
CS 151 Complexity Theory Spring 2023

Problem Set 3

Out: April 20 Due: April 27

Reminder: you are encouraged to work in groups of two or three; however you must turn in your
own write-up and note with whom you worked. You may consult the course notes and the optional
text (Papadimitriou). The full honor code guidelines and collaboration policy can be found in the
course syllabus.

Please attempt all problems. Please turn in your solutions via Gradescope, by 1pm on
the due date.

1. Barrington’s Theorem. We begin with a few words of background before the actual problem.
A branching program is a directed acyclic graph in which each node is labelled by a variable xi,
one of these is designated as the start node and there are two special nodes labelled “accept”
and “reject.” All of the nodes labelled with variables have exactly two outgoing edges, one
labelled “0” and the other labelled “1”. An input x = x1x2 . . . xn defines a path from the
start node to the accept or reject node as follows: at every node labelled xi, we follow the
outgoing edge whose label coincides with the value of xi in the input. If we reach the accept
node, the input is accepted; if we reach the reject node, the input is rejected. Polynomial-size
branching programs capture L/poly in the same way that polynomial-size circuits capture
P/poly.

In this problem we will consider a very restricted subclass of polynomial-size branching pro-
grams. With the exception of the accept and reject nodes, all of the nodes will be divided
into levels `1, `2, . . . `m, with each level containing at most 5 nodes; the only permitted edges
are directed from a node in level `i to a node in level `i+1, or a node in level `m to either the
accept or reject nodes. Before Barrington’s result in 1986, people were pretty sure these width
5 branching programs were similar in power to finite automata – it was thought that they
could not even maintain counters during their computation. In this problem you will prove, in
stark contrast to this intuition, that width 5 branching programs contain non-uniform NC1,
and that in fact they exactly characterize non-uniform NC1. (Non-uniform NC1 is the class
of languages decided by polynomial-size, O(log n)-depth Boolean circuits).

(a) Recall that S5 is the group of permutations on the elements {1, 2, 3, 4, 5}. We will
specify a sequence of m instruction triples (ij , σj , τj), j = 1 . . .m, where σj , τj ∈ S5
and 1 ≤ ij ≤ n. On an input x = x1x2 . . . xn the instructions yield the permutation
π1π2 . . . πm, where πj = σj if xij = 0 and πj = τj if xij = 1. We say that the sequence
of instructions π-accepts a set A ⊆ {0, 1}n if every x ∈ A yields π and every x 6∈ A
yields the identity permutation e (and π 6= e). Verify that if there is a sequence of m
instructions that π-accepts A, then there is a width-5 branching program with m levels
that accepts A.

3-1

3-2

(b) Recall that every permutation can be written as the product of disjoint cycles. We will
be concerned with elements of S5 that are 5-cycles. Examples of these elements are
σ = (1 2 3 4 5) or its inverse σ−1 = (1 5 4 3 2). Show that if π is a 5-cycle, and a
sequence of m instructions π-accepts A, then for any 5-cycle π′ ∈ S5, there is a sequence
of m instructions that π′-accepts A.

(c) Show that for any 5-cycle π, if there is a sequence of m instructions that π-accepts A
then there is a sequence of m instructions that π-accepts the complement of A.

(d) Show that if π and π′ are 5-cycles, and there is a sequence of m instructions that π-
accepts A, and a sequence of m′ instructions that π′-accepts B, then there is a sequence
of 2(m+m′) instructions that π′′-accepts (A∩B), for some 5-cycle π′′. You may use the
fact that there exist 5-cycles σ and τ whose commutator στσ−1τ−1 is a 5-cycle. (You
may wish to verify this fact for yourself).

(e) Show that if π and π′ are 5-cycles, and there is a sequence of m instructions that π-
accepts A, and a sequence of m′ instructions that π′-accepts B, then there is a sequence
of 2(m + m′) instructions that π′′-accepts (A ∪ B), for some 5-cycle π′′. Hint: write
A ∪ B as an expression involving only complements and intersection, and use parts (c)
and (d).

(f) Show that if A is decided by a fan-in 2, depth d Boolean circuit with ∧,∨ and ¬ gates,
then there is a sequence of at most 4d instructions that π-accepts A, for some 5-cycle
π. Hint: induction on d. Conclude that every language in non-uniform NC1 has a
polynomial-size width-5 branching program.

(g) Show that every language decided by polynomial-size width-5 branching programs is
in non-uniform NC1. Conclude that the languages decided by polynomial-size width-5
branching programs are exactly non-uniform NC1.

2. The class P/log is the class of languages decidable by a Turing Machines running in polyno-
mial time that take O(log n) bits of advice. Show that SAT∈ P/log implies P = NP.

3. The parity function on n inputs is⊕
n

(x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn

i.e., it is 1 if and only if there are an odd number of 1’s among its n inputs. Recall that for a
Boolean function f , L(f) denotes the leaf-size of the smallest (∧,∨,¬)-formula that computes
it.

(a) Show that L(
⊕

n) ≤ n2 when n is a power of 2.

(b) A formal complexity measure FC is a function mapping Boolean functions on n variables
to the natural numbers, and satisfying the following properties:

i. FC(xi) = 1 for 1 ≤ i ≤ n
ii. FC(f) = FC(¬f) for all f

iii. FC(f ∨ g) ≤ FC(f) + FC(g) for all f, g

Show that for every formal complexity measure FC we have FC(f) ≤ L(f). Thus
FC(f) is a lower bound on the formula complexity of f . Hint: pick an optimal formula
for f , and use induction on L(f).

3-3

(c) We will define a formal complexity measure (due to Krapchenko) that will allow us to
prove a lower bound on L(

⊕
n). Let A and B be subsets of {0, 1}n, and define

H(A,B) = {(a, b) : a ∈ A, b ∈ B, a and b differ in exactly 1 coordinate}

K(f) = max
A⊆f−1(1), B⊆f−1(0)

|H(A,B)|2

|A||B|
.

Show that K is a formal complexity measure. The most difficult part is showing that
property (iii) holds. For this part, let A and B be subsets maximizing the expression
that defines K(f ∨ g), and partition A into Af ⊆ f−1(1) and Ag ⊆ g−1(1); observe that
H(Af , B) ∪H(Ag, B) = H(A,B)...

(d) Show that L(
⊕

n) ≥ n2.

