used to using can

be simulated by TM with only polynomial
slowdown
– e.g., copying, moving, incrementing/decrementing,

arithmetic operations +, -, *, /

17

February 9, 2024 CS21 Lecture 16 18

Extended Church-Turing Thesis
• the belief that TMs formalize our intuitive

notion of an efficient algorithm is:

• quantum computers challenge this belief

The “extended” Church-Turing Thesis

everything we can compute in time t(n)
on a physical computer can be

computed on a Turing Machine in time
t(n)O(1) (polynomial slowdown)

18

4

February 9, 2024 CS21 Lecture 16 19

Time Complexity
• interested in a coarse classification of

problems. For this purpose,
– treat any polynomial running time as “efficient”

or “tractable”
– treat any exponential running time as

inefficient or “intractable”
Key definition: “P” or “polynomial-time” is

P = ∪k ≥ 1 TIME(nk)

19

February 9, 2024 CS21 Lecture 16 20

Time Complexity
• Why polynomial-time?

– insensitive to particular deterministic model of
computation chosen

– closed under modular composition
– empirically: qualitative breakthrough to

achieve polynomial running time is followed
by quantitative improvements from impractical
(e.g. n100) to practical (e.g. n3 or n2)

20

February 9, 2024 CS21 Lecture 16 21

Examples of languages in P
• Recall: positive integers x, y are relatively

prime if their Greatest Common Divisor
(GCD) is 1.

• will show the following language is in P:
RELPRIME = {<x, y> : x and y are relatively

prime}
• what is the running time of the algorithm

that tries all divisors up to min{x, y}?

21

February 9, 2024 CS21 Lecture 16 22

Euclid’s Algorithm
• possibly earliest recorded algorithm

on input <x, y>:
• repeat until y = 0

• set x = x mod y
• swap x, y

• x is the GCD(x, y). If x = 1,
accept; otherwise reject

Example run on
input <10, 22>:

x, y = 10, 22
x, y = 22, 10
x, y = 10, 2
x, y = 2, 0
reject

22

February 9, 2024 CS21 Lecture 16 23

Euclid’s Algorithm
• possibly earliest recorded algorithm

on input <x, y>:
• repeat until y = 0

• set x = x mod y
• swap x, y

• x is the GCD(x, y). If x = 1,
accept; otherwise reject

Example run on
input <24, 5>:

x, y = 24, 5
x, y = 5, 4
x, y = 4, 1
x, y = 1, 0
accept

23

