CS21
Decidability
and
Tractability

Lecture 13
February 2, 2024

Outline

* reductions

* many-one reductions

 undecidable problems
— computation histories

— surprising contrasts between
decidable/undecidable

* Rice’s Theorem

February 2, 2024 Cs21 Lecture 13

Definition of reduction

» Can you reduce co-HALT to HALT?

* We know that HALT is RE
* Does this show that co-HALT is RE?
—recall, we showed co-HALT is not RE

« our current notion of reduction cannot
distinguish complements

February 2, 2024 Cs21 Lecture 13

Definition of reduction

» More refined notion of reduction:
— “many-one” reduction (commonly)
— “mapping” reduction (book)

A ¢ B
e e reduction from
f language A to
0o o language B

February 2, 2024 Cs21 Lecture 13 4

Definition of reduction

A f B
yes yes

f
no no

« function f should be computable

Definition: f : Z*— %* is computable if there
exists a TM M such that on every w € ¥*
M halts on w with f(w) written on its tape.

February 2, 2024 ©s21 Lecture 13

Definition of reduction

* Notation: “A many-one reduces to B” is
written

A<,B
—“yes maps to yes and no maps to no” means:
w € Amaps to f(w) €B &w ¢ A maps to f(w) € B

* Bis atleast as “hard” as A
—more accurate: B at least as “expressive” as A

February 2, 2024 €s21 Lecture 13 6

Using reductions

Definition: A <, B if there is a computable
function f such that for all w
weAeflw)eB
Theorem: if A <, B and B is decidable then
A is decidable
Proof:

— decider for A: on input w, compute f(w), run
decider for B, do whatever it does.

February 2, 2024 €s21 Lecture 13 7

Using reductions

Theorem: if A <,,B and B is RE then A is
RE

Proof:

— TM for recognizing A: on input w, compute
f(w), run TM that recognizes B, do whatever it
does.

» Main use: given language NEW, prove it is
not RE by showing OLD <., NEW, where

OLD known to be not RE.

February 2, 2024 Cs21 Lecture 13 9

Using reductions

» Main use: given language NEW, prove it is
undecidable by showing OLD <, NEW,
where OLD known to be undecidable
— proof by contradiction
—if NEW decidable, then OLD decidable
— OLD undecidable. Contradiction.

« common to reduce in wrong direction.

* review this argument to check yourself.

February 2, 2024 €s21 Lecture 13 8

Many-one reduction example

» Showed Eqy undecidable. Consider:
co-Ery = {<M>: L(M) = &}

f « f(<M, w>) = <M'>
yes yes where M’ is TM that
< on input X, if X # w,
f then reject
no no - else simulate M on x,
and accept if M does

co-E
A ™ « f clearly computable

February 2, 2024 Cs21 Lecture 13 10

Many-one reduction example

¢ « (<M, w>) = <M'>
yes yes where M’ is TM that
e oninputx, if X #w,
f then reject
no no « else simulate M on x,
and accept if M does

A CO-Ery
*+ yes maps to yes?
—if <M, w> € Ay then f(M, w) € co-Ery
* no maps to no?
—if <M, w> & Aqy, then f(M, w) & co-Eqy

February 2, 2024 ©s21 Lecture 13 1

« f clearly computable

10

Undecidable problems

Theorem: The language
REGULAR = {<M>: M is a TM and L(M) is
regular}

is undecidable.

Proof:
—reduce from Ay (i.e. show Ay <, REGULAR)
—what should f(<M, w>) produce?

February 2, 2024 ©s21 Lecture 13 12

11

12

Undecidable problems

Proof:
—f(<M, w>) = <M’> described below

on input x: « is f computable?
« if x has form 0", accept | * YES maps to YES?

* else simulate M on w
and accept x if M accepts

<M, w>€eAm =

f(M, w) € REGULAR
* NO maps to NO?

<M, w> ¢ Atm =

f(M, w) ¢ REGULAR

13

February 2, 2024 Cs21 Lecture 13

13

Computation histories

* Recall configuration of a TM: string uqv
withuver* qeQ

The sequence of configurations M goes
through on input w is a computation
history of M on input w

—may be accepting, or rejecting

—reserve the term for halting computations

— nondeterministic machines may have several
computation histories for a given input.

February 2, 2024 Cs21 Lecture 13

15

Dec. and undec. problems

* two problems we have seen with respect

to TMs, now regarding LBAs:

— LBA acceptance:

Alsa = {<M, w>: LBA M accepts input w}
— LBA emptiness:
E ga = {<M>: LBA M has L(M) = @}

» Both decidable? both undecidable? one

decidable?

February 2, 2024 ©s21 Lecture 13

17

Dec. and undec. problems

« the boundary between decidability and
undecidability is often quite delicate
—seemingly related problems
—one decidable
— other undecidable

We will see two examples of this
phenomenon next.

February 2, 2024

Cs21 Lecture 13

14

Linear Bounded Automata

LBA definition: TM that is prohibited from
moving head off right side of input.
— machine prevents such a move, just like a TM

prevents a move off left of tape

* How many possible configurations for a
LBA M on input w with |w| = n, m states,
andp=|I?
— counting gives: mnp"

February 2, 2024 Cs21 Lecture 13

16

Dec. and undec. problems

Theorem: A g4 is decidable.
Proof:
—input <M, w> where M is a LBA
—key: only mnp" configurations

—if M hasn't halted after this many steps, it
must be looping forever.

—simulate M for mnp» steps
—if it halts, accept or reject accordingly,
— else reject since it must be looping

February 2, 2024 ©s21 Lecture 13

18

Dec. and undec. problems

Theorem: E, g, is undecidable.

Proof:
—reduce from co-Ary (i.e. show co-Ary <, Eiga)
—what should f(<M, w>) produce?
—Idea:

« produce LBA B that accepts exactly the accepting
computation histories of M on input w

February 2, 2024 C€s21 Lecture 13 19

19

Dec. and undec. problems

Proof:
—f(<M, w>) = described below
«is B an LBA?
« is f computable?
* YES maps to YES?

<M, w> € co-Atvm =
f(M, w) € ELsa

« NO maps to NO?

<M, w> ¢ co-Atm =
f(M, w) & ELsa

on input x, check if x has form
HCHCHCa#.. #CH

« check that C1 is the start
configuration for M on input w

« check that Ci =!Ci

« check that Ck is an accepting
configuration for M

February 2, 2024 Cs21 Lecture 13

20

20

