

Lecture 13 February 2, 2024

Outline

- reductions
- · many-one reductions
- undecidable problems
- computation histories
- surprising contrasts between decidable/undecidable
- · Rice's Theorem

February 2, 2024

2

CS21 Lecture 13

• Can you reduce co-HALT to HALT?

Definition of reduction

- · We know that HALT is RE
- · Does this show that co-HALT is RE? - recall, we showed co-HALT is not RE
- · our current notion of reduction cannot distinguish complements

February 2, 2024

CS21 Lecture 13

Definition of reduction

reduction from language A to language B

- · More refined notion of reduction:
- "many-one" reduction (commonly)
- "mapping" reduction (book)

February 2, 2024 CS21 Lecture 13

Definition of reduction

· function f should be computable

Definition: $f: \Sigma^* \rightarrow \Sigma^*$ is computable if there exists a TM M_f such that on every $w \in \Sigma^*$ M_f halts on w with f(w) written on its tape.

February 2, 2024

CS21 Lecture 13

Definition of reduction

• Notation: "A many-one reduces to B" is written

A≤_m B

- "yes maps to yes and no maps to no" means: $w \in A$ maps to $f(w) \in B \& w \notin A$ maps to $f(w) \notin B$
- · B is at least as "hard" as A
- more accurate: B at least as "expressive" as A CS21 Lecture 13

6

February 2, 2024

Using reductions

Definition: $A \leq_m B$ if there is a computable function f such that for all w

 $w \in A \Leftrightarrow f(w) \in B$

Theorem: if $A \leq_m B$ and B is decidable then A is decidable

Proof:

- decider for A: on input w, compute f(w), run decider for B, do whatever it does.

February 2, 2024

CS21 Lecture 13

Using reductions

- · Main use: given language NEW, prove it is undecidable by showing OLD ≤_m NEW, where OLD known to be undecidable
 - proof by contradiction
 - if NEW decidable, then OLD decidable
 - OLD undecidable. Contradiction.
- · common to reduce in wrong direction.
- · review this argument to check yourself.

February 2, 2024

8

CS21 Lecture 13

Theorem: if A \leq_m B and B is RE then A is

Using reductions

Proof:

- TM for recognizing A: on input w, compute f(w), run TM that recognizes B, do whatever it
- · Main use: given language NEW, prove it is not RE by showing OLD ≤_m NEW, where OLD known to be not RE.

February 2, 2024

CS21 Lecture 13

Many-one reduction example

 $CO-E_{TM} = \{ \langle M \rangle : L(M) \neq \emptyset \}$

• Showed E_{TM} undecidable. Consider:

• f(<M, w>) = <M'>
where M' is TM that

co-E_{TM} · f clearly computable

• on input x, if $x \neq w$, then reject

• else simulate M on x.

and accept if M does

February 2, 2024 CS21 Lecture 13

10

Many-one reduction example

• f(<M, w>) = <M'>
where M' is TM that • on input x, if $x \neq w$, then reject else simulate M on x.

and accept if M does

- · f clearly computable
- yes maps to yes?
- -if <M, w> ∈ A_{TM} then f(M, w) ∈ co-E_{TM}
- no maps to no?
- if <M, w> \notin A_{TM} then f(M, w) \notin co-E_{TM}

February 2, 2024

11

CS21 Lecture 13

Undecidable problems

Theorem: The language

REGULAR = {<M>: M is a TM and L(M) is regular}

is undecidable.

Proof:

- reduce from A_{TM} (i.e. show $A_{TM} \leq_m REGULAR$)

CS21 Lecture 13

- what should f(<M, w>) produce?

February 2, 2024

12

Undecidable problems Proof: - f(<M, w>) = <M'> described below• is f computable? on input x: · YES maps to YES? • if x has form 0n1n, accept $\langle M, w \rangle \in A_{TM} \Rightarrow$ • else simulate M on w $f(M, w) \in REGULAR$ and accept x if M accepts NO maps to NO? <M, w $> \notin A_{TM} \Rightarrow$ f(M, w) ∉ REGULAR CS21 Lecture 13 February 2, 2024

Dec. and undec. problems

- · the boundary between decidability and undecidability is often quite delicate
 - seemingly related problems
 - one decidable
 - other undecidable
- · We will see two examples of this phenomenon next.

February 2, 2024

CS21 Lecture 13

13

14

Computation histories

- Recall configuration of a TM: string uqv with $u,v \in \Gamma^*$, $q \in Q$
- The sequence of configurations M goes through on input w is a computation history of M on input w
- may be accepting, or rejecting
- reserve the term for halting computations
- nondeterministic machines may have several computation histories for a given input.

February 2, 2024

CS21 Lecture 13

Linear Bounded Automata

- LBA definition: TM that is prohibited from moving head off right side of input.
- machine prevents such a move, just like a TM prevents a move off left of tape
- · How many possible configurations for a LBA M on input w with |w| = n, m states, and $p = |\Gamma|$?

CS21 Lecture 13

- counting gives: mnpⁿ

February 2, 2024

15

16

Dec. and undec. problems

- two problems we have seen with respect to TMs, now regarding LBAs:
- LBA acceptance:

A_{LBA} = {<M, w> : LBA M accepts input w}

- LBA emptiness:

 $E_{LBA} = \{ \langle M \rangle : LBA M \text{ has } L(M) = \emptyset \}$

· Both decidable? both undecidable? one decidable?

February 2, 2024

17

CS21 Lecture 13

Dec. and undec. problems

Theorem: A_{LBA} is decidable. Proof:

- input <M, w> where M is a LBA
- key: only mnpn configurations
- if M hasn't halted after this many steps, it must be looping forever.
- simulate M for mnpⁿ steps
- if it halts, accept or reject accordingly,

CS21 Lecture 13

- else reject since it must be looping

18

February 2, 2024

Dec. and undec. problems

Theorem: E_{LBA} is undecidable.

Proof:

19

- reduce from co- A_{TM} (i.e. show co- $A_{TM} \leq_m E_{LBA}$)
- what should f(<M, w>) produce?
- Idea
- produce LBA B that accepts exactly the accepting computation histories of M on input w

February 2, 2024 CS21 Lecture 13

Dec. and undec. problems Proof: -f(<M, w>) = described below on input x, check if x has form • is f computable? #C1#C2#C3#...#Ck# YES maps to YES? • check that C₁ is the start configuration for M on input w <M, w> \in co-A_{TM} \Rightarrow f(M, w) ∈ Elba check that C_i ⇒¹C_{i+1} NO maps to NO? • check that Ck is an accepting configuration for M <M, w> ∉ co-A_{TM} ⇒ f(M, w) ∉ Elba CS21 Lecture 13

20