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Abstract. Remote sensing of atmospheric carbon dioxide (CO2) carried out by NASA’s Orbiting Carbon Observatory-2 (OCO-

2) satellite mission and the related Uncertainty Quantification (UQ) effort involves repeated evaluations of a state-of-the-art

atmospheric physics model. The retrieval, or solving an inverse problem, requires substantial computational resources. In this

work, we propose and implement a statistical emulator to speed up the computations in the OCO-2 physics model. Our approach

is based on Gaussian Process (GP) Regression, leveraging recent research on Kernel Flows and Cross Validation to efficiently5

learn the kernel function in the GP. We demonstrate our method by replicating the behavior of OCO-2 forward model within

measurement error precision, and further show that in simulated cases, our method reproduces the CO2 retrieval performance of

OCO-2 setup with orders of magnitude faster computational time. The underlying emulation problem is challenging because

it is high dimensional. It is related to operator learning in the sense that the function to be approximated is mapping high-

dimensional vectors to high-dimensional vectors. Our proposed approach is not only fast but also highly accurate (its relative10

error is less than 1%). In contrast with Artificial Neural Network (ANN) based methods, it is interpretable and its efficiency is

based on learning a kernel in an engineered and expressive family of kernels.

Copyright statement. ©2024. California Institute of Technology. Government sponsorship acknowledged.

1 Introduction

Climate change, one of the most significant global environmental challenges, is primarily attributed to anthropogenic carbon15

emissions, which have accelerated the increase of carbon dioxide (CO2) in the atmosphere, posing a threat to Earth’s future. The

industrial revolution marked the onset of increased CO2 emissions due to the extensive use of fossil fuels in various industries,

such as transportation, manufacturing, and agriculture. The Intergovernmental Panel on Climate Change underscores CO2’s

potent effect on planetary warming due to significant radiative forcing (IPCC, 2014). The atmospheric concentration of this

trace gas is increasing at ever faster rate, and as of May 2023, the measured CO2 at Mauna Loa station was 424.0 ppm, a 3 ppm20

increase from a year before (421.0 ppm in May 2022). Although the global terrestrial biosphere and oceans each take up about

25% of these emissions (Friedlingstein et al., 2022), this balance may not be sustainable, which might lead to unpredictable
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feedbacks in the carbon cycle and the global climate system. These couplings between the Earth’s climate system and the

carbon cycle can introduce significant uncertainty in future climate change projections (Friedlingstein et al., 2014), which

further renders mitigation efforts increasingly challenging.25

For reliable climate modeling and future scenario prediction, it’s crucial to estimate carbon flux accurately (e.g. Carbon-

Tracker, Peters et al. (2007)), which involves quantifying both the sources and natural sinks of carbon. However, current in situ

measurement networks are primarily deployed in the northern midlatitudes, leaving areas like the tropics underrepresented.

This lack of extensive coverage results in large uncertainties in flux estimates, underscoring the need for a more comprehensive

global measurement network.30

To provide a significant increase in coverage and resolution to the ground based data set, global estimates of total column

mole-fraction CO2 , denoted XCO2, are collected using satellite-borne spectrometers. These instruments include the Japanese

Greenhouse gases Observing SATellite (GOSAT, Kuze et al. (2009)), operational since January 2009, follow-on GOSAT-2

(Imasu et al., 2023) launched in October 2018, the Orbiting Carbon Observatory-2 from NASA (OCO-2, Crisp et al. (2012)),

launched in July 2014, and the OCO-3 instrument (Eldering et al., 2019) taken to the International Space Station May 2019.35

Planned future missions include the Geostationary Carbon Cycle Observatory (GeoCarb, Moore III et al. (2018)), the Euro-

pean CO2 Monitoring Mission (CO2M, Sierk et al. (2019)) and the Global Observing Satellite for Greenhouse gases and Water

cycle (GOSAT-GW, Kasahara et al. (2020)). In this work, we focus exclusively on OCO-2, which, like all the above mentioned

missions, measures solar radiance at the top of the atmosphere, reflected by Earth’s surface and attenuated by atmospheric

scattering and absorption by trace gases and aerosols. From these observed radiances, the OCO-2 mission uses a framework40

called Optimal Estimation (OE, Rodgers (2004)) to solve the related Bayesian inverse problem (see e.g. Kaipio and Somersalo

(2005)), referred to as a retrieval. OE is an iterative algorithm, returning an estimate of posterior mean and covariance as a

Gaussian approximation to the non-linear retrieval problem. Operationally the retrieval problem is solved using the Atmo-

spheric Carbon Observations from Space (ACOS) software (O’Dell et al., 2018), which implements OE using a state-of-the-art

atmospheric Full Physics model (FP). Processing OCO-2 measurements with ACOS algorithm is a computationally intensive45

task, and not all soundings are currently processed for this reason. Computational speed is also a major hindrance for repro-

cessing the measurement record with improved algorithms and thus a limiting factor in releasing the improved data to the user

community. These issues are certain to get even worse with upcoming wider swath missions like CO2M and GOSAT-GW,

as evidenced by another greenhouse gas imaging mission, Tropospheric Ozone Monitoring Instrument (TROPOMI, Veefkind

et al. (2012)) from regularly reprocessing their data record, which is more than 20 times greater in size than that of OCO-2.50

As with all inverse problems, some approximations and assumptions have to be made in the ACOS algorithm. The resulting

XCO2 estimates have to be validated and bias corrected using ground-based measurements from the Total Carbon Column

Observing Network (TCCON, Wunch et al. (2017)), and COllaborative Carbon Column Observing Network (COCCON, Frey

et al. (2019)) as a reference. These sites are concentrated on the Northern Midlatitudes, and as a result of this coverage issue

and the imperfections in the FP model, significant systematic errors persist in the data set. (See e.g. Kiel et al. (2019) for55

effect of systematic errors, and Cressie (2018) for overview of statistical treatment of, and issues in the retrieval). Considerable

effort has been exerted to tackle the high accuracy (less than 0.3 parts per million (ppm) in scenes with background levels of
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around 410 ppm), and high precision (standard errors less than 0.5 ppm) requirements of ingesting OCO-2 into flux inversion,

which is the primary application of the data product. (Gurney et al. (2002), Patra et al. (2007), Liu et al. (2017), Palmer

et al. (2019), Crowell et al. (2019), Peiro et al. (2022), Byrne et al. (2022)). Recent advancements of applying Markov Chain60

Monte Carlo (MCMC, Brynjarsdóttir et al. (2018), Lamminpää et al. (2019)) for non-Gaussian posterior characterization,

and Simulation Based Uncertainty Quantification (Turmon and Braverman (2019), Braverman et al. (2021)) for capturing

the overall uncertainty in the retrieval pipeline have been successfully deployed to address persisting retrieval errors. These

methods, although comprehensive, suffer equally from computational speed issues as they require extensive amounts of FP

evaluations.65

Computational speed issues in OE retrievals have been attempted to address in several ways. Neural network (NN) based

machine learning approaches (David et al. (2021), Mishra and Molinaro (2021), Bréon et al. (2022)) have been implemented

to a combination of real world radiance data and model atmospheres. The OCO-2 forward model itself was sped up by using a

surrogate model (Hobbs et al., 2017) that only partially considered the physical processes present in the FP model, and more

recently by using a Gaussian Process (GP) emulator (Ma et al., 2019) for replicating the output of the FP model. In this paper,70

we will take similar approach using GPs, but with several improvements and an application to solving the retrieval problem

with the help of closed-form Jacobians required in the gradient-based algorithm. Our approach will leverage recent novel

techniques for GP parameter learning called Kernel Flows (Owhadi and Yoo, 2019), and training data generation via evaluating

the FP model using the Reusable Framework for Atmospheric Composition (ReFRACtor) (McDuffie et al., 2018). We will

demonstrate the accuracy of forward model emulation against a held out test set of FP evaluations, and further demonstrate75

the ability of our emulator to replicate the OE retrieval performance of ReFRACtor FP model in a fraction of computational

time. Our approach achieves a remarkably low prediction error, less than 1% ("within measurement error limits"), which is an

excellent result in the field of more general operator learning. Strategies to achieve learning more complicated operators, like

the FP in our case, often involve a NN based architecture (Lu et al. (2021), Li et al. (2022)). Our approach follows the example

set by Batlle et al. (2023) that kernel methods are competitive in operator learning.80

The rest of the paper is organized as follows. Section 2 will describe in detail the GP regression, kernel learning and resulting

forward model emulator. Section 3 will further elaborate on the details of the OCO-2 retrieval algorithm, the state vector, and

FP model describing atmospheric radiative transfer. Section 4 will detail the emulator implementation of ReFRACtor FP model

and assess its performance. Section 5 will show results of our emulator used in a simulated XCO2 retrieval context, and finally

Section 6 will provide concluding remarks and ideas on future work and applications.85

2 Gaussian Process Emulator

Gaussian Process (GP) regression (Rasmussen and Williams, 2006) (also called kriging in spatial context: Cressie (1993);

Stein (1999)) is a well studied methodology for approximating any continous function to an arbitrary accuracy, leveraging

training data and a kernel function prescribed a priori. In this section, we outline the basic theory of GP regression and outline
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our approach to modeling the continous function between atmospheric state vectors x and radiances y observed by the OCO-290

instrument.

2.1 Gaussian Process Regression

To construct an emulator for the forward model F (x), we employ Gaussian Process (GP) regression to predict a label z∗ ∈ R

at a new state x∗ ∈ Rm. A GP is defined by a kernel function k(x,x′) : X ×X → R, where in the cases studied in this work

X = Rm. We denote by Γ(X,X) the matrix of all kernel function evaluations over the training data X ∈ Rm×N of N points95

with the entries Γ(X,X)i,j = k(xi,xj) where xi,xj are the ith and jth training data points, respectively. Furthermore,

Γ(x∗,X) denotes the vector of kernel evaluations of state x∗ against all training points X . Using the training data together

with vector of corresponding labels z ∈ RN , a GP prediction of label (or function value) at a new state x∗ is given by

z∗ ≡GP (x∗) = Γ(x∗,X)(Γ(X,X) +σI)−1z, (1)

where we have assumed w.l.g. that the training data are centered and thus the GP has a zero mean.100

Remark: In GP literature, the variance term σI is usually taken to be the measurement error or local-scale unexplained

variability in the training labels z. However, since we are interested in reproducing the outputs of a computer code, the “mea-

surements” are exact and hence there is no measurement error. It was shown in Owhadi and Yoo (2019) that learning the

parameters of GP models from noiseless data is can lead to unstable predictive models and numerical singularities. For this

reason, we treat σ as a regularization parameter, which captures the empirical mismatch between the model and the actual data,105

and optimize it together with other kernel parameters.

In addition to point predictions, GP prediction can be associated with prediction uncertainty (the posterior variance of the

GP), given by

σ∗ = k(x∗,x∗)−Γ(x∗,X)(Γ(X,X) +σI)−1Γ(X,x∗). (2)

The ability to preclude prediction uncertainties sets GP regression apart from many modern neural network based machine110

learning methods, which only provide a point estimate as a prediction. Large prediction variance can be an indication of

departure from the support of training data set, indicating that GP is likely to lose its prediction skill. Additionally, uncertainty

from the predictions can be propagated forward and accounted for in further applications of a GP based emulators.

2.2 Kernel Function

A crucial modeling choice in GP regression is specification of a kernel function. This task involves either expert knowledge115

of the domain structure, or some iterative trial and error search. In our application, we have empirically observed that a kernel

function consisting of sum of Matérn and linear kernels yields excellent predictive performance. This is likely due to a locally

near-linear behavior commonly assumed with the OCO-2 forward model being captured by the linear kernel, together with a

largely flexible Matérn term that is known to capture a large variety of non-linear effects. Such kernel can also be differentiated
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in closed form. The kernel function used throughout this work is given by120

k(x,x′) = α1

(
1 +

√
3
l
∥(x−x′)∥W

)
exp

(
−
√

3
l
∥(x−x′)∥W

)
+ α2(Wx)T (Wx′) (3)

where ∥(x−x′)∥W =
√

(x−x′)TW2(x−x′) , W = diag(w) is a diagonal matrix where w ∈ Rm is a vector of weights,

l ∈ R is a length scale parameter, and α1,α2 ∈ R+ are positive weights that are restricted to sum to 1.

Our interest will be in replicating the results of a gradient based optimization problem. Hence, in addition to fast evaluations

of F (x), we would also benefit from fast derivatives obtained from closed form expressions. Combining equations (1) and (3),125

we get

d

dx∗
z∗ =

d

dx∗
Γ(x∗,X)(Γ(X,X) +σI)−1z, (4)

where the derivative of the kernel function d
dx∗Γ(x∗,X) can be computed in closed form from eq. (3) using known matrix

identities. The derivation of a closed form expression can be found in Appendix A.

2.3 Parameter Learning130

Prediction quality of GP regression depends on identifying the hyperparameters θ that best fit the training data. In our case, fol-

lowing the form of our kernel function, we have θ = [w, l,σ,α1,α2]. Hyperparameters are commonly learned via optimization,

using maximum likelihood estimation (MLE). This amounts to minimizing

L(θ) =−1
2

log [detΓ(θ)]− 1
2
zT Γ(θ)−1z, (5)

where Γ(θ) = Γ(X,X) evaluated at parameter values θ. Although this method is usually robust and performs well, GP135

applications with high dimensional inputs and large amount of training data are known to be challenging due to inverse matrix

and log determinant calculations. Numerous approaches have been suggested to tackle this problem (e.g. local approximations

(Vecchia, 1988), (Datta et al., 2016)). Inspired by the Kernel Flows approach (Owhadi and Yoo, 2019) where kernel parameters

are learned by minimizing a relative reproducing kernel Hilbert space norm, we propose a cross-validation root mean square

error based method to be used in this work. The upsides of our approach are the ability to select small mini-batches on140

each training iteration, allowing for faster computations while avoiding expensive log-determinant calculations and inverting

the large covariance matrices required in MLE. We will later show that our proposed method converges reliably and yields

excellent predictions.

We start by selecting a mini-batch XBatch,zBatch of size NBatch by randomly sampling from training data. We define a leave-

one-out cross-validation loss function with respect to L2 error by first considering taking out one data point from the training145

data, and using the rest to predict it. This can be achieved by modifying the GP prediction formula from eq. (1) and leaving out

the ith data point, given by

G̃P (θ, i) = Γ̃(θ)T
:,i

(
Γ̃(θ)−1−

Γ̃(θ)−1
:,i Γ̃(θ)−T

:,i

Γ̃(θ)−1
i,i

)
zBatch (6)
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where Γ̃(θ) = Γ(XBatch,XBatch) is the NBatch×NBatch covariance over the mini-batch evaluated at parameter values θ. A rank-

one downdate Γ̃(θ)−1− Γ̃(θ)−1
:,i Γ̃(θ)−T

:,i

Γ̃(θ)−1
i,i

is used to remove the effect of ith data point from the inverse covariance matrix Γ̃(θ)−1.150

(See Stewart (1998) and Zhu et al. (2022) for details). Here, the notation Γ̃(θ):,i means all rows of the ith column. We then

define the final loss function by using formula (6) to predict zi (the ith training label removed from the mini-batch) as

ρ(θ) =
kp∑

i=k1

(
G̃P (θ, i)− zi

)2

+ ϵ∥θ0− θ∥k, (7)

where i ∈ [k1 . . .kp]⊂ [1 . . .NBatch] is a subset of p≤NBatch indices denoting elements of the mini-batch selected for prediction,

which can be chosen as e.g. the entire mini-batch, or the p nearest neighbors of the center point of the mini-batch. The155

regularization term with k norm ∥ · ∥k, some penalty magnitude ϵ, and mean θ0, is included to ensure that kernel amplitude

parameter values don’t grow uncontrollably. This is done since we have observed empirically that letting non-identifiable

parameters grow during optimization can lead to the optimizer getting "stuck", whereas this problem is not observed when

regularizing the loss function. One may for example set θ0 to be a vector of 1’s.

We can now optimize the kernel parameters parameters iteratively by repeatedly selecting mini-batches and updating θ along160

the gradient of ρ(θ), which is obtained by automatic differentiation using Julia’s Zygote package (Innes, 2018). We note that

as the mini-batch is selected at random, this method can be viewed as stochastic gradient descent. For this reason, we use the

adaptive moment estimation (ADAM, (Kingma and Ba, 2017)) optimizer for finding the optimal value. Use of a momentum

based optimizer is further recommended in this application as we have observed that the cost function often has several local

minima. The optimization procedure is summarized in Algorithm 1. The final parameter value can be selected to be the one165

corresponding to the smallest loss function value achieved during training.

Algorithm 1 Kernel Parameter Learning

Input: Kernel function k, training data (X,z), batch size NBatch, number of prediction points p, number of iterations NIter.

Output: Matrix of kernel parameters Θ and vector of loss values R

1: Initialize θ1← 1,Θ← 0,R← 0

2: for all i in 1 . . .NIter do

3: XBatch←X[rand(NBatch)], zBatch← z[rand(NBatch)] // Randomly select a mini-batch XBatch,zBatch

4: R[i]← ρ(θi) // Compute loss ρ(θi) from (7)

5: Θ[i]← θi+1, θi+1← θi + ADAM( ∂
∂θ

ρ(θi)) // Compute gradient ∂
∂θ

ρ(θi) and update parameters θi using ADAM

6: end for

7: return Θ,R

2.4 Training Data Generation

As we aim to reproduce the performance of a function represented as computer code, we take advantage of the freedom to use

a space filling design for x in Rm for training data creation. We first span the unit cube [0,1]m with a Sobol sequence (Sobol,
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1967) of N points. In practice we employ Julia’s Sobol.jl (Johnson, 2020) package for this step. Then, using information170

about the minimum and maximum physically feasible value of each input dimension, we scale the unit cube to span the whole

state space. We further evaluate the computational model F (x) at each training point, obtaining states X ∈ RN×m and model

outputs Y ∈ RN×n.

3 The Orbiting Carbon Observatory 2

In this section, we describe OCO-2 and the related measurements, physics model, state vector, and retrieval algorithm. Further175

information on these topics can be found in e.g. Connor et al. (2008), O’Dell et al. (2012), Crisp et al. (2012), O’Dell et al.

(2018), and in the Algorithm Theoretical Basis document (ATBD) Crisp et al. (2021).

3.1 The OCO-2 Instrument

OCO-2 is a NASA operated satellite mission dedicated to providing data products of global atmospheric carbon dioxide con-

centrations (Crisp et al., 2004). The satellite is pointed towards Earth as it measures solar light reflected by Earth’s surface180

and atmosphere, recorded as radiances. The OCO-2 instrument itself is composed of three spectrometers that measure light

reflected from Earth’s surface in the infrared part of the spectrum in three separate wavelength bands. These bands are centered

around 0.765, 1.61 and 2.06 µm and are called the O2 A-band (O2), the Weak CO2 band (WCO2) and the Strong CO2 band

(SCO2), respectively. Each observation consists of 1016 radiances on separate wavelengths from each band (for more informa-

tion, see e.g. Crisp et al. (2017), Rosenberg et al. (2017)). These measurements are then used to infer a state vector containing185

information on atmospheric properties like CO2 concentration on 20 pressure levels, surface pressure, temperature and aerosol

optical depth (AOD). The state vector also includes surface properties like albedo, and solar induced chlorophyl fluorescence

(SIF). The primary scalar quantity of interest is the column-averaged CO2 concentration (XCO2).

3.2 Atmospheric Radiative Transfer

A key part to inferring XCO2 from observed radiances is construction of a computational atmospheric radiative transfer model190

which describes how solar radiation is propagated, reflected and scattered by Earth’s surface and atmosphere. Together with an

instrument model, this computer code is known as the Full Physics (FP) model, referred to in this work as

y = F (x,b), (8)

where y is output of the FP model, a wavelength-by-wavelength radiance, x is a state vector containing atmospheric and

surface information, and b are model parameters held fixed during data processing. Part of the radiance comes from absorption195

of radiation by atmospheric molecules, given by

I(λ) = f0(λ)cos(τ0) ·R(λ,τ,τ0,φ−φ0)exp(−g(λ)) (9)

where λ is wavelength, s.t. the jth wavelength corresponds to the jth entry of randiance y, f0(λ) is the solar flux at the top

of the atmosphere, R(λ,τ,τ0,φ−φ0) is the reflectance of the surface, g(λ) is a integral over radiation path length that sums
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over for all modeled absorbers, τ and φ are the observation zenith and azimuth angles, and τ0 and φ0 are the corresponding200

solar zenith and azimuth angles. Observation and solar angles have a significant effect on the observed and modeled radiances,

which will be important later in this work.

After calculating the absorption with equation (9), equations further describing atmospheric scattering are employed to solve

for atmospheric radiative transfer (RT), which describes the total effect of atmosphere and surface to the scattered photons.

The FP framework further includes an instrument model, which describes the effects of the observing system to the top of the205

atmosphere radiances. These effects include fluorescence, instrument doppler shift, spectral dispersion and convolution with

the instrument line shape (ILS) function, reducing the resolution from the finer RT grid to the coarser observational grid. On

an abstracted level, this corresponds mathematically to

IOBS(λ) = C1(λ)

+∞∫

−∞

RT (λ′)ILS(λ,λ′)dλ′+ C2(λ), (10)

where C1(λ) and C2(λ) denote the instrument effects other than convolution that can be expressed as multiplication and210

addition. Generally speaking, the instrument effects depend on different physical properties that can vary between detector

arrays, while the RT portion of the forward model is constant within the instrument. This observation motivates us to focus

on emulating the outputs of the RT, referred to as monochromatic radiances, after which instrument functions can be applied

appropriately after the fact. Looking forward to operational integration of our emulator, this will reduce the complexity of the

emulated system and arguably make our task easier.215

3.3 OCO-2 State Vector

The state vector elements comprising x for the FP model are summarized in Table 1. Notably, we have divided the table in two

parts. The upper half lists the previously-mentioned atmospheric and surface state vector elements that affect the RT part only,

and the rest having to do with the instrument effects are in the lower half. This collection includes scaling factors for empirical

orthogonal functions (EOFs) that capture unmodeled offsets in the observed radiances O’Dell et al. (2018).220
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State vector element # elements O2 WCO2 SCO2

CO2 concentration profile 20

H2O Scaling factor 1

Surface Pressure (Pascals) 1

Temperature Offset (Kelvin) 1

Aerosol height, width and AOD 12

O2 band albedo 2

WCO2 band albedo 2

SCO2 band albedo 2

O2 band dispersion 2

WCO2 band dispersion 2

SCO2 band dispersion 2

O2 band EOF scaling 3

WCO2 band EOF scaling 3

SCO2 band EOF scaling 3

SIF parameters 2
Table 1. Elements of the OCO-2 state vector by functional group. The second column indicates the total elements per group. The check

marks in the remaining columns indicate which wavelength bands are sensitive to changes on each variable.

In addition to state vector elements, the FP model is parametrized by a set of parameters that are held fixed based on auxil-

iary information, such as laboratory measurements or meteorological datasets. These parameters include instrument calibration

details, spectroscopy properties for absorbing gases, land elevation, and aerosol microphysical parameters. These aerosol pa-

rameters arise from the selection of two dominant aerosol types as a function of space and time. All aerosol types have different225

optical properties. This choice is determined a priori by global maps based on meteorological knowledge and measurements

(see Figure 1). The possible dominant aerosol types are dust (DU), sulphate (SO), sea salt (SS), organic carbon (OC), and

black carbon (BC). While constructing the emulator, we will consider datasets with a fixed pair of dominant aerosol species in

order to decouple their physical effects from the rest of state vector. Separate emulators can then be constructed for each pair

of aerosol species, and a selection of which one to use can be done by matching the measurement location with the appropriate230

types.
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Figure 1. Example global map of A) primary and B) secondary aerosol types used. Image taken from (Boesch et al., 2015)

3.4 ReFRACtor

This work develops a proof-of-concept version of OCO-2 forward model emulator for a simulated case. For this reason and ease

of access, we implement our simulations using The Reusable Framework for Atmospheric Composition (ReFRACtor, McDuffie

et al. (2018)). ReFRACtor is an extensible multi-instrument atmospheric composition retrieval framework that supports and235

facilitates combined use of radiance measurements from different instruments in the ultraviolet, visible, near-infrared and

thermal-infrared. It has been open source since 2014 when it was first developed as the Level-2 processing code for OCO-2.

Since 2017 the development team has worked to create a more general framework that supports more instruments and spectral

regions. This framework has been developed to provide the broader Earth science community a freely licensed software package

that uses robust software engineering practices with well tested, community accepted algorithms and techniques. ReFRACtor240

is geared not only for the creation of end-to-end production science data systems, but also towards scientists who need a

software package to help investigate specific Earth science atmospheric composition questions. Although ReFRACtor includes

an implementation of a version of the OCO-2 production algorithm, the two have drifted since the initial inter-comparison

comparison work was done. At that time it was validated against the B9.2.00 version of the software. For the most part mainly

bug fixes have been kept in sync between the two versions. Additionally the core radiative transfer algorithms are the same,245

which justifies the use of ReFRACtor for constructing our emulator at this stage. Some minor additional algorithmic features

made their way into the ReFRACtor version of OCO-2 from the production version. For the most part the major discrepancy

will be due to changes to configuration values not implemented in ReFRACtor. These include values such as a priori and

covariance version, EOF datasets, ABSCO versions and the solar model.

3.5 Retrieval Algorithm250

Inferring XCO2 from measured radiances is an ill-posed inverse problem, which is referred to as performing a retrieval. The

relationship between measurement and state is first modeled as

y = F (x) + ε, (11)

where data y ∈ Rn is a radiance vector, unknown x ∈ Rm is the state vector, F : Rm → Rn is the OCO-2 FP model and

ε ∈ Rn is the measurement uncertainty. For completeness, we summarize the operational retrieval algorithm used in OCO-2255
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processing. The retrieval proceeds with solving the inverse problem by using Bayesian formulation, in which the additive error

ε and prior for x are assumed to be Gaussian, such that

ε∼N (0,Sε), x∼N (xa,Sa). (12)

The measurement error covariance matrix Sε is assumed to be diagonal, with elements for each wavelength j given by

σ2
j = k1yj + k2, (13)260

where k1 and k2 are calibration parameters adjusted by the instrument calibration team. The a priori covariance is taken to be

diagonal for non-CO2 parameters, and the CO2 profile is assumed to have a correlation structure shown in in Figure 2, which

promotes continuous concentration profiles and limits the variability higher up in the atmosphere.
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Figure 2. The a priori correlation matrix and standard deviation used for the CO2 vertical profile in the OCO-2 retrieval. Vertical levels are

ordered from the top of the atmosphere (Level 1) to the surface (Level 20).

The retrieval is operationally carried out using iterative gradient-based methods to solve for the maximum a posteriori

estimate, which is equivalent to minimizing the cost function265

x̂ = argmin
x

(y−F (x))T
S−1

ε (y−F (x)) + (x−xa)S−1
a (x−xa) (14)

This optimization problem is solved using the Levenberg-Marquardt algorithm, in which at iteration i the state is updated

according to

(
(1 + γ)S−1

a + KT
i S−1

ε Ki

)
dxi+1 =

[
KT

i S−1
ε (y−F (xi)) +S−1

a (xa−xi)
]

(15)

where γ is a damping parameter and Ki is the Jacobian of F (x) at iteration i. After each iteration, before updating the state,270

the effect of forward model non-linearity is assessed by computing the quantity
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R =
ci− ci+1

ci− cFC
, (16)

where ci is the value of the cost function (14) at iteration i, ci+1 similarly at iteration i + 1, and cFC is the cost function value

assuming that F (xi + dxi+1) = F (xi) +Kidxi+1; that is, a linear update. Based on the value of R, one of the following is

executed:275

– R≤ 0.0001: γ is increased by a factor of 10. State is not updated.

– 0.0001 < R < 0.25: γ is increased by a factor of 10, xi+1 = xi + dxi+1

– 0.25 < R < 0.75: xi+1 = xi + dxi+1

– R > 0.75: γ is decreased by a factor of 2, xi+1 = xi + dxi+1

After each non-divergent step, convergence is assessed by computing the error variance derivative (see Crisp et al. (2021) for280

details). The operational retrieval further provides an estimate for the posterior covariance as a Laplace approximation

Ŝ =
(
KT S−1

ε K + S−1
a

)−1
, (17)

together with the so-called Averaging Kernel

A = (S−1
a + KT S−1

ε K)−1KT S−1
ε K (18)

which can be interpreted as the sensitivity of the retrieved state x̂ to the true atmospheric state x. These quantities are important285

for downstream users of OCO data products, which highlights the value of producing closed-form Jacobians during data

processing.

4 Forward Model Emulation

In this section, we will describe the practical implementation of our method laid out in Section 2 applied to the OCO-2 retrieval

problem in Section 3. This includes data transformations and dimension reduction, training data generation, convergence of290

the optimizer in kernel parameter learning, and assessment of forward model output quality. We stress that in order to be

implemented in an operational retrieval algorithm, the emulator is required to perform with superior accuracy. We ensure

accurate performance by making sure that the error in predicted radiances, compared to FP outputs, is less than the radiance

measurement error standard deviation. This way, any systematic errors in emulation will be masked by measurement noise,

and retrieval performance using emulation will closely resemble that of using FP.295
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4.1 Data transformations

As GPs tend to perform worse with increasing input dimension, and because the standard GP formulation is developed for one

dimensional outputs, we will need to reduce the dimension of both the atmospheric state and the radiance. For the atmospheric

state x, we leverage the fact that OCO-2 measurements are made at 3 separate wave length bands, which leads to the state vector

having band-specific elements which can be ignored when dealing with other bands. This partition has been summarized in300

Table 1. Earlier work by Ma et al. (2019) considered cross-band correlations while emulating OCO-2 radiances, but the authors

finally showed that the bands are distant enough from one another in wavelength space that they can be treated independently.

With this insight, we proceed by constructing separate GPs for each band and using only the sensitive dimensions of x as

inputs. We further notice that the 20 element CO2 profile is continuous and can be expressed as loadings obtained using

principal component analysis (PCA). The most straightforward way to do this is by truncated singular value decomposition305

(SVD) of the empirical covariance matrix of state vectors (Tukiainen et al., 2016). To accomplish this, we use a simulation

distribution derived by Braverman et al. (2021) for one selected template as a basis for our experiments and perform SVD on the

covariance matrix of this distribution. Analysis of singular value decay suggests that the CO2 profile can be represented with

just 4 principal components, which we collect to a matrix Px as the 4 leading singular vectors. We then project the CO2 profile

to principal component space, and further standardize the states by using the mean and variance of the simulation distribution,310

leading to

x̃ =
1

σx

(
diag(P T

x ,Ic)(x− [µp,0c])−µx

)
, (19)

where µp is the CO2 profile mean, µx and σx are the state mean and state standard deviation, diag(·) denotes a block diagonal

matrix, Ic is a c = m− 16 dimensional unit matrix (as the profile is represented by 4 dimensions instead of original 20), and

[µp,0c] is a stacked vector of CO2 profile mean and a c dimensional zero vector.315
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Figure 3. Left: the CO2 profile covariance matrix of the simulation distribution used in this work. Right: 4 leading singular vectors from the

SVD of the covariance matrix.

Next, we generate training data using a Sobol sequence (see Section 2.4). For this study, we can omit dispersion, EOF and

SIF parts of the state vector (see Table 1) and fix them to the prior mean. This follows from the discussion in Section 3 focusing

on monochromatic radiances. Omitting dispersion simplifies of computations as the wavelength grid would otherwise shift,

making SVD for radiance dimension reduction hard. Ma et al. (2019) solved this problem by employing Functional Principal

Component Analysis, while we can proceed with ordinary SVD. The Empirical Orthogonal Functions (EOFs) are included in320

the operational retrieval to reduce fit residuals and therefore make convergence analysis easier. These has no direct impact on

our study and can be safely omitted. Furthermore, the SIF parameters are fit on the O2 band only as part of the instrument

effects, and we do not include them in the emulation for this reason. As is evident from equation (9), the measurement geometry

has a significant impact on the output of the FP model. For this reason we include three extra parameters, θ,θ0, and φ−φ0

to our training data vector. Sufficient and realistic limits to these parameters are obtained from the simulation distribution of325

Braverman et al. (2021) by considering a 4σ interval around the mean values. In all, we now have m = 4 +21 + 3 = 28 for

input space, coming from profile PCs, other included state vector elements and geometry. We create a Sobol sequence of 20

000 points for training, and scale all dimensions of the hypercube to [−4,4], corresponding to 4 standard deviations in the

normalized x̃ basis. We further obtain the training data set in original space by reversing the transformation (19).

Training data Y (radiances) are obtained by evaluating the FP model on each x from the scaled Sobol sequence. For this330

work, we choose a single realistic land nadir measurement to represent physical parameters not included in state vector x. We

perturb sampling geometry to reflect relevant solar and instrument angles. For a real-world application this approach can be

extended to include different scenes and other location-dependent parameters. To obtain the labels z, we similarly perform
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truncated SVD on the radiances Y separately on each wavelength band B ∈ [O2,WCO2,SCO2], and collect the leading nB

singular vectors in matrices PB . The four leading singular vectors for each band are presented in Figure 4. With additional335

standardization of the variables, we obtain the following transformations for each wavelength band B:

z̃ =
1

σz
(P T

B (yB −µB)−µz) (20)

where µB is the radiance mean, and µz,σz are the principal component mean and standard deviation for band B.

Figure 4. Leading 4 basis vectors obtained from the SVD (principal components, PC) for radiances y for each band: O2, Weak CO2 (WCO2)

and Strong CO2 (SCO2). Basis vectors 2-4 are offset for illustration purposes.

The quality of this approximation is assessed by plotting the reconstruction PBP T
B (yB −µB) +µB over a heldout dataset

not used in computing the SVD. We illustrate in the upper panel of figure 5 the distrubution of relative reconstruction error from340

this dataset. We have further applied the instrument function to each residual and further divided them by the measurement

error standard deviation given by equation (13). This metric is justified by the rationale that if the reconstruction error is less

or comparable to measurement error on the radiances, no significant amount of information is lost.
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Figure 5. Upper row: distribution of relative reconstruction error for monochromatic radiances on the O2, WCO2 and SCO2 bands. Lower

row: distribution of reconstruction error for all bands after applying the instrument function and dividing by measurement error standard

deviation. Shading represents 50% (red), 90% (blue), 95% (green) and 99% (gray) confidence intervals.

The final emulator g(x) can now be summarized in Figure 6.

345

x x̃ z̃j = GPj(x̃WCO2)

z̃i = GPi(x̃O2)

z̃k = GPk(x̃SCO2)

zj

zi

zk

yWCO2 = µyW CO2
+
∑

j Pjzj

yO2 = µyO2
+
∑

i Pizi

ySCO2 = µySCO2
+
∑

k Pkzk

y

Figure 6. Diagram showing the step-by-step process of emulator evaluation.

where GPi(x̃B) is the GP prediction given by equation (1) and the indices i, j,k run through the number of principal

components included in a given band. The effect of this choice will be examined further later in this work. When evaluating

the emulator, each index is independent and can then be computed in parallel.

4.2 Training

Having obtained training data X̃,z, we can now proceed to optimize the kernel parameters as described in section 2.3. We350

prescribe an individual GP per output parameter zi. We have N = 20000 for training data size, and we set M = 100 for mini-

batch size, p = 5 for the number of prediction points per mini-batch, and run the ADAM optimizer for 5000 iterations with a

16

https://doi.org/10.5194/amt-2024-63
Preprint. Discussion started: 3 May 2024
c© Author(s) 2024. CC BY 4.0 License.



small learning rate. We initialize all other parameters at 1, except for linear component weight at 0 and the nugget at 1e-6. For

x̃. As outlined in Section 3.3, we further reduce the dimension of the input space by selecting only the indices that a given

wavelength band is sensitive to, given by Table 1.355

For testing the performance of the algorithm, we draw a random sample X test from the simulation distribution as independent

test data, which is then used to evaluate the FP model to create radiances Y test. For test data, we fix dispersion, EOFs and SIF

at prior values as before. Example behavior of the loss function together with evolution of the kernel parameter values and

true vs predicted z values for is shown in Figure 7. The distribution of true vs predicted z values for each component on each

wavelength band is illustrated in Figure 8.360

Figure 7. Example training performance for the first principal component of the O2 band. Upper left: loss function values for the first 400

iterations of parameter learning. Blue line depicts the cost function value per iteration. Red line depicts a cumulative running average of

the cost function. Upper right: evolution of the kernel parameters as function of iteration. Lower center: true vs predicted z values over a

withheld test set for the first component of O2 band.
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Figure 8. True versus predicted values for 10 radiance principal components on each wavelength band.

4.3 Predictive performance

Finally, we assemble the predicted z values back to radiances and compute the relative differences with the test data, shown in

the upper panel of figure 9. On the lower panels, as before, we apply the instrument function to these residuals and divide by
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measurement error standard deviation to underline that desired performance would be to make less prediction error than is the

measurement error.365

Figure 9. Upper row: distribution of relative prediction error for monochromatic radiances on the O2, WCO2 and SCO2 bands. Lower row:

distribution of prediction error for all bands after applying the instrument function and dividing by measurement error standard deviation.

Shading represents 50% (red), 90% (blue), 95% (green) and 99% (gray) confidence intervals.

After constructing the emulator obtaining radiances as outputs, we can further apply equation (4) to compute the Jacobians
d

dx̃z. We can then reverse the normalizing transformations on both x̃ and y and further apply the instrument functions to our

Jacobians to get back to the operational observation units. The Jacobians obtained by evaluating both FP and emulator on

an example state vector together with the resulting profile averaging kernels are shown in Figure 10. We note that we have

normalized the Jacobians and averaging kernels by maximum values of each row in the matrix for visual clarity. Although not370

perfectly similar, we conclude that these two outputs share significant similarity. The main difference on the averaging kernels

mainly results from the choices on modeling concentration profiles by principal component loadings.
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Figure 10. Normalized Jacobians K and profile averaging kernels A from both the FP and emulator, together with the corresponding

differences.

As noted in previous work by Ma et al. (2019), an emulator provides substantial appeal in terms of computational efficiency.

For the current work, the average computational times for model evaluation and Jacobians are summarized in Table 2 on a 2023

MacBook Pro. Three cases are contrasted: the standard ReFRACtor FP evaluation, the emulator for monochromatic radiances375

plus ILS, and the emulator alone.

Table 2. Evaluation times of radiative transfer (RT) model and related Jacobian, comparing the ReFRACtor implementation, monochromatic

emulator with instrument line shape (ILS) and other spectral corrections, and monochromatic emulator only.

RT [s] RT + Jacobian [s]

ReFRACtor 33.45 55.26

Emulator + ILS 2.06 2.17

Emulator 0.05 0.19

4.4 Faster Research Version

In recent years, the uncertainty quantification and statistics community has benefited enormously by utilizing the surrogate

model by (Hobbs et al., 2017) to explore the OCO-2 retrieval in numerous applications (Brynjarsdóttir et al. (2018), (Lam-

minpää et al., 2019), Nguyen and Hobbs (2020), Hobbs et al. (2021), Patil et al. (2022)). We remark that for similar purposes,380
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our emulator can be used as an even faster surrogate. As we see from Table 2, the majority of the computational cost for the

emulator comes from the instrument effects which is part of the ReFRACtor software. If one is not interested in including

the effects of dispersion, SIF, and EOF’s during the retrieval, we notice from equation (10) that instrument corrections to RT

amount to multiplication, addition, and convolution, which is associative wrt. multiplication. We can then write the emulator

as385

g(x) = ILS
(
P̂ η(x)

)
= ILS

(
P̂
)

η(x), (21)

where g(x) is the overall emulator, ILS() is a function applying the instrument corrections from equation (10), P̂ is a

projection matrix consisting of radiance basis functions that corresponds to transforming predicted labels z back to radiances

y following the last step in figure 6, and η(x) is the emulator predicting labels z from inputs x. Done this way, we can evaluate

the instrument corrections on the basis vectors once, after which OE or MCMC can proceed an order of magnitude faster390

(according to table 2).

5 Retrievals using the Emulator

We are now ready to compare the performance of the emulator against the FP model when performing simulated retrievals.

After obtaining the minimizer x̂ and a Laplace approximation of posterior covariance, Ŝ, the quantity of interest is further

given by multiplying the CO2 profile by the pressure weighting function h that puts an appropriate weight for each pressure395

level, resulting in

XCO2 = hT x̂1:20. (22)

The reported uncertainty coming with the QoI is given by

XCO2uncert =
√

hT Ŝ1:20,1:20h. (23)

We present two test cases for assessing retrieval performance of our emulator. First, we create synthetic observations by400

evaluating the FP model on our test set of states x and adding a realization from the Gaussian noise distribution:

ytest = F (x,b) + ε, (24)

where ε∼N(0,Sε). Second, we follow the methods outlined in Braverman et al. (2021) to further corrupt the simulated

measurement by realistic Model Discrepancy (MD) adjustment, given by

ytest = F (x,b) + ε + δ, (25)405
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where δ ∼N(µδ,Sδ). The shape of this adjustment is illustrated in Figure 11. As noted by the authors, model discrepancy as

presented here is a statistical representation of forward modeling mismatches so that our simulated measurements would better

correspond to real data.

We then perform XCO2 retrievals both using the Full Physics model F (x) and the emulator g(x) following the algorithm laid

out in Section 3. Results for retrieved XCO2 for both cases with and without MD are illustrated in Figure 12. The corresponding410

XCO2 uncertainty values are compared in Figure 13. We conclude that using the emulator in place of FP model in retrieval

preserves the accuracy and replicates same biases as FP, while having good correlation with each other. On the other hand, the

output uncertainty estimates seem to not correspond to each other, and further analysis on this output will be required in future

research work.

Figure 11. Left: example O2 band radiance. Middle: realization from the noise distribution N(0,Sε). Right: realization from the model

discrepancy distribution N(µδ,Sδ). Units for all panels are W m−2 sr−1 µm−1, the units of radiance for OCO-2.
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Figure 12. Retrieved XCO2 over heldout dataset using FP and emulator. Upper row: Full Physics (left), Emulator (middle) and comparison

of the two (right). Lower row: similarily, but with added model discrepancy in observed data. RMSE (Root mean square error) describes bias

of the retrievals while R2 value is included to assess correlation between quantities of interest.

Figure 13. Scatter plots of retrieval XCO2 uncertainty over heldout dataset using FP and emulator. Left: no MD in observations. Right: MD

included in observations.
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5.1 Effect of PCA dimensionality415

Previously in this work we have not prescribed a certain number of principal components to use in radiance dimension reduc-

tion. Figure 14 illustrates the retrieved XCO2 root mean square error (RMSE) and mean absolute error (MAE) against the true

known value, together with 15 illustrating radiance reconstruction and prediction RMSE and MAE similarily to Figures 5 and

9, all as a function of number of PCs used. We can collectively deduce that using more than 25 principal components per band

does not yield any additional performance benefits. We remark that compared to the earlier work by Ma et al. (2019), who420

argued for 1-3 principal components per band, our results show that many more components are needed for accurate retrievals.

This highlights the importance of empirically checking the effect of dimensionality reduction and not relying on rules-of-thumb

such as conserving 95% of variability.

Figure 14. RMSE and MAE as a function of number of principal components used per band in radiance dimension reduction for XCO2

retrievals, both with and without MD, over a heldout test dataset.

Figure 15. RMSE and MAE as a function of number of principal components used per band in radiance dimension reduction reconstructions

and predictions, all over a heldout test dataset.
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5.2 Effect of Aerosol types

To asses the effect of changing the dominant aerosol types on the performance of the retrievals, we repeat the training and425

retrieval procedure described in this section with two separate pairs of dominant aerosol types. First, we consider dust (DU)

and sea salt (SS), and secondly, DU and sulphate (SO). These are among the most common aerosol combinations encountered

in the OCO-2 operations. We repeat the retrievals for both cases with additional MD adjustment as before. Results for this

experiment are summarized in figure 16. We conclude that the proposed method is robust to changing physical conditions,

which indicates fitness for further operational integration.430

Figure 16. Difference in ppm between true and retrieved XCO2 from simulated measurements with different dominant aerosol species, in

ppm. Symbols on x-axis denote the specifics of given experiment: F = Full Physics, E = Emulator. 1 = DU and SS aerosols, 2 = DU and SO

aerosols. D = With model discrepancy, followed by a number denoting mean error in ppm.

6 Conclusions

In this work, we have constructed and implemented a fast and accurate forward model emulator for the ReFRACtor implemen-

tation of the OCO-2 full physics forward model. The emulator produces closed form Jacobians, and as such gives a convenient

way of performing XCO2 retrievals. We have demonstrated the accuracy of these retrievals, and analyzed the effect of PCA

dimension, aerosol types and model discrepancy on the retrieval. All these tests indicate robustness and excellent reliability of435

our method, and offer an encouraging proof of concept for future operational implementation with latest ACOS algorithm and

real world OCO-2 data.
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This work has significantly advanced the Kernel Flows methodology (Owhadi and Yoo, 2018) by including a cross-validation

based training strategy using RMSE cost function and new strategy for mini-batching. With this method, we have achieved a

relative error of less than 1% which on its own is a significant improvement from the point of view of operator learning. Our440

approach is computationally fast and, when training data set is properly engineered, performs consistently withing the span of

training data. Compared with our ability to compute Jacobians in closed form, our approach holds a potential to solve current

and future data processing issues in atmospheric remote sensing stemming from computationally intensive forward models.

While Gaussian Process methods offer an attractive means to include uncertainty propagation in emulation pipeline, our

tests have shown that the predicted posterior standard deviation given by GPs was not adequate in providing reliable coverage445

of true labels after prediction. This is likely due to Kernel Flows method’s focus on optimizing the posterior mean prediction

without assessing the prediction uncertainty. This could easily be remedied by including a uncertainty tuning penalty in the KF

loss function. Another disclaimer comes from evaluations of retrieval uncertainty on XCO2: our method was not agreeing with

operational OE. This does not mean our estimates were better or worse, and further research is needed in calibrating retrieval

uncertainties.450

A logical next step would be to implement the GP emulator for operational ACOS forward model instead of ReFRACtor,

which requires closer collaboration with the OCO algorithm team. After demonstration on OCO-2, our approach is directly

applicable for a myriad of other satellite missions. We note that future work will have to deal with training data design that

was simplified in this work. Assessing different temporal and spatial variability in forward model parameters together with

feasible distributions of state vectors will be key in this design effort. These efforts might benefit from including a cost-benefit455

analysis on training a global model usable everywhere versus, for example, re-training the emulator for sufficiently specified

spatio-temporal datasets.
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Appendix A: Closed Form Jacobians

To obtain a closed for equation for the Jacobians used in the XCO2 retrievals, we must explicitly compute the term d
dx∗Γ(x∗,X)

in equation (4). To accomplish this, we compute the partial derivative of the kernel function (3) wrt. the first input:470
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After computing ∂
∂xk(x,x′), we get d

dx∗Γ(x∗,X) element-by-element with x being the new input and x′ a training data480

point. The final Jacobian is then obtained by computing d
dx∗ z∗ via (4) and reversing transformations (19) and (20).
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