Phase transitions in large graphical models: from physics to information theory and computer science

Andrea Montanari

Stanford University

March 15, 2007

1 An instructive story and many questions

2 The general theme: Phase transitions and Graphical models

3 A couple of applications (for time limits)

- Modern coding theory
- Random constraint satisfaction problems

4 3 5 4 3 5

1 An instructive story and many questions

2 The general theme: Phase transitions and Graphical models

3 A couple of applications (for time limits)

- Modern coding theory
- Random constraint satisfaction problems

1 An instructive story and many questions

2 The general theme: Phase transitions and Graphical models

3 A couple of applications (for time limits)

- Modern coding theory
- Random constraint satisfaction problems

1 An instructive story and many questions

2 The general theme: Phase transitions and Graphical models

A couple of applications (for time limits)
Modern coding theory

Random constraint satisfaction problems

1 An instructive story and many questions

2 The general theme: Phase transitions and Graphical models

3 A couple of applications (for time limits)

- Modern coding theory
- Random constraint satisfaction problems

An instructive story and many questions

Given a graph...

Andrea Montanari Phase transitions in large graphical models: from physics to infor

▲御▶ ▲理▶ ▲理≯

-2

... we want to partition its vertices ...

... to maximize the number of edges across.

The physics version

Localized magnetic moments (spins) Antiferromagnetic interaction (graph)

The physics version

Localized magnetic moments (spins) Antiferromagnetic interaction (graph)

MAXCUT

NP-hard to approximate

-2

御 と く ヨ と く ヨ とし

- What is the structure of *low energy configurations/optimal cuts*?
- How does Nature find the optimum? How would we find it?
- Is there a 'physics theory' to describe low energy configurations?
 Is there an 'efficient algorithm' to find optimal cuts

直 ト イヨ ト イヨ ト

- What is the structure of *low energy configurations/optimal cuts*?
- How does Nature find the optimum? How would we find it?
- Is there a 'physics theory' to describe low energy configurations?
 Is there an 'efficient algorithm' to find optimal cuts

伺 ト イ ヨ ト イ ヨ ト

- What is the structure of *low energy configurations/optimal cuts*?
- How does Nature find the optimum? How would we find it?
- Is there a 'physics theory' to describe low energy configurations?
 Is there an 'efficient algorithm' to find optimal cuts

- What is the structure of *low energy configurations/optimal cuts*?
- How does Nature find the optimum? How would we find it?
- Is there a 'physics theory' to describe low energy configurations?
 Is there an 'efficient algorithm' to find optimal cuts?

Start with 'simple' model

Connect each pair of vertices with probability 0.5 (independently)

A random partition yields

$$|\text{CUT}| \approx \frac{1}{2} |\text{EDGES}|$$
.

SK (1972): How better is the optimal partition?

$$|\mathsf{CUT}| = \frac{1}{2}|\mathsf{EDGES}| + \frac{1}{4}\Delta |\mathsf{NODES}|^{3/2} + \cdots$$

Connect each pair of vertices with probability 0.5 (independently)

A random partition yields

$$|\mathsf{CUT}| \approx \frac{1}{2} |\mathsf{EDGES}|$$
.

SK (1972): How better is the optimal partition?

$$|\mathsf{CUT}| = \frac{1}{2}|\mathsf{EDGES}| + \frac{1}{4}\Delta |\mathsf{NODES}|^{3/2} + \cdots$$

Where

$$\Delta = \frac{1}{4} \inf_{q} \left\{ \int_{0}^{\infty} (1 - q^{2}(x)) - \phi_{q}(0, 0) \right\}$$
$$\frac{\partial \phi(y; x)}{\partial x} = -\frac{1}{2} q'(x) \left[\frac{\partial^{2} \phi(y; x)}{\partial y^{2}} + x \left(\frac{\partial \phi(y; x)}{\partial y} \right)^{2} \right]$$
$$\phi(y; \infty) = |y|$$

Conjecture : Parisi (1979)

Proof : Guerra, Talagrand (2004)

同下 イヨト イヨト

3

CS LENS

 $\Delta = \inf_{q} \mathcal{F}[q]$ Is there any hidden duality in the problem?

Flipping (spins 1 and 2) \approx Flipping (1)+ Flipping (2) Can this fact be exploited algorithmically?

Physical dynamics is 'local' How do local optimization algorithms work?

/□ ▶ < 글 ▶ < 글

CS LENS

 $\Delta = \inf_{q} \mathcal{F}[q]$ Is there any hidden duality in the problem?

Flipping (spins 1 and 2) \approx Flipping (1)+ Flipping (2) Can this fact be exploited algorithmically?

Physical dynamics is 'local' How do local optimization algorithms work?

同 ト イ ヨ ト イ ヨ ト

CS LENS

 $\Delta = \inf_{q} \mathcal{F}[q]$ Is there any hidden duality in the problem?

Flipping (spins 1 and 2) \approx Flipping (1)+ Flipping (2) Can this fact be exploited algorithmically?

Physical dynamics is 'local' How do local optimization algorithms work?

Phase transitions and Graphical models

An abrupt change in the state of a 'large' system as some control parameter is varied.

Example: water is liquid at 0.01° C and solid at -0.01° C.

伺 ト イヨト イヨト

A phase transition is accompanied by the emergenge of long range correlations.

Example: water is liquid at 0.01° C and solid at -0.01° C.

Probability+Locality

 x_1 x_2 x_5 x_1 x_4 x_5 x_6 x_7 x_{10} x_1 x_1 x_1 x_1 x_1 x_2 x_1 x_2 x_3 x_4 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_1 x_1

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij)\in E} \psi_{ij}(x_i, x_j), \qquad \underline{x} = (x_1, \dots, x_n).$$

(statistical physics, counting, inference, estimation, coding,...)

MAXCUT – Antiferromagnet

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij)\in E} \exp\{-\beta x_i x_j\}, \qquad x_i \in \{+1, -1\}.$$

3

∃ → < ∃ →</p>

• Optimization

$$\underline{x}_* = \arg \max \prod_{(ij) \in E} \psi_{ij}(x_i, x_j)$$
.

• Partition function

$$Z = \sum_{\underline{\times}} \prod_{(ij)\in E} \psi_{ij}(x_i, x_j).$$

Marginals

$$\mu(x_i) = \sum_{x_{\sim i}} \mu(\underline{x}) \,.$$

• Sampling.

→ 米温→ 米温→

Optimization

$$\underline{x}_* = \arg \max \prod_{(ij) \in E} \psi_{ij}(x_i, x_j)$$
 .

Partition function

$$Z = \sum_{\underline{x}} \prod_{(ij)\in E} \psi_{ij}(x_i, x_j).$$

Marginals

$$\mu(x_i) = \sum_{x_{\sim i}} \mu(\underline{x}) \,.$$

• Sampling.

(*) *) *) *)

• Optimization

$$\underline{x}_* = \arg \max \prod_{(ij) \in E} \psi_{ij}(x_i, x_j)$$
 .

Partition function

$$Z = \sum_{\underline{x}} \prod_{(ij)\in E} \psi_{ij}(x_i, x_j).$$

Marginals

$$\mu(x_i) = \sum_{x_{\sim i}} \mu(\underline{x}) \, .$$

• Sampling.

* E > * E >

• Optimization

$$\underline{x}_* = \arg \max \prod_{(ij) \in E} \psi_{ij}(x_i, x_j)$$
 .

Partition function

$$Z = \sum_{\underline{x}} \prod_{(ij)\in E} \psi_{ij}(x_i, x_j).$$

Marginals

$$\mu(x_i) = \sum_{x_{\sim i}} \mu(\underline{x}) \, .$$

A B M A B M

Are far apart variables/particles strongly correlated? Can we approximate marginals $\mu(x_i)$ using only local information?

Can the system be found in different phases? What is the 'qualitative' structure of $\mu(\cdot)$? (conductance/concentration)

Does it relax rapidly to equilibrium? Can we sample/optimize with local algorithms?

同 ト イ ヨ ト イ ヨ ト

Are far apart variables/particles strongly correlated? Can we approximate marginals $\mu(x_i)$ using only local information?

Can the system be found in different phases? What is the 'qualitative' structure of $\mu(\cdot)$? (conductance/concentration)

Does it relax rapidly to equilibrium? Can we sample/optimize with local algorithms?

同 ト イ ヨ ト イ ヨ ト

-

Are far apart variables/particles strongly correlated? Can we approximate marginals $\mu(x_i)$ using only local information?

Can the system be found in different phases? What is the 'qualitative' structure of $\mu(\cdot)$? (conductance/concentration)

Does it relax rapidly to equilibrium? Can we sample/optimize with local algorithms?

(人間) システレ イテレ

-

A couple of applications

Andrea Montanari Phase transitions in large graphical models: from physics to infor
Modern coding theory

To be concrete: coding over binary memoryless symmetric channels.

encoder \Leftrightarrow constraints over message bits

∃ ► < ∃ ►</p>

-

LDPC codes [Gallager 1963, MacKay 1995]

constraints over message bits \Leftrightarrow graphical representation

From 10^2 to 10^5 message bits

Random graph

Iterative message passing decoding

decoding error probability

decoding error probability

decoding error probability

decoding error probability

decoding error probability

decoding error probability

decoding error probability

decoding error probability

decoding error probability

decoding error probability

decoding error probability

decoding error probability

decoding error probability

decoding error probability

decoding error probability

Constraint satisfaction problems

N variables:
$$\underline{x} = (x_1, x_2, ..., x_N), x_i \in \{0, 1\}$$

M k-clauses

$$(x_1 \lor \overline{x_5} \lor x_7) \land (x_5 \lor x_8 \lor \overline{x_9}) \land \cdots \land (\overline{x_{66}} \lor \overline{x_{21}} \lor \overline{x_{32}})$$

Hereafter $k \ge 4$ (ask me why at the end)

伺 ト イヨト イヨト

$$F = \cdots \land \underbrace{\left(x_{i_1(a)} \lor \overline{x}_{i_2(a)} \lor \cdots \lor x_{i_k(a)}\right)}_{a-\text{th clause}} \land \cdots$$

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{a=1}^{M} \psi_a(x_{i_1(a)}, \dots, x_{i_k(a)})$$

$$\psi_a(x_{i_1(a)}, \dots, x_{i_k(a)}) = \begin{cases} 1 & \text{clause } a \text{ satisfied} \\ 0 & \text{otherwise} \end{cases}$$

Andrea Montanari Phase transitions in large graphical models: from physics to infor

(★ 문 ► ★ 문 ►

-
(Factor) graph representation

Here : N = 10, M = 4

Distance: $i, j \in \{1, \ldots, N\} \mapsto d(i, j)$

Each clause is uniformly random among the $2^k \binom{N}{k}$ possible ones.

 $N, M \rightarrow \infty$ with $\alpha = M/N$ fixed.

伺 ト イ ヨ ト イ ヨ ト

3

Phase transition in the structure of $\mu(\cdot) \Leftrightarrow$

Set of solutions of *F* (cavity method):

 $\alpha < \alpha_{\rm d}(k) \Rightarrow$ Weak correlations.

 $\alpha_{\rm d}(k) < \alpha < \alpha_{\rm c}(k) \Rightarrow$ Strong *point-to-set* correlations.

 $\alpha_{\rm c}(k) < \alpha < \alpha_{\rm s}(k) \Rightarrow$ Strong *point-to-point* correlations.

⇔ Performance of message passing algorithms

$\alpha < \alpha_{\rm c}(k) \Rightarrow$ Belief propagation is asymptotically correct.

 $\alpha_{\rm c}(k) < \alpha < \alpha_{\rm s}(k) \Rightarrow$ Survey propagation.

ゆう くらう くらう しゅ

Physics : M. Mézard, G. Parisi, R. Monasson, R. Zecchina,F. Ricci-Tersenghi, M. Weigt, G. Biroli, G. Semerjian,N. Sourlas...

CS : D. Achlioptas, D. Gamarnik, E. Mossel, E. Maneva, C. Nair, M. Bayati, D. Weitz, N. Creignou, M. Luby, A. Shokrollahi, A. Sinclair...

Probability : D. Aldous, M. Talagrand, A. Dembo, P. Diaconis, F. Martinelli, Y. Peres, F. Guerra, F. Toninelli...

EE : R. Urbanke, T. Richardson, M. Wainwright, B. Prabhakar, D. Shah, S. Tatikonda, J. Yedidia, D. Forney...

Conclusion 2: If you want to know more about this...

- M. Mézard, A. M., Upcoming book
- T. Richardson, R. Urbanke, *Modern Coding Theory*, A. M., R. Urbanke, *Les Houches lecture notes*
- 2007 IT Symposium \rightarrow Statistical Physics tutorial
- 2007 StatPhys symposium \rightarrow IT Plenary Talk

google ee374