CS21

Decidability
and

Tractability

Lecture 16
February 9, 2024

Worst-case analysis

» Always measure resource (e.g. running
time) in the following way:
—as a function of the input length
—value of the fn. is the maximum quantity of
resource used over all inputs of given length
— called “worst-case analysis”
“input length” is the length of input string,
which might encode another object with a
separate notion of size

February 9, 2024

cs21 Lecture 16

Complexity

Complexity Theory = study of what is

computationally feasible (or tractable) with
limited resources:

— running time e
— storage space

—number of random bits

— degree of parallelism

—rounds of interaction not in this course
— others...

February 9, 2024 Cs21 Lecture 16

Time complexity

Definition: the running time (“time
complexity”) of a TM M is a function
ffN—N

where f(n) is the maximum number of
steps M uses on any input of length n.

* “Mruns in time f(n),” “M is a f(n) time TM”

February 9, 2024

Cs21 Lecture 16

Time complexity

» Example: TM M deciding L = {O%1k: k = 0}.
On input x:

« scan tape left-to-right, reject if 0 to o
right of 1 # steps?

« repeat while 0's, 1’s on tape:
« scan, crossing off one 0, one 1 # steps?

« if only 0’s or only 1’s remain, reject; .
if neither O’s nor 1’s remain, accept # steps?

February 9, 2024 Cs21 Lecture 16

Time complexity

» We do not care about fine distinctions

—e.g. how many additional steps M takes to
check that it is at the left of tape

* We care about the behavior on large
inputs

— general-purpose algorithm should be
“scalable”

—overhead for e.g. initialization shouldn’'t matter
in big picture

February 9, 2024 Cs21 Lecture 16

Time complexity

» Measure time complexity using asymptotic
notation (“big-oh notation”)
— disregard lower-order terms in running time
— disregard coefficient on highest order term
* example:
f(n) = 6n3 + 2n2 + 100n + 102781
—“f(n) is order n®”
—write f(n) = O(n3)

February 9, 2024

Cs21 Lecture 16 7

Asymptotic notation facts

each bound
asymptotically
less than next

* “logarithmic”: O(log n)
—log, n = (log, n)/(log, b)

—so log,n = O(log, n) for any constant b;
therefore suppress base when write it

* “polynomial”: O(n¢) = no(™"
—also: cOlegm = O(n°) = noM
« “exponential”: O(2n°) for & > 0

February 9, 2024

Ccs21 Lecture 16 9

Time complexity

* Recall:
—language is a set of strings
—a complexity class is a set of languages
— complexity classes we've seen:

» Regular Languages, Context-Free Languages,
Decidable Languages, RE Languages, co-RE
languages

Definition: TIME(t(n)) = {L : there exists a
TM M that decides L in time O(t(n))}

February 9, 2024 Cs21 Lecture 16 1

Asymptotic notation

Definition: given functions f,g:N — R*, we
say f(n) = O(g(n)) if there exist positive
integers c, ny such that for all n 2 ng

f(n) < cg(n).

* meaning: f(n) is (asymptotically) less than
or equal to g(n)

« if g > 0 can assume ny = 0, by setting

C' = MaXosnzn,{C, f(n)/g(n)}

February 9, 2024 C€s21 Lecture 16 8

8
Time complexity

On input x:

« scan tape left-to-right, reject if 0 to

right of 1 Ofn) steps

« repeat while 0’s, 1’s on tape: <nrepeats

« scan, crossing off one 0, one 1 O(n) steps

« if only 0’s or only 1’s remain, reject;

if neither 0's nor 1’s remain, accept O(n) steps

« total = O(n) + nO(n) + O(n) = O(n2)

February 9, 2024 Cs21 Lecture 16 10
10

11

Time complexity

* We saw that L = {Ox1k: k> 0} is in
TIME(n2).

* Book: it is also in TIME(n log n) by giving a
more clever algorithm

» Can prove: There does not exist a (single
tape) TM which decides L in time
(asymptotically) less than n log n

* How about on a multitape TM?

February 9, 2024 Cs21 Lecture 16 12

12

Time complexity

» 2-tape TM M deciding L = {Ok1%: k = 0}.
On input x:
« scan tape left-to-right, reject if O to right of 1 O(n)
« scan 0's on tape 1, copying them to tape 2 O(n)
« scan 1's on tape 1, crossing off 0’s on tape 2 O(n)

« if all 0’s crossed off before done with 1’s

Multitape TMs

» Convenient to “program” multitape TMs
rather than single ones
— equivalent when talking about decidability
— not equivalent when talking about time

complexity

Theorem: Let t(n) satisfy t(n) = n. Every
multi-tape TM running in time t(n) has an
equivalent TM running in time O(t(n)?).

February 9, 2024 C€s21 Lecture 16 14

reject total:
« if 0's remain after done with ones, reject; 3*0(n)
otherwise accept. =0(n)
13
Multitape TMs
simulation of k-tape TM by single-tape TM:
ﬂﬂﬂ """« add new symbol
! x for each old x
[afa[[TTTTT]-- .
o * marks location of
ol [[1] - “virtual heads”
o
[#a[B[a [6[#[ala[#b]ble]d[# ...
15

Multitape TMs
Repeat: O(t(n)) times
nnu. T scan tape, remembering the symbols

under each virtual head in the state

[afal TTT]--- oktn)=0m)

= » make changes to reflect 1 step of M;
Euﬂ. ... if hit#, shift to right to make room.
pon O(k t(n)) = O(t(n))

when M halts, erase all but 1st string
O(t(n))
EONBRENDEDDACE

February 9, 2024 Ccs21 Lecture 16 16

Multitape TMs

* Moral: feel free to use k-tape TMs, but be aware
of slowdown in conversion to TM
— note: if t(n) = O(n°) then t(n)? = O(n%)= O(n°)
— note: if t(n) = O(2"°) for & > 0 then t(n)? = O(2"°) =

0(@2"°) for& >0

* high-level operations you are used to using can
be simulated by TM with only polynomial
slowdown

— e.g., copying, moving, incrementing/decrementing,
arithmetic operations +, -, *, /

February 9, 2024 Cs21 Lecture 16 17

17

Extended Church-Turing Thesis

« the belief that TMs formalize our intuitive
notion of an efficient algorithm is:

The “extended” Church-Turing Thesis

everything we can compute in time t(n)
on a physical computer can be
computed on a Turing Machine in time
t(n)°™M (polynomial slowdown)

» guantum computers challenge this belief

February 9, 2024 Cs21 Lecture 16 18

Time Complexity

« interested in a coarse classification of
problems. For this purpose,

— treat any polynomial running time as “efficient”
or “tractable”

— treat any exponential running time as
inefficient or “intractable”

Key definition: “P” or “polynomial-time” is
P = Uk 1 TIME(n¥)

February 9, 2024 C€s21 Lecture 16 19

19

Examples of languages in P

* Recall: positive integers x, y are relatively
prime if their Greatest Common Divisor
(GCD)is 1.

« will show the following language is in P:

RELPRIME = {<x, y>: x and y are relatively
prime}

* what is the running time of the algorithm
that tries all divisors up to min{x, y}?

February 9, 2024 Ccs21 Lecture 16 21

Time Complexity

* Why polynomial-time?

— insensitive to particular deterministic model of
computation chosen

— closed under modular composition

—empirically: qualitative breakthrough to
achieve polynomial running time is followed
by quantitative improvements from impractical
(e.g. n%9) to practical (e.g. n3 or n2)

February 9, 2024 C€s21 Lecture 16 20

20

21

Euclid’s Algorithm

« possibly earliest recorded algorithm

. . Example run on
e 558 input <24, 5>:
« repeat until y = 0 Xy =245

*setx=xmody xy=54

s swap x, y xy=4.1
* x is the GCD(x, y). If x =1, 10
accept; otherwise reject Xy=1

accept

February 9, 2024 €s21 Lecture 16 23

23

Euclid’s Algorithm

* possibly earliest recorded algorithm

on <, i
« repeat until y = 0 Xy =10,22
*setx=xmody xy =22 10
s swap X,y xy=10,2
aocept otboruiseriect | %¥=2.0
reject

February 9, 2024 Ccs21 Lecture 16 22

22

