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Equilibrium Statistical Mechanics

This fundamental law is the summit of statistical mechanics, and the 
entire subject is either the slide-down from this summit, as the principle 
is applied to various cases, or the climb-up to where the fundamental 

law is derived. . . — Feynman  
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Information is physical — Rolf Landauer 

Information is bits 

"S       = 22 J / (mol K)

           ~ 2.5 nats / molecule
           ~ 4 bits / molecule

Melting

 "F           = 20 kJ / mol

!"F          ~ 8 nats / molecule

                ~ 12 bits / molecule
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Figure 2 In a Metropolis Monte Carlo simulation, one generates a random walk in

configuration space according to the probability distribution p(x) ∝ exp[−V (x)/kBT ].
If the distribution were that of a canonical ensemble, V(x) would denote the potential

energy for configuration x. Along this walk, a new configuration x ′ is generated by

displacing the old configuration x by a randomly chosen small step, !. Then x ′ is

accepted or rejected. If the step goes downhill in energy, i.e., if the new configuration

has a higher probability than the old one, x ′ is always accepted. Uphill moves, on

the other hand, are only accepted with a probability w(x, !) p(x ′)/p(x)w(x ′, −!),

where w(x, !) is the distribution for the random step,!, given the configuration x. In

this way, barriers of the order of kBT or smaller do not hinder the random walk, and

a system will move quickly to configurations of high probability (the lightly shaded

region) even when initiated far away from that important region in configuration space.

sections of this review use characteristic functions of configuration space, x, only,

but this limitation is not required.) When χ is within region A, hA(χ )= 1, other-
wise, hA(χ ) = 0. The corresponding population operator for region B, hB(χ ), is

similarly defined. Transitions between regions A and B coincide with trajectories

connecting these regions. A trajectory of time duration t, χ (t) = (χ0, χ1, . . . , χt ),

is a chronological sequence of phase space points generated by repeated applica-

tion of a dynamical propagation rule. Trajectories we imagine are consistent with

Liouville’s equation or one of its analogues (27, 28). Namely, they must be re-

versible, must preserve the norm of the distribution of states, and must preserve an

equilibrium distribution. For simplicity, but not for necessity, we might be consid-

ering deterministic dynamics, in which case χt is entirely determined by the initial

Configurational
Monte Carlo
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phase space point, χ0. The statistical weight for the rare trajectories connecting

A and B is hA(χ0)ρ[χ (t)]hB(χt ), where ρ[χ (t)] is the unconstrained distribution

functional for trajectories. For deterministic trajectories,

ρ[χ (t)] = ρ(χ0)
∏

0<t ′≤t
δ[χt ′ − χt ′ (χ0)], 1.

whereρ(χ0) is the unconstrained distribution of initial phase space points,χ0. Tran-

sition path sampling is done by carrying out a random walk in trajectory space,

biased to be the importance sampling for the distribution hA(χ0)ρ[χ (t)]hB(χt ).

Figure 3 illustrates how it is done in a practical and simple fashion.

In this perspective, stable or long-lived statesA andBmust bewell characterized

at the outset. This characterization can be difficult, as we discuss below. Never-

theless, we see that nothing need be presupposed about the dynamical pathways

Figure 3 Illustration of “shooting moves,” generating a random walk in trajectory

space for Newtonian trajectories connecting regions A and B. For example, trajectory

2 is generated by changing trajectory 1 by a small amount. This change can be accom-

plished, for example, by first choosing a time slice point τ lying between 0 and t. At this

time slice, themomentum of trajectory 1 can be altered by some small randomly chosen

amount. The resulting newmomentum can be used along with the configuration of tra-

jectory 1 at time τ as the initial conditions for a new trajectory created by propagating

forward from that phase space point for t−τ steps and backward from that phase space

point for τ steps. Because regions A and B remain connected, this second path will be

accepted as the new trajectory, provided the value of ρ(χ0) for the new trajectory com-

pares favorably with that for the first trajectory. Specifically, the probability to attempt

a step from a trajectory χ (t) = (χ0, χ1, . . . , χt ) to χ ′(t) = (χ ′
0, χ

′
1, . . . , χ

′
t
) is the joint

probability for choosing time slice τ and assigning a momentum change δ at that time

slice, w(χ , τ, δ). The acceptance probability for that trial step is min[1, w(χ , τ, δ)

hA(χ
′
0) ρ(χ

′
0) hB(χ

′
t
)/hA(χ0)ρ(χ0)hB(χt )w(χ

′, τ,−δ)]. By the same type of procedure,

trajectory 3 is generated from trajectory 2. This time, however, the new path does not

connect A and B, and it is rejected. This sequence of acceptances and rejections ensures

that the correct path ensemble is sampled—namely, the ensemble that isweighted by the

distribution hA(χ0)ρ(χ0)hB(χt ). There is great flexibility in the choice of random walk

steps. This flexibility can be exploited in efforts to improve the efficiency of transition

path sampling. In practice, shooting moves are only one of several moves employed in

transition path sampling. References (2, 10, 62) describe other useful moves.

Transition Path
Monte Carlo
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Assume we obtained a transition path ensemble between two 
conformations of a protein, how do we write a paper describing 

what happens? -Peter Bolhuis
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along the unfolding path while (absolute) values smaller than DG
occur more often along the refolding path. As can be seen from
equation (1), the CFT states that although PU(W), PR(2W) depend
on the pulling protocol, their ratio depends only on the value of DG.
Thus the value of DG can be determined once the two distributions
are known. In particular, the two distributions cross at W ¼ DG:

PUðWÞ ¼ PRð2WÞ)W ¼ DG ð3Þ
regardless of the pulling speed. Although the simple identity (3)
already gives an estimate of DG, it is not necessarily very precise
because it uses only the local behaviour of the distribution around
W ¼ DG. Using the whole work distribution increases the precision
of the free-energy estimate19. In particular, as we show below, when
the overlapping region of work values between the unfolding and
refolding work distributions is too narrow (as may happen for large
values of the average dissipated work, defined as kWdisl ¼ kWl 2
DG), the use of Bennett’s acceptance ratio method20 makes it possible
to extract accurate estimates of DG using the CFT (see the Sup-
plementary Information).
We first experimentally test the validity of the CFT for a molecular

transition occurring near equilibrium. For this, we use a short
interfering (si)RNA hairpin that targets the messenger RNA of the
CD4 receptor of the human immunodeficiency virus (HIV)11 and
that unfolds irreversibly but not too far from equilibrium at acces-
sible experimental pulling speeds (dissipated work values less than
6kBT). Under these conditions, the unfolding and refolding work
distributions overlap over a sufficiently large range of work values to
justify the use of the direct method to experimentally test equation
(1). The work done on the molecules during either pulling or
relaxation is given by the areas below the corresponding force–
extension curves (Fig. 1).
Unfolding and refolding work distributions at three different

pulling speeds are shown in Fig. 2. Irreversibility increases with the
pulling speed and unfolding–refolding work distributions become
progressively more separated. Note, however, that the unfolding and
the refolding distributions cross at a value of the work DG¼
110:3^ 0:5kBT that does not depend on the pulling speed, as
predicted by equation (3). Moreover, the work distributions also

satisfy the CFT, that is, equation (1) (see the Supplementary
Information). We also notice that work distributions are compatible
with, and can be fitted to, gaussian distributions (data not shown).
After subtracting the contribution arising from the entropy loss due
to the stretching of the molecular handles attached on both sides of
the hairpin (DGhandles ¼ 23.8 kBT) and of the extended single-
stranded (ss)RNA ðDGssRNA ¼ 23:7^ 1kBTÞ from the total work,
DGexp ¼ 110:3^ 0:5kBT, we obtain for the free energy of unfolding
at zero forceDGexp

0 ¼ 62:8^ 1:5kBT ¼ 37:2^ 1kcalmol21 (at 258C,
in 100mM Tris-HCl, pH 8.1, 1mM EDTA), in excellent agreement
with the result obtained using the Visual OMP from DNA software21

DGmfold
0 ¼ 38kcalmol21 (at 258C, in 100mM NaCl).
To extend the experimental test of the validity of the CFT to the

very-far-from-equilibrium regime where the work distributions are
no longer gaussian, we apply the CFT to determine: (1) the difference
in folding free energy between an RNA molecule and a mutant that
differs only by one base-pair, and (2) the thermodynamic stabilizing
effect of Mg2þ ions on the RNA structure. The RNAwe consider is a
three-helix junction of the 16S ribosomal RNA of Escherichia coli12

that binds the S15 protein. The secondary structure of this RNA is a
common feature in RNA structures22–24 that plays, in this case, a
crucial role in the folding of the central domain of the 30S ribosomal
subunit. For comparison, and to verify the accuracy of the method,
we have pulled the wild type and a CzG to GzC mutant (C754G to
G587C) of the three-helix junction.
Figure 3 depicts the unfolding and refolding work distributions for

the wild-type and mutant molecules (work values were binned into
about 10–20 equally spaced intervals). For both molecules, the
distributions display a very narrow overlapping region. In contrast
with the hairpin distribution, the average dissipated work for the
unfolding pathway is now much larger—in the range 20–40kBT —
and the unfolding work distribution shows a large tail and strong
deviations from gaussian behaviour. Thus, these molecules are ideal
to test the validity of equation (1) in the far-from-equilibrium
regime. As shown in the inset of Fig. 3, the plot of the log ratio of
the unfolding to the refolding probabilities versus total work done on
the molecule can be fitted to a straight line with a slope of 1.06, thus
establishing the validity of the CFT (see equation (1)) under far-
from-equilibrium conditions. Ourmeasurements reveal the presence
of long tails in the work distribution PU(W) along the unfolding path

Figure 2 | Test of the CFT using an RNA hairpin. Work distributions for
RNA unfolding (continuous lines) and refolding (dashed lines). We plot
negative work, PR(2W), for refolding. Statistics: 130 pulls and three
molecules (r ¼ 1:5pNs21), 380 pulls and four molecules (r ¼ 7:5pNs21),
700 pulls and three molecules (r ¼ 20:0pNs21), for a total of ten separate
experiments. Good reproducibility was obtained among molecules (see
Supplementary Fig. S2). Work values were binned into about ten equally
spaced intervals. Unfolding and refolding distributions at different speeds
show a common crossing around DG¼ 110:3kBT.

Figure 1 | Force–extension curves. The stochasticity of the unfolding and
refolding process is characterized by a distribution of unfolding or refolding
work trajectories. Five unfolding (orange) and refolding (blue) force–
extension curves for the RNA hairpin are shown (loading rate of 7.5 pN s21).
The blue area under the curve represents the work returned to the machine
as the molecule switches from the unfolded to the folded state. The RNA
sequence is shown as an inset.
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    Clausius Inequality Jarzynski Equality      

Bayesian estimates of free energies from nonequilibrium work data in the presence of
instrument noise.

Gavin E. Crooks,1, ∗ Paul Maragakis,2, 3 and And Others?
1Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

2Department of Chemistry and Chemical Biology, Harvard University, 02138 Cambridge MA
3Laboratoire de Chimie Biophysique, Institut de Science et d’Ingénierie Supramoléculaires,

Université Louis Pasteur, BP 70028, 8 allée Gaspard Monge, F-67083 Strasbourg Cedex, France
(Dated: July 20, 2006)

[TODO: ABSTRACT]dynamical noise, the genuine stochastic behavior of the molecule, and mea-
surement noise, random instrument errors.

INTRODUCTION

A central endeavor of experimental thermodynamics
is the measurement of entropy and free energy changes.
The original operational method for measuring entropy
was the Clausius inequality[1], and this remains the ba-
sis for most thermodynamic determinations. We start
with a system equilibrated in one thermodynamic state,
A, and then perturb the system, following some explicit
protocol, until the controllable parameter corresponds to
a new thermodynamic state, B. (An explicit example is
described in Fig. 1) If the temperature of the surround-
ings, T is fixed, then the change in entropy ∆S = SB−SA

is proportional to the flow of heat Q into the system :

∆S ≤ β〈Q〉. (1)

Here, β = 1/kBT , kB is Boltzmann’s constant, and we
measure entropy in natural units. Equivalently, the free
energy ∆F = ∆〈U〉 − ∆S/β is related to the work W
done on the system,

∆F ≥ 〈W 〉 (2)

We use the sign convention ∆U = Q + W where U is
the internal energy of the system. The angled brackets
indicate an average over many repetitions of the same
experiment. In macroscopic systems individual observa-
tions do not differ significantly from the mean, but for a
microscopic system the fluctuations away from the mean
can be large and the inequality only holds on average,
not for individual measurements.

The Clausius relation is only an exact equality
for quasi-static, thermodynamically reversible processes,
where the transformation is infinitely slow and the ir-
reversible dissipation is zero. However, recent advances
in nonequilibrium statistics dynamics have lifted this re-
striction. We can, in fact, measure equilibrium free en-
ergy differences by observing the work performed during
irreversible transformations[2–44]. Consider a protocol
(labeled Λ) that starts with an equilibrated system, and
then transforms the control parameter from A to B in
a finite time. This drives the system out-of-equilibum.
Once the protocol ends, the controlled parameters are

46 July 2005    Physics Today http://www.physicstoday.org

ishingly rare with increasing system size. For large sys-
tems, the conventional second law emerges.

The Jarzynski equality
The various FTs that have been reported differ in the de-
tails of such considerations as whether the system’s dy-
namics are stochastic or deterministic, whether the kinetic
energy or some other variable is kept constant, and
whether the system is initially prepared in equilibrium or
in a nonequilibrium steady state. A novel treatment of dis-
sipative processes in nonequilibrium systems was intro-
duced in 1997 when Christopher Jarzynski reported a non-
equilibrium work relation,4 now called the Jarzynski
equality (JE). (See PHYSICS TODAY, September 2002, page

19.) The JE indicates a practical way to determine free-
energy differences. Consider a system, kept in contact with
a bath at temperature T, whose equilibrium state is de-
termined by a control parameter x. Initially, the control pa-
rameter is xA and the system is in an equilibrium state A.
The nonequilibrium process is obtained by changing x ac-
cording to a given protocol x(t), from xA to some final value
xB. In general, the final state of the system will not be at
equilibrium. It will equilibrate to a state B if it is allowed
to further evolve with the control parameter fixed at xB.
The JE states that 

(4)

where DG is the free-energy difference between the equilib-
rium states A and B, and the angle brackets denote an 
average taken over an infinite number of nonequilibrium
experiments repeated under the protocol x(t). Frequently,
the JE is recast in the form ∀exp(⊗Wdis)/kBT¬ ⊂ 1, 
where Wdis ⊂ W ⊗ DG is the dissipated work along a given
trajectory.

The exponential average appearing in the JE implies
that ∀W¬ $ DG or, equivalently, ∀Wdis¬ $ 0, which, for macro-
scopic systems, is the statement of the second law of ther-
modynamics in terms of free energy and work. An impor-
tant consequence of the JE is that, although on average
Wdis $ 0, the equality can only hold if there exist nonequi-
librium trajectories with Wdis % 0. Those trajectories, some-
times referred to as transient violations of the second law,
represent work fluctuations that ensure the microscopic
equations of motion are time-reversal invariant. The re-
markable JE implies that one can determine the free-
energy difference between initial and final equilibrium
states not just from a reversible or quasi-static process that
connects those states, but also via a nonequilibrium, irre-
versible process that connects them. The ability to bypass
reversible paths is of great practical importance.

In 1999, Gavin Crooks related various FTs by deriv-
ing a generalized theorem for stochastic microscopically
reversible dynamics.5 The box below gives details. 
The past six years have seen further consolidation, and
physicists now understand that neither the details of just
which quantities are maintained constant during the dy-
namics nor the somewhat differing interpretations of en-
tropy production, entropy production rate, dissipated
work, exchanged heat, and so forth lead to fundamentally
distinct FTs.

exp ⊂ exp⊗ ⊗
DG

k TB k TB
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Figure 4. Testing the Jarzynski equality. A molecule of RNA
is attached to two beads and subjected to reversible and ir-
reversible cycles of folding and unfolding. A piezoelectric
actuator controls the position of the bottom bead, which,
when moved, stretches the RNA. An optical trap formed by
two opposing lasers captures the top bead, and the change
in momentum of light that exits the two-beam trap deter-
mines the force exerted on the molecule connecting the two
beads. The difference in positions of the bottom and top
beads gives the end-to-end length of the molecule. The
blowup shows how the RNA molecule (green) is coupled
with the two beads via molecular handles (blue). The han-
dles end in chemical groups (red) that can be stuck to com-
plementary groups (yellow) on the bead. The blowup is not
to scale: The diameter of the beads is around 3000 nm,
much greater than the 20-nm length of the RNA.

The Crooks Fluctuation Theorem

Gavin Crooks provided a significant generalization of an important fluctuation theorem (FT) obtained earlier by Christopher
Jarzynski. As described in the text, the Jarzynski equality (JE) relates the change DG in free energy of two equilibrium states

to an appropriate work average calculated with an irreversible path. In the Jarzynski scenario, and also in Crooks’s general-
ized FT, the system is initially in thermal equilibrium but then driven out of equilibrium by the action of an external agent. Let
xF(s) denote a time-dependent nonequilibrium “forward” process for which the variable s runs from 0 to some final time t. The
forward process initially acts on an equilibrium state A and it and ends at a state B that is not at equilibrium. In the reverse
process, the initial state B is allowed to reach equilibrium and the system evolves to a nonequilibrium state A. The nonequi-
librium protocol for the reverse process xR(s) is time-reversed with respect to the forward one, xR(s) ⊂ xF(t ⊗ s), so that both
processes last for the same time t. Let PF(W) and PR(W) stand for the work probability distributions along the forward and re-
versed processes respectively. Then the Crooks FT asserts

The Crooks FT can be manipulated to yield the JE. It also resembles the Gallavotti–Cohen FT (equation 3) derived for
steady-state systems if one identifies st with Wdis /T ⊂ (W ⊗ DG)/T. The main difference is that the Gallavotti–Cohen relation
is asymptotically valid, whereas the Crooks theorem holds for any finite time t.

⊂ expP WF( )

P WR ( )⊗ k TB

W G⊗D (( .

FIG. 1: [TODO: Explain pulling experiment, show rare re-
sults]

again fixed and the system can relax into the final equilib-
rium ensemble. We can also run the protocol in reverse,
starting with a system equilibrated with parameters B,
and then transforming in reverse back to A. We will la-
bel this conjugate protocol by Λ̃. Due to the underlying
reversibility of the microscopic dynamics, the probabil-
ity of measuring a particular value of the work during
to the protocol Λ is related to the work probability den-
sity of the conjugate protocol, Λ̃, by the following work
fluctuation relation[6, 7, 40]:

P (+W |∆FΛ,Λ)
P (−W |∆FΛ̃, Λ̃)

= e+βW−β∆FΛ (3)

Note that the free energy change of the conjugate pro-
tocol is the negative of the forward protocol, ∆FΛ =
−∆FΛ̃. This relation immediately implies the Jarzynski
equality[2–6]

〈
e−βW

〉
= e−β∆F (4)

Essentially, this is the Clausius inequality rewritten as
an exact identity. We recover the Clausius relation by an
application of Jensen’s inequality, ln〈exp(x)〉 ≥ 〈x〉.

(1997)(1865)

Bayesian estimates of free energies from nonequilibrium work data in the presence of
instrument noise.

Gavin E. Crooks,1, ∗ Paul Maragakis,2, 3 and And Others?
1Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

2Department of Chemistry and Chemical Biology, Harvard University, 02138 Cambridge MA
3Laboratoire de Chimie Biophysique, Institut de Science et d’Ingénierie Supramoléculaires,
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[TODO: ABSTRACT]dynamical noise, the genuine stochastic behavior of the molecule, and mea-
surement noise, random instrument errors.

INTRODUCTION

A central endeavor of experimental thermodynamics
is the measurement of entropy and free energy changes.
The original operational method for measuring entropy
was the Clausius inequality[1], and this remains the ba-
sis for most thermodynamic determinations. We start
with a system equilibrated in one thermodynamic state,
A, and then perturb the system, following some explicit
protocol, until the controllable parameter corresponds to
a new thermodynamic state, B. (An explicit example is
described in Fig. 1) If the temperature of the surround-
ings, T is fixed, then the change in entropy ∆S = SB−SA

is proportional to the flow of heat Q into the system :

∆S ≤ β〈Q〉. (1)

Here, β = 1/kBT , kB is Boltzmann’s constant, and we
measure entropy in natural units. Equivalently, the free
energy ∆F = ∆〈U〉 − ∆S/β is related to the work W
done on the system,

∆F ≤ 〈W 〉 (2)

We use the sign convention ∆U = Q + W where U is
the internal energy of the system. The angled brackets
indicate an average over many repetitions of the same
experiment. In macroscopic systems individual observa-
tions do not differ significantly from the mean, but for a
microscopic system the fluctuations away from the mean
can be large and the inequality only holds on average,
not for individual measurements.

The Clausius relation is only an exact equality
for quasi-static, thermodynamically reversible processes,
where the transformation is infinitely slow and the ir-
reversible dissipation is zero. However, recent advances
in nonequilibrium statistics dynamics have lifted this re-
striction. We can, in fact, measure equilibrium free en-
ergy differences by observing the work performed during
irreversible transformations[2–44]. Consider a protocol
(labeled Λ) that starts with an equilibrated system, and
then transforms the control parameter from A to B in
a finite time. This drives the system out-of-equilibum.
Once the protocol ends, the controlled parameters are
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ishingly rare with increasing system size. For large sys-
tems, the conventional second law emerges.

The Jarzynski equality
The various FTs that have been reported differ in the de-
tails of such considerations as whether the system’s dy-
namics are stochastic or deterministic, whether the kinetic
energy or some other variable is kept constant, and
whether the system is initially prepared in equilibrium or
in a nonequilibrium steady state. A novel treatment of dis-
sipative processes in nonequilibrium systems was intro-
duced in 1997 when Christopher Jarzynski reported a non-
equilibrium work relation,4 now called the Jarzynski
equality (JE). (See PHYSICS TODAY, September 2002, page

19.) The JE indicates a practical way to determine free-
energy differences. Consider a system, kept in contact with
a bath at temperature T, whose equilibrium state is de-
termined by a control parameter x. Initially, the control pa-
rameter is xA and the system is in an equilibrium state A.
The nonequilibrium process is obtained by changing x ac-
cording to a given protocol x(t), from xA to some final value
xB. In general, the final state of the system will not be at
equilibrium. It will equilibrate to a state B if it is allowed
to further evolve with the control parameter fixed at xB.
The JE states that 

(4)

where DG is the free-energy difference between the equilib-
rium states A and B, and the angle brackets denote an 
average taken over an infinite number of nonequilibrium
experiments repeated under the protocol x(t). Frequently,
the JE is recast in the form ∀exp(⊗Wdis)/kBT¬ ⊂ 1, 
where Wdis ⊂ W ⊗ DG is the dissipated work along a given
trajectory.

The exponential average appearing in the JE implies
that ∀W¬ $ DG or, equivalently, ∀Wdis¬ $ 0, which, for macro-
scopic systems, is the statement of the second law of ther-
modynamics in terms of free energy and work. An impor-
tant consequence of the JE is that, although on average
Wdis $ 0, the equality can only hold if there exist nonequi-
librium trajectories with Wdis % 0. Those trajectories, some-
times referred to as transient violations of the second law,
represent work fluctuations that ensure the microscopic
equations of motion are time-reversal invariant. The re-
markable JE implies that one can determine the free-
energy difference between initial and final equilibrium
states not just from a reversible or quasi-static process that
connects those states, but also via a nonequilibrium, irre-
versible process that connects them. The ability to bypass
reversible paths is of great practical importance.

In 1999, Gavin Crooks related various FTs by deriv-
ing a generalized theorem for stochastic microscopically
reversible dynamics.5 The box below gives details. 
The past six years have seen further consolidation, and
physicists now understand that neither the details of just
which quantities are maintained constant during the dy-
namics nor the somewhat differing interpretations of en-
tropy production, entropy production rate, dissipated
work, exchanged heat, and so forth lead to fundamentally
distinct FTs.

exp ⊂ exp⊗ ⊗
DG

k TB k TB
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Figure 4. Testing the Jarzynski equality. A molecule of RNA
is attached to two beads and subjected to reversible and ir-
reversible cycles of folding and unfolding. A piezoelectric
actuator controls the position of the bottom bead, which,
when moved, stretches the RNA. An optical trap formed by
two opposing lasers captures the top bead, and the change
in momentum of light that exits the two-beam trap deter-
mines the force exerted on the molecule connecting the two
beads. The difference in positions of the bottom and top
beads gives the end-to-end length of the molecule. The
blowup shows how the RNA molecule (green) is coupled
with the two beads via molecular handles (blue). The han-
dles end in chemical groups (red) that can be stuck to com-
plementary groups (yellow) on the bead. The blowup is not
to scale: The diameter of the beads is around 3000 nm,
much greater than the 20-nm length of the RNA.

The Crooks Fluctuation Theorem

Gavin Crooks provided a significant generalization of an important fluctuation theorem (FT) obtained earlier by Christopher
Jarzynski. As described in the text, the Jarzynski equality (JE) relates the change DG in free energy of two equilibrium states

to an appropriate work average calculated with an irreversible path. In the Jarzynski scenario, and also in Crooks’s general-
ized FT, the system is initially in thermal equilibrium but then driven out of equilibrium by the action of an external agent. Let
xF(s) denote a time-dependent nonequilibrium “forward” process for which the variable s runs from 0 to some final time t. The
forward process initially acts on an equilibrium state A and it and ends at a state B that is not at equilibrium. In the reverse
process, the initial state B is allowed to reach equilibrium and the system evolves to a nonequilibrium state A. The nonequi-
librium protocol for the reverse process xR(s) is time-reversed with respect to the forward one, xR(s) ⊂ xF(t ⊗ s), so that both
processes last for the same time t. Let PF(W) and PR(W) stand for the work probability distributions along the forward and re-
versed processes respectively. Then the Crooks FT asserts

The Crooks FT can be manipulated to yield the JE. It also resembles the Gallavotti–Cohen FT (equation 3) derived for
steady-state systems if one identifies st with Wdis /T ⊂ (W ⊗ DG)/T. The main difference is that the Gallavotti–Cohen relation
is asymptotically valid, whereas the Crooks theorem holds for any finite time t.

⊂ expP WF( )

P WR ( )⊗ k TB

W G⊗D (( .

FIG. 1: [TODO: Explain pulling experiment, show rare re-
sults]

again fixed and the system can relax into the final equilib-
rium ensemble. We can also run the protocol in reverse,
starting with a system equilibrated with parameters B,
and then transforming in reverse back to A. We will la-
bel this conjugate protocol by Λ̃. Due to the underlying
reversibility of the microscopic dynamics, the probabil-
ity of measuring a particular value of the work during
to the protocol Λ is related to the work probability den-
sity of the conjugate protocol, Λ̃, by the following work
fluctuation relation[6, 7, 40]:

P (+W |∆FΛ,Λ)
P (−W |∆FΛ̃, Λ̃)

= e+βW−β∆FΛ (3)

Note that the free energy change of the conjugate pro-
tocol is the negative of the forward protocol, ∆FΛ =
−∆FΛ̃. This relation immediately implies the Jarzynski
equality[2–6]

〈
e−βW

〉
= e−β∆F (4)

Essentially, this is the Clausius inequality rewritten as
an exact identity. We recover the Clausius relation by an
application of Jensen’s inequality, ln〈exp(x)〉 ≥ 〈x〉.
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ρi = exp (βF − βEi)

β∆F = − ln
〈
e−βW

〉
= − ln

∫
dW ρ(W )e−βW . (1)

Furthermore, the work distribution for such a process,
and the corresponding reversed process, are related by
the following work fluctuation theorem [3, 4]:

ρF(+W )
ρR(−W )

= eβ(W−∆F ) (2)

Here, W is the work performed during a given realization
of the process [5]; β is the inverse temperature of a ther-
mal environment with which the system is initially equi-
librated; ∆F is the free energy difference between two
equilibrium states, both at temperature β−1, correspond-
ing to the initial and final values of the external work
parameter; ρ is the work probability distribution; and
the subscripts ‘F ’ and ‘R’ distinguish conjugate forward
and reverse processes, where necessary. (See Refs. [1–6]
for more details and Ref. [7] for an overview of related
entropy fluctuation relations.) If we subject the system
to a cyclic process then ∆F = 0 and Eq. 1 reduces to a
result derived by Bochkov and Kuzovlev[8, 9].

The discovery of these relations makes it interesting to
find model systems for which the work distributions can
be computed analytically [10–19]. Exact results have re-
cently been derived for the example of a piston moving at
arbitrary speed against an ideal gas [13–15]. Here we con-
sider the somewhat different case of the quasi-static com-
pression or expansion of a dilute (but not ideal) classical
gas. This model was suggested in email correspondence
to one of us (C.J.) by Prof. Seth Putterman, and has
also appeared in this setting in a preprint by Prof. Jaey-
oung Sung [20]. Using elementary statistical mechanics,
we derive a non-trivial but tractable expression for the
work distribution ρ(W ), Eq. 11, and use this to verify
and illustrate Eqs. 1 and 2.

Let us define the model more precisely. Consider the
system shown in figure 1, a dilute classical gas confined
in a piston. We assume that quantum effects are negligi-
ble, that the particles do not have any important internal

FIG. 1: A gas confined to a cylinder with a controllable piston

structure, and that they rarely collide with one another.
Specifically, the mean free path between particle-particle
collisions is finite (unlike in Refs. [13–15]), but much
greater than the characteristic distance between nearby
particles. Initially, the piston is held fixed and the gas is
brought to thermal equilibrium with an external, infinite
heat bath. The bath is then removed, preventing the fur-
ther exchange of heat across the walls of the container.
The piston is then very slowly forced inward, performing
work as it compresses the gas to a new volume. In the
corresponding reverse process we start with the gas at
thermal equilibrium with the final volume of the forward
process and then we adiabatically expand the gas back
to the initial volume.

It is useful to define a reference process, during which
the gas remains in contact with the reservoir, and thus at
constant temperature, as it is compressed reversibly; ∆F
in Eqs. 1, 2 is the free energy change during this reference
process. By contrast, during the adiabatic compression
described above, there is a steady rise in the kinetic tem-
perature of the gas. Thus, although the gas continually
self-equilibrates due to particle-particle collisions, it is
driven away from the isothermal sequence of equilibrium
states defined by the reference process.

As a first pass at this model, let us use simple ar-
guments to verify Eq. 1. In three spatial dimensions,
the average equilibrium internal energy of a dilute gas
of N identical particles is E = 3N/2β, and the en-
tropy is given by the Sackur-Tetrode equation, S/N =
ln(V/NΛ3) + 5/2. Here V is the volume of the box, and
Λ =

√
βh2/2πm is the thermal de Broglie wavelength (h

is Planck’s constant and m is the particle mass). The
free energy F = E − β−1S is then

F (β, V ) = −N

β

[
ln

(
V

N

)
+

3
2

ln
(

2πm

βh2

)
+ 1

]
, (3)
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RNA hairpin unfolding (& refolding)
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along the unfolding path while (absolute) values smaller than DG
occur more often along the refolding path. As can be seen from
equation (1), the CFT states that although PU(W), PR(2W) depend
on the pulling protocol, their ratio depends only on the value of DG.
Thus the value of DG can be determined once the two distributions
are known. In particular, the two distributions cross at W ¼ DG:

PUðWÞ ¼ PRð2WÞ)W ¼ DG ð3Þ
regardless of the pulling speed. Although the simple identity (3)
already gives an estimate of DG, it is not necessarily very precise
because it uses only the local behaviour of the distribution around
W ¼ DG. Using the whole work distribution increases the precision
of the free-energy estimate19. In particular, as we show below, when
the overlapping region of work values between the unfolding and
refolding work distributions is too narrow (as may happen for large
values of the average dissipated work, defined as kWdisl ¼ kWl 2
DG), the use of Bennett’s acceptance ratio method20 makes it possible
to extract accurate estimates of DG using the CFT (see the Sup-
plementary Information).
We first experimentally test the validity of the CFT for a molecular

transition occurring near equilibrium. For this, we use a short
interfering (si)RNA hairpin that targets the messenger RNA of the
CD4 receptor of the human immunodeficiency virus (HIV)11 and
that unfolds irreversibly but not too far from equilibrium at acces-
sible experimental pulling speeds (dissipated work values less than
6kBT). Under these conditions, the unfolding and refolding work
distributions overlap over a sufficiently large range of work values to
justify the use of the direct method to experimentally test equation
(1). The work done on the molecules during either pulling or
relaxation is given by the areas below the corresponding force–
extension curves (Fig. 1).
Unfolding and refolding work distributions at three different

pulling speeds are shown in Fig. 2. Irreversibility increases with the
pulling speed and unfolding–refolding work distributions become
progressively more separated. Note, however, that the unfolding and
the refolding distributions cross at a value of the work DG¼
110:3^ 0:5kBT that does not depend on the pulling speed, as
predicted by equation (3). Moreover, the work distributions also

satisfy the CFT, that is, equation (1) (see the Supplementary
Information). We also notice that work distributions are compatible
with, and can be fitted to, gaussian distributions (data not shown).
After subtracting the contribution arising from the entropy loss due
to the stretching of the molecular handles attached on both sides of
the hairpin (DGhandles ¼ 23.8 kBT) and of the extended single-
stranded (ss)RNA ðDGssRNA ¼ 23:7^ 1kBTÞ from the total work,
DGexp ¼ 110:3^ 0:5kBT, we obtain for the free energy of unfolding
at zero forceDGexp

0 ¼ 62:8^ 1:5kBT ¼ 37:2^ 1kcalmol21 (at 258C,
in 100mM Tris-HCl, pH 8.1, 1mM EDTA), in excellent agreement
with the result obtained using the Visual OMP from DNA software21

DGmfold
0 ¼ 38kcalmol21 (at 258C, in 100mM NaCl).
To extend the experimental test of the validity of the CFT to the

very-far-from-equilibrium regime where the work distributions are
no longer gaussian, we apply the CFT to determine: (1) the difference
in folding free energy between an RNA molecule and a mutant that
differs only by one base-pair, and (2) the thermodynamic stabilizing
effect of Mg2þ ions on the RNA structure. The RNAwe consider is a
three-helix junction of the 16S ribosomal RNA of Escherichia coli12

that binds the S15 protein. The secondary structure of this RNA is a
common feature in RNA structures22–24 that plays, in this case, a
crucial role in the folding of the central domain of the 30S ribosomal
subunit. For comparison, and to verify the accuracy of the method,
we have pulled the wild type and a CzG to GzC mutant (C754G to
G587C) of the three-helix junction.
Figure 3 depicts the unfolding and refolding work distributions for

the wild-type and mutant molecules (work values were binned into
about 10–20 equally spaced intervals). For both molecules, the
distributions display a very narrow overlapping region. In contrast
with the hairpin distribution, the average dissipated work for the
unfolding pathway is now much larger—in the range 20–40kBT —
and the unfolding work distribution shows a large tail and strong
deviations from gaussian behaviour. Thus, these molecules are ideal
to test the validity of equation (1) in the far-from-equilibrium
regime. As shown in the inset of Fig. 3, the plot of the log ratio of
the unfolding to the refolding probabilities versus total work done on
the molecule can be fitted to a straight line with a slope of 1.06, thus
establishing the validity of the CFT (see equation (1)) under far-
from-equilibrium conditions. Ourmeasurements reveal the presence
of long tails in the work distribution PU(W) along the unfolding path

Figure 2 | Test of the CFT using an RNA hairpin. Work distributions for
RNA unfolding (continuous lines) and refolding (dashed lines). We plot
negative work, PR(2W), for refolding. Statistics: 130 pulls and three
molecules (r ¼ 1:5pNs21), 380 pulls and four molecules (r ¼ 7:5pNs21),
700 pulls and three molecules (r ¼ 20:0pNs21), for a total of ten separate
experiments. Good reproducibility was obtained among molecules (see
Supplementary Fig. S2). Work values were binned into about ten equally
spaced intervals. Unfolding and refolding distributions at different speeds
show a common crossing around DG¼ 110:3kBT.

Figure 1 | Force–extension curves. The stochasticity of the unfolding and
refolding process is characterized by a distribution of unfolding or refolding
work trajectories. Five unfolding (orange) and refolding (blue) force–
extension curves for the RNA hairpin are shown (loading rate of 7.5 pN s21).
The blue area under the curve represents the work returned to the machine
as the molecule switches from the unfolded to the folded state. The RNA
sequence is shown as an inset.
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ρi = exp (βF − βEi)

β∆F = − ln
〈
e−βW

〉
= − ln

∫
dW ρ(W )e−βW . (1)

Furthermore, the work distribution for such a process,
and the corresponding reversed process, are related by
the following work fluctuation theorem [3, 4]:

ρF(+W )
ρR(−W )

= eβ(W−∆F ) (2)

Here, W is the work performed during a given realization
of the process [5]; β is the inverse temperature of a ther-
mal environment with which the system is initially equi-
librated; ∆F is the free energy difference between two
equilibrium states, both at temperature β−1, correspond-
ing to the initial and final values of the external work
parameter; ρ is the work probability distribution; and
the subscripts ‘F ’ and ‘R’ distinguish conjugate forward
and reverse processes, where necessary. (See Refs. [1–6]
for more details and Ref. [7] for an overview of related
entropy fluctuation relations.) If we subject the system
to a cyclic process then ∆F = 0 and Eq. 1 reduces to a
result derived by Bochkov and Kuzovlev[8, 9].

The discovery of these relations makes it interesting to
find model systems for which the work distributions can
be computed analytically [10–19]. Exact results have re-
cently been derived for the example of a piston moving at
arbitrary speed against an ideal gas [13–15]. Here we con-
sider the somewhat different case of the quasi-static com-
pression or expansion of a dilute (but not ideal) classical
gas. This model was suggested in email correspondence
to one of us (C.J.) by Prof. Seth Putterman, and has
also appeared in this setting in a preprint by Prof. Jaey-
oung Sung [20]. Using elementary statistical mechanics,
we derive a non-trivial but tractable expression for the
work distribution ρ(W ), Eq. 11, and use this to verify
and illustrate Eqs. 1 and 2.

Let us define the model more precisely. Consider the
system shown in figure 1, a dilute classical gas confined
in a piston. We assume that quantum effects are negligi-
ble, that the particles do not have any important internal

FIG. 1: A gas confined to a cylinder with a controllable piston

structure, and that they rarely collide with one another.
Specifically, the mean free path between particle-particle
collisions is finite (unlike in Refs. [13–15]), but much
greater than the characteristic distance between nearby
particles. Initially, the piston is held fixed and the gas is
brought to thermal equilibrium with an external, infinite
heat bath. The bath is then removed, preventing the fur-
ther exchange of heat across the walls of the container.
The piston is then very slowly forced inward, performing
work as it compresses the gas to a new volume. In the
corresponding reverse process we start with the gas at
thermal equilibrium with the final volume of the forward
process and then we adiabatically expand the gas back
to the initial volume.

It is useful to define a reference process, during which
the gas remains in contact with the reservoir, and thus at
constant temperature, as it is compressed reversibly; ∆F
in Eqs. 1, 2 is the free energy change during this reference
process. By contrast, during the adiabatic compression
described above, there is a steady rise in the kinetic tem-
perature of the gas. Thus, although the gas continually
self-equilibrates due to particle-particle collisions, it is
driven away from the isothermal sequence of equilibrium
states defined by the reference process.

As a first pass at this model, let us use simple ar-
guments to verify Eq. 1. In three spatial dimensions,
the average equilibrium internal energy of a dilute gas
of N identical particles is E = 3N/2β, and the en-
tropy is given by the Sackur-Tetrode equation, S/N =
ln(V/NΛ3) + 5/2. Here V is the volume of the box, and
Λ =

√
βh2/2πm is the thermal de Broglie wavelength (h

is Planck’s constant and m is the particle mass). The
free energy F = E − β−1S is then

F (β, V ) = −N

β

[
ln

(
V

N

)
+

3
2

ln
(

2πm

βh2

)
+ 1

]
, (3)
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What is the best description that we can construct of a 
thermodynamic system that is not in equilibrium, given only one 
(or a few) extra parameters over and above those needed for a 
description of the same system at equilibrium?
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What is the best description that we can construct of a 
thermodynamic system that is not in equilibrium, given only one 
(or a few) extra parameters over and above those needed for a 
description of the same system at equilibrium?

Non-Equilibrium Statistical Mechanics

• Tsallis Statistics (Tsallis 1988)

 Maximize generalized q-entropy

• Superstatistics (Beck & Cohen 2002) 
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Open Problems!

• Design principles of molecular machines.

• Transition path sampling with meta-stable intermediate states.

• Extracting meaningful reaction coordinates. 

• Statistical ensembles out-of-equilibrium.

• Measuring non-equilibrium entropy.
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