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LOCALIZED BASES FOR FINITE-DIMENSIONAL
HOMOGENIZATION APPROXIMATIONS WITH NONSEPARATED
SCALES AND HIGH CONTRAST"

HOUMAN OWHADI' anp LEI ZHANG!

Abstract. We construct finite-dimensional approximations of solution spaces of divergence-form opera-
tors with L>-coefficients. Our method does not rely on concepts of ergodicity or scale-separation, but on the
property that the solution space of these operators is compactly embedded in H' if source terms are in the unit
ball of I? instead of the unit ball of H~'. Approximation spaces are generated by solving elliptic PDEs on
localized subdomains with source terms corresponding to approximation bases for H2. The H!-error estimates
show that O(h~?)-dimensional spaces with basis elements localized to subdomains of diameter O(h? In 1)
(with & € [§,1)) result in an O(h*~2*) accuracy for elliptic, parabolic, and hyperbolic problems. For high-
contrast media, the accuracy of the method is preserved, provided that localized subdomains contain buffer
zones of width O(h% In 711) where the contrast of the medium remains bounded. The proposed method can
naturally be generalized to vectorial equations (such as elasto-dynamics).
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1. Introduction. Consider the partial differential equation

(y { @V = o). seRge B, o) = {o € @)

where Q is a bounded subset of R? with a smooth boundary (e.g., C?) and a is symmetric
and uniformly elliptic on Q. It follows that the eigenvalues of a are uniformly bounded
from below and above by two strictly positive constants, denoted by 4., (@) and A, (@).
Precisely, for all £ € R? and = € Q,

(1.2) Ain (@) E* < ETa(2)€ < Apax(a) .

In this paper, we are interested in the homogenization of (1.1) (and its parabolic and
hyperbolic analogues in sections 4 and 5), but not in the classical sense, i.e., that of
asymptotic analysis [9] or that of G or H-convergence (see [47], [57], [32]) in which
one considers a sequence of operators —div(a,V) and seeks to characterize limits of
solution. We are interested in the homogenization of (1.1) in the sense of “numerical
homogenization,” i.e., that of the approximation of the solution space of (1.1) by a
finite-dimensional space.

This approximation is not based on concepts of scale-separation and/or of ergodi-
city but on compactness properties, i.e., the fact that the unit ball of the solution space is
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compactly embedded into H{ (L) if source terms (g) are integrable enough. This higher
integrability condition on g is necessary because if g spans H~'(Q), then the solution
space of (1.1) is H(Q) (and it is not possible to obtain a finite-dimensional approxima-
tion subspace of H}(Q) with arbitrary accuracy in the H'-norm). However, if g spans the
unit ball of L*(Q), then the solution space of (1.1) shrinks to a compact subset of H}(Q)
that can be approximated to an arbitrary accuracy in the H'-norm by finite-dimensional
spaces [10] (observe that if a = I, then the solution space is a closed bounded subset of
H? N H}(Q), which is known to be compactly embedded into H}(Q)).

The identification of localized bases spanning accurate approximation spaces relies
on a transfer property obtained in [10]. For the sake of completeness, we will give a short
reminder of that property in section 2. In section 3, we will construct localized approx-
imation bases with rigorous error estimates (under no further assumptions on a than
those given above). In subsection 3.4, we will also address the high-contrast scenario
in which A, (a) is allowed to be large. In sections 4 and 5, we will show that the ap-
proximation spaces obtained by solving localized elliptic PDESs remain accurate for para-
bolic and hyperbolic time-dependent problems. We refer the reader to section 6 for
numerical experiments. We refer the reader to Appendix B for further discussion
and a proof of the strong compactness of the solution space when the range of ¢ is a
closed bounded subset of H"(Q) with v < 1 (this notion of strong compactness con-
stitutes a simple but fundamental link between classical homogenization, numerical
homogenization, and reduced order modeling).

2. A reminder on the flux-norm and the transfer property. Recall that the
key element in G and H convergence is a notion of “compactness by compensation”
combined with convergence of fluxes. Here, the notion of compactness is combined with
a flux-norm introduced in [10].

The fluz-norm. We will now give a short reminder on the flux-norm and its
properties.

DerINITION 2.1. For k € (L*(Q))¢, denote by koot the potential portion of the Weyl-
Helmholtz decomposition of k. Recall that ky,, is the orthogonal projection of k onto
[Vf:f € HY(Q)} in (L(Q)".

DEFINITION 2.2. For ¢ € H}(Q), define

(2.1) 1Vl = ||(GVI/f)pot||(L2(g))d'

We call | oy the fluz-norm of V.
The following proposition shows that the flux-norm is equivalent to the energy norm
if Apin(a@) > 0 and Ay,(a) < co.

Proposition 2.1 (see [10, Proposition 2.1]). ||.||,au @8 a norm on H{(Q). Further-
more, for all y € H}(Q),
(2.2) Anin (DIVY | 2@yt < ¥ actux < Amax (@) [V |22y

Motivations behind the fluz-norm. There are three main motivations behind the
introduction of the flux-norm.
e The flux-norm allows us to obtain approximation error estimates independent
from both the minimum and maximum eigenvalues of a. In fact, the flux-norm
of the solution of (1.1) is independent from a altogether since

(2.3) ]l oonux = IVAT gl (1200
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e The (-), in the a-flux-norm is explained by the fact that in practice, we are
interested in fluxes (of heat, stress, oil, pollutant) entering or exiting a given
domain. Furthermore, for a vector field &, [,o€ - nds = [div(§,,)dz, which
means that the flux entering or exiting is determined by the potential part
of the vector field.

e C(lassical homogenization is associated with two types of convergence: conver-
gence of energies (I'-convergence [33], [15]) and convergence of fluxes (G- or H-
convergence [47], [32], [58], [57], [46]). Similarly, one can define an energy norm
and a flux-norm.

The transfer property. For V, a finite-dimensional linear subspace of H}(Q), we
define

(2.4) (div aV V) := span{div(aVv):v € V}.

Note that (divaV V) is a finite-dimensional subspace of H~(Q).

THEOREM 2.1 (transfer property of the flux-norm; see [10, Theorem 2.1|). Let V' and
V be finite-dimensional subspaces of H(Q). For f € L*(Q), let u be the solution of
(1.1) with conductivity a, and let u' be the solution of (1.1) with conductivity o' . If
(divaVV) = (diva'V V'), then

(2.5) g 1= e _ype 1 = Vo
veV gl vev gl

The usefulness of (2.5) can be illustrated by considering ' = I so that diva'V = A.
Then, u' € H?, and therefore V' can be chosen as, e.g., the standard piecewise linear
finite element method space, on a regular triangulation of Q of resolution h, with nodal
basis {¢;}. The space V is then defined by its basis {0;} determined by

(2.6) { div(aV0;) = A¢; in Q,

0,=0 on 0Q.

Equation (2.5) shows that the approximation error estimate associated with the space V'
and the problem with arbitrarily rough coefficients is (in the a-flux-norm) equal to the
approximation error estimate associated with piecewise linear elements and the space
H?(Q). More precisely,

(2.7) sup inf I = vl < Ch,
geI2(@)veV ||9HL2(Q)

where C does not depend on a.

We refer the reader to [22], [25], and [11] for recent results on finite element methods
for high-contrast (Aac(@)/Anin(a) >> 1) but nondegenerate (4,,(a) = O(1)) media
under specific assumptions on the morphology of the (high-contrast) inclusions (in
[22], the mesh has to be adapted to the morphology of the inclusions). Observe that
the proposed method remains accurate if the medium is both of high contrast and de-
generate (Api,(a) << 1), without any further limitations on a, at the cost of solving
PDEs (2.6) over the whole domain Q.

Remark 2.1. We refer the reader to [10] for the optimal constant C in (2.7). This
question of optimal approximation with respect to a linear finite-dimensional space is
related to the Kolmogorov n-width [54], [44], which measures how accurately a given set
of functions can be approximated by linear spaces of dimension n in a given norm.
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A surprising result of the theory of n-widths is the nonuniqueness of the space realizing
the optimal approximation [54]. Observe also that, as another consequence of the trans-
fer property (2.5), a h**! rate of convergence can be achieved in (2.7) by replacing ¢,
with higher-order basis functions in (2.6), and ||g||;> with ||g||;+ in (2.7). Similarly, an
exponential rate of convergence can be achieved if the source terms g are analytic. This is
the reason behind the nearly exponential rate of convergence observed in [6] for harmo-
nic functions (i.e., with zero source terms, and particular “buffer” solutions computed
near the boundary) and bounded (nonhigh) contrast media.

3. Localization of the transfer property. The elliptic PDEs (2.6) have to be
solved on the whole domain Q. Is it possible to localize the computation of the basis
elements 6; to a neighborhood of the support of the elements ¢,? Observe that the sup-
port of each ¢; is contained in a ball B(z;, Ch) of center x; (the node of the coarse mesh
associated with z;) of radius Ch. Let 0 < o < 1. Solving the PDEs (2.6) on subdomains
of Q (containing the support of ¢;) may, a priori, increase the error estimate in the right-
hand side of (2.5). This increase can, in fact, be linked to the decay of the Green’s func-
tion of the operator —div(aV). The slower the decay, the larger the degradation of those
approximation error estimates. Inspired by the strategy used in [35] for controlling cell
resonance errors in the computation of the effective conductivity of periodic or stochas-
tic homogenization (see also [36], [53], [63]), we will replace the operator —div(aV) with
the operator % — div(aV) in the left-hand side of (2.6) in order to artificially introduce
an exponential decay in the Green’s function. A fine-tuning of T is required, because
although a decrease in T improves the decay of the Green’s function, it also deteriorates
the accuracy of the transfer property. In order to limit this deterioration, we will transfer
a vector space with a higher approximation order than the one associated with piecewise
linear elements. Let us now give the main result.

3.1. Localized basis functions. Let h € (0,1). Let X}, be an approximation sub-
vector space of H}(Q) such that the following are true.
e X, is spanned by basis functions (¢;);-;-y (With N = O(|Q|/h4)) with sup-
ports in B(z;, Ch), where the z; are the nodes of a regular triangulation of
Q of resolution h.
e X satisfies the following approximation properties: For all f € H}(Q) N H?(Q),

(3.1) inf ||f = vl ) < Chllfll @)

veXy 0

and for all f € H}(Q) N H3(Q),

(3.2) vienthf— | < CP(| fll 3(c)-
e For all 7,
(3.3) / V.2 < Chi-2,
Q

e For all coefficients ¢;,

(3.4) Wy et < 0‘

Zciv%

2
(@)
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Remark 3.1. Examples of such spaces can be found in [17] and constructed
using piecewise quadratic polynomials. From the first bullet point it follows that
h can be thought of as the diameter of the support of the elements ¢,. The largest
parameter h?/C satisfying (3.4) is the minimal eigenvalue of the stiffness matrix
(Ja(Vei)"Ve;),_, i<y, and condition (3.4) is obtained from the regularity of the
tessellation of Q. In fact, the proof of Proposition 3.2 shows that condition (3.4)
can be relaxed to the assumption of existence of a constant d, >0 independent
from h such that for all coefficients c;,

(3.5) hie e < C’

ZQ‘V%‘,

2
2(9)

Throughout this paper, we will write C for any constant that does not depend on h
(but may depend on d, Q, and the essential supremum and infimum of the maximum and
minimum eigenvalues of a over Q). Let a € (0,1) and C; > 0. For each basis element ¢,
of X}, let ¥; be the solution of

h2y, — div(aVy,) = Ag; in B(:ci, Cyh® In %) ne,

A (i 0 ) 70),

Let
(3.7) V), = span(y;)

be the linear space spanned by the elements ;.
THEOREM 3.1. For g € L*(Q), let u be the solution of (1.1) in H(Q) and u,, the solu-
tion of (1.1) in V. There exists Cy > 0 such that for C; > C,, we have

- 1
lu— uh”H})(Q) Ch ifa e (0’5}’

(3.8) <
9l 2@ crifac i),
where the constants C' and Cy depend on a, d, and Q but not on h.

Remark 3.2. Theorem 3.1 shows that the convergence rate in the approximation
error remains optimal (i.e., proportional to h) after localization if 0 < o < 1 /2 and de-
cays to 0 as h2~2 for % < a < 1. In particular, choosing localized domains with radii
O(Vh In 1) is sufficient to obtain the optimal convergence rate O(h). Observe that
the choice of the constant « in (3.6) is arbitrary.

Remark 3.3. According to Theorem 3.1, the constant €' in (3.6) needs to be chosen
larger than C|, to achieve the convergence rate h + h*>~2%. The constant C, depends on
o, d, Apin(a), and A, (a). The constant C' in the right-hand side of (3.8) also depends on
o, d, Apin(a), and 4. (a). It is possible to give an explicit value for Cjy and C by tracking
constants in the proof (in particular, as stated in subsection 3.4, the dependence on
Amax(@) can be removed if the elements ¥; are computed on subdomains with added
buffer zones around high-conductivity inclusions).

Remark 3.4. If one uses piecewise linear basis elements instead of the elements ¢,
(i.e., in the absence of property (3.2)), then the estimate in the right-hand side of (3.8)
deteriorates to h'=2%. The proof of this remark is similar to that of Theorem 3.1. The
main modification lies in replacing h* /T by h/T in (3.10) and (3.16).
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Remark 3.5. One could use piecewise linear basis elements instead of the elements
@, and also remove the term h=2*v; from the transfer property (3.6). In this situation,
we numerically observe a rate of convergence of h for periodic, stochastic, and low-
contrast media after localization of (3.6) to balls of radii O(h). In these particular situa-
tions (characterized by short range correlations in a), the term h~2*v; should be avoided
to obtain the optimal convergence rate h after localization to subdomains of size O(h). In
that sense, the estimate in the right-hand side of (3.8) corresponds to a worst case sce-
nario with respect to the medium a (characterized by long range correlations), requiring
the introduction of the term A1y, and a localization to subdomains of size O(v/h In 1)
for the optimal convergence rate h.

Remark 3.6. For the elliptic problem, computational gains result from localization
(the elements ¥; are computed on subdomains Q; of Q), parallelization (the elements ¥,
can be computed independently from each other), and the fact that the same basis can
be used for different right-hand sides ¢ in (1.1). Computational gains are even more
significant for time-dependent problems because, once an accurate basis has been
determined for the elliptic problem, the same basis can be used for the associated
(parabolic and hyperbolic) time-dependent problems with the same accuracy (we refer
the reader to sections 4 and 5). For the wave equation with rough bulk modulus and
density coefficients, the proposed method (based on precomputing basis elements as
solutions of localized elliptic PDEs) remains accurate, provided that high frequencies
are not strongly excited (9,9 € L?).

On localization. We refer the reader to [22], [25], and [6] for recent localization re-
sults for divergence-form elliptic PDEs. The strategy of [22] is to construct triangula-
tions and finite element bases that are adapted to the shape of high-conductivity
inclusions via coefficient dependent boundary conditions for the subgrid problems
(assuming a to be piecewise constant and the number of inclusions bounded). The strat-
egy of [25] is to solve local eigenvalue problems, observing that only a few eigenvectors
are sufficient to obtain a good preconditioner. Both [22] and [25] require specific assump-
tions on the morphology and number of inclusions. The idea of the strategy is to observe
that if @ is piecewise constant and the number of inclusions bounded, then w is locally H?
away from the interfaces of the inclusions. The inclusions can then be taken care of by
adapting the mesh and the boundary values of localized problems or by observing that
those inclusions will affect only a finite number of eigenvectors.

The strategy of [6] is to construct generalized finite elements by partitioning the
computational domain into to a collection of preselected subsets and compute optimal
local bases (using the concept of n-widths [55]) for the approximation of harmonic func-
tions. Local bases are constructed by solving local eigenvalue problems (corresponding
to computing eigenvectors of P*P, where P is the restriction of a-harmonic functions
from @* onto w C w*, P* is the adjoint of P, and w is a subdomain of Q surrounded by a
larger subdomain @*). The method proposed in [6] achieves a nearly exponential con-
vergence rate (in the number of precomputed basis functions) for harmonic functions.
Nonzero right-hand sides (g) are then taken care of by solving (for each different g)
particular solutions on preselected subsets with a constant Neumann boundary condi-
tion (determined according to the consistency condition).

As explained in Remark 2.1, the nearly exponential rate of convergence observed in
6] is explained by the fact that the source space considered in [6] is more regular than L?
(since [6] requires the computation particular (local) solutions for each right-hand side g¢
and each nonzero boundary condition, the basis obtained in [6] is in fact adapted to a-
harmonic functions away from the boundary). The strategy proposed here can also be
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used to achieve exponential convergence for analytic source terms g by employing high-
er-order basis functions ¢, in (3.6). Furthermore, as shown in sections 4, 5, and 3.4, the
method proposed here allows for the numerical homogenization of time-dependent pro-
blems (because it does not require the computation of particular solutions for different
source or boundary terms) and can be extended to high-contrast media. We also note
that the basis functions ¥; are simpler and cheaper to compute (see (3.6)) than the
eigenvectors of P*P required by [6]. We refer the reader to p. 16 of [6] for a discussion
on the cost of this added complexity.

3.2. On numerical homogenization. By now, the field of numerical homogeni-
zation has become large enough that it is not possible to give an exhaustive review in this
short paper. Therefore, we will restrict our attention to works directly related to our
work.

e The multiscale finite element method [40], [62], [41] can be seen as a numerical
generalization of this idea of oscillating test functions found in H-convergence.
A convergence analysis for periodic media revealed a resonance error introduced
by the microscopic boundary condition [40], [41]. An oversampling technique
was proposed to reduce the resonance error [40].

e Harmonic coordinates play an important role in various homogenization ap-

proaches, both theoretical and numerical. These coordinates were introduced
in [42] in the context of random homogenization. Next, harmonic coordinates
have been used in one-dimensional and quasi-one-dimensional divergence-form
elliptic problems [7], [5], allowing for efficient finite-dimensional approxima-
tions. The connection of these coordinates with classical homogenization is
made explicit in [2] in the context of multiscale finite element methods. The
idea of using particular solutions in numerical homogenization to approximate
the solution space of (1.1) appears to have been first proposed in reservoir mod-
eling in the 1980s [16], [61] (in which a global scale-up method was introduced
based on generic flow solutions, i.e., flows calculated from generic boundary
conditions). Its rigorous mathematical analysis was done only recently [49]
and is based on the fact that solutions are in fact H?-regular with respect to
harmonic coordinates (recall that they are H'-regular with respect to Euclidean
coordinates). The main message here is that if the right-hand side of (1.1) is in
L2, then solutions can be approximated at small scales (in the H'-norm) by
linear combinations of d (linearly independent) particular solutions (d being
the dimension of the space). In that sense, harmonic coordinates are only good
candidates for being d linearly independent particular solutions.
The idea of a global change of coordinates analogous to harmonic coordinates
has been implemented numerically in order to up-scale porous media flows [27],
[26], [16]. We refer the reader, in particular, to a recent review article [16] for an
overview of some main challenges in reservoir modeling and a description of
global scale-up strategies based on generic flows.

e In [24], [29], the structure of the medium is numerically decomposed into a mi-
croscale and a macroscale (meso-scale), and solutions of cell problems are com-
puted on the microscale, providing local homogenized matrices that are
transferred (upscaled) to the macroscale grid. This procedure allows one to ob-
tain rigorous homogenization results with controlled error estimates for nonper-
iodic media of the form a(z,%) (where a(z, y) is assumed to be smooth in z and
periodic or ergodic with specific mixing properties in y). Moreover, it is shown
that the numerical algorithms associated with heterogeneous multiscale
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methods (HMM) and multiscale finite element methods (MsFEM) can be
implemented for a class of coefficients that is much broader than a(z,%). We
refer the reader to [34] for convergence results on the heterogeneous multlscale
method in the framework of G- and I'-convergence.

e More recent work includes an adaptive projection based method [48], which is
consistent with homogenization when there is scale-separation, leading to adap-
tive algorithms for solving problems with no clear scale-separation, fast and
sparse chaos approximations of elliptic problems with stochastic coefficients
[60], [37], [23], finite-difference approximations of fully nonlinear, uniformly
elliptic PDEs with Lipschitz continuous viscosity solutions [19], and operator
splitting methods [4], [3].

e We refer the reader to [13], [12] (and the references therein) for the most recent
results on homogenization of scalar divergence-form elliptic operators with sto-
chastic coefficients. Here, the stochastic coefficients a(z/e,w) are obtained
from stochastic deformations (using random diffeomorphisms) of the periodic
and stationary ergodic setting.

3.3. Proof of Theorem 3.1. For each basis element ¢; of X, let ¥, r be the

solution of

(3.9) T¥ir —div(aVy, r) = Ap; inQ,
. Vir=0 on 0Q.

The following proposition will allow us to control the impact of the introduction of the
term 4 in the transfer property. Observe that the domain of PDE (3.9) is still Q (our next
step will be to localize it to Q; C Q).

Proposition 3.1. For g € L*(Q), let u be the solution of (1.1) in H{(Q). Then, there

exists v € span(y; p) such that

(3.10) I = vllayen C<h+h—2).
9l 2@ — T

Furthermore, writing v:=">Y_,c,¥, 7, we have
(3.11) ZCQ < O 1+ T72)gl32q)

Proof. Let v="7>,c;¥; . We have

u—v

(3.12)

—div(aV(u —v)) = g+f* Zc AQ;.

Define a[v] to be the energy norm a[v] :== [, (Vv)TaVv. Multiplying (3.12) by u — v and
integrating by parts, we obtain that

lu = ][

) | ol :A(u—v)<g+%—chAwi).

Write ¢; = ¢;1 + ¢;2 and let wy and w, be the solutions of Awy = g— > .¢c;1Ap; and
Awy =% — > ;¢;9A¢@; with Dirichlet boundary conditions on Q. Then, we obtain by
integration by parts and the Cauchy—Schwarz inequality that

(3.13)
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”u - v”%?(g)

(3.14) 7

alu —v] < ||V(u— U)||(L2(Q))'1(val”(LZ(Q))‘I + ||Vw2||(L2(Q))d)-

Using (3.1), we can choose (¢;;) so that
(3.15) IVwill 2@y < Chllgll )
Using (3.2), we can choose (¢, ) so that
h2
(3.16) HVU’2H(L2(Q))d < C?”“”H&(Q);
we conclude the proof of the approximation (3.10) by observing that ||ul] m@) <

Cllgll 12 () Let us now prove (3.11). First, observe that (3.4) and the triangular inequal-
ity imply that
LZ(Q)>

(3.17) (Z(Ci)2>% < Ch‘%(‘

K3

Zcmv‘ﬂz Zci,ZV(pi
Next, we obtain from (3.15) and Poincaré¢ inequality that

ZCMV%

"
()

(3.18) ‘ < Cligll 2

2(Q)
and

1
< C?H!JHLZ(Qy
X(Q)

(3.19) HZ:CY;,N%

We conclude by combining (3.18) and (3.19) with (3.17). O

We will now control the error induced by the localization of the elliptic problem
(3.9). To this end, for each basis element ¢, of X, write S; for the intersection of
the support of ¢; with Q and let Q; be a subset of Q containing S§; such that
dist(S,;,Q/Q;) > 0. Let also ¥; 7 be the solution of

(3.20) %Wi,T,QL - diV(aV%’,T,Q,) =A¢; nQ,
’ wi,T.Q, =0 on 097

For A, B C Q, write d(A, B) for the Euclidean distance between the sets A and B.
ProrosiTioN 3.2. Extending ¥; rq. by 0 on Q /Q;, we have

CHNT+1) (dist(si,sz/sm)
X _—— .
dist(S;, Q/€Q;)) 4! P VT

We refer the reader to Appendix A for the proof of Proposition 3.2.

Taking Q, := B(z;, C1h% In %) N Q (we use the particular notation C; because our
proof of accuracy requires the specific constant to be large enough, i.e., larger than a
constant depending on the parameter C' appearing in the right-hand side of (3.21)
and the parameter C describing the balls B(z;, Ch) containing the support of the basis
functions (¢;);<;<y introduced in subsection 3.1) and T = h** in (3.21) of Proposi-
tion 3.2, we obtain for € large enough (but independent from k) that

(3.21) \Wir— Wz‘,T.QlHHI(Q) < (
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(3:22) Wi = Virallpg < CRHH.

Let u be the solution of (1.1) in H}(Q). Using Proposition 3.1, we obtain that there exist
coefficients ¢; such that

(3.23) u— ZQ%,T < C(h+ 1) gl 2
i H(©)

and

(3'24) Zc% < Chidim”f]”iqm-

Using the triangle inequality, it follows that

U= Z c¥ire,
i

(3.25)

< C(h+ 2729l 2q) + ZM‘HWM - Wi,T,QI”Hl(Q)’

H;(Q)

whence, from the Cauchy—Schwarz inequality,
u— Zcil//i,T,Q,; < C(h+ 1) gl 12
v Hi(Q)

(3.26) + <Z|Ci|2)2 (ZH%T —Virg,

Combining (3.26) with (3.24), we obtain that
U= Zciwi.T,Q
%

(3.27) + Ch%ﬁ“”ﬁ”m(g) (ZHVM.T - wi,T,Qg”%[l(g)) .

Y
|H1(Q) ’

< C(h+ 12729l 120
Hy(Q)

Using (3.22) in (3.27), we obtain that

U= Z%%,T,gl

i

(3.28) < C(h+1*7)|lgll 20 -

H;(@)

Observe that it is the exponential decay in (3.21) that allows us to compensate for the
large term on the right-hand side of (3.27) via (3.22). This concludes the proof of
Theorem 3.1.

3.4. On localization with high contrast. The constant C in the approximation
error estimate (3.8) depends, a priori, on the contrast of a. Is it possible to localize the
computation of bases for V; when the contrast of a is high? The purpose of this sub-
section is to show that the answer is “yes,” provided that there is a buffer zone between
the boundaries of localization subdomains and the supports of the elements ¢;, where
the contrast of @ remains bounded. More precisely, assume that Q is the disjoint union of
Qpounded and Qpigp,. Assume that (1.2) holds only on Qy,pged, and that on Q. we have
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(3.29) Awin (@) E* < ETa(2)8 < [,

where y can be arbitrarily large. Practical examples include media characterized by a
bounded contrast background with high-conductivity inclusions or channels. Let w,};lgh
be the solution of

(3.30) h=2ey e — div(aVy ™) = Ag,  in Q,
¥i=0 on 0Q;.

Let

(3.31) VL . span (et

be the linear space spanned by the elements w?igh. For each i, define b, to be the largest

number r such that there exists a subset Q! such that the closure of Q! contains the
support of ¢;, (Q))" is a subset of Q; (where A" are the set of points of Q that are
at distance at most r for A), and (Q})" /Q; is a subset of @ qunded- If no such subset exists,
we set b; := 0. b; can be interpreted as the non-high-contrast buffer distance between
the support of ¢; and the boundary of Q;. We refer the reader to Figure 3.1 for illustra-
tions of the buffer distance.

THEOREM 3.2. For g € L*(Q), let u be the solution of (1.1) in H{(Q) and uy, the solu-
tion of (1.1) in V};gh, There exists Cy > 0 such that if for all i, b; > Cyh® In %, then

Ju—willme [ Ch if ae (04,

(3.32) <
9l 2@ cwifae[b)

7.1,
where the constants C and Cy depend on Ay, (a), Anax(a@) (the bounds on a in Qyounded ),
d, and Q but not on h and y (y is the upper bound on a on Q).

Remark 3.7. Recall that the global basis computed in (2.6) remains accurate if the
medium is both of high contrast (A,..(a) >> 1) and degenerate (4,,(a) << 1). The
basis computed in (3.30) preserves the former property (of accuracy for high-contrast
media) but loses the latter property (of accuracy in the degenerate case), since the con-
stant C in (3.32) depends on A, (a).

Remark 3.8. Observe that local solves have to resolve the connected components of
high-contrast structures. This is the price to pay for localization with high contrast in
the most general case. Recall that in classical homogenization with high contrast, the
limit of the homogenized operator may be a nonlocal operator (we refer the reader, for
instance, to [21]). A similar phenomenon is observed here (distant points connected by

support(y;)

support(y;)

Qhnigh Qnigh

Fic. 3.1. Illustrations of the buffer distance.
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high-conductivity channels are associated with a low resistance metric and a large
coupling coefficient in the numerically homogenized stiffness matrix).

The proof of Theorem 3.2 is similar to that of Theorem 3.1, but it requires a precise
tracking of the constants involved. Because of the close similarity, we will not include the
proof in this paper but only give its main points. First, the proof of Proposition 3.1 re-
mains unchanged, as the constants C in (3.10) and (3.11) do not depend on the max-
imum eigenvalue of the conductivity a. Only the proof of Proposition 3.2 has to be
adapted, and the part of the proof below Proposition 3.2 remains unchanged. This re-
quires an application of the elements of Lemmas A.2, A.3, A.4, and A.5 to buffer sub-
domains (Q})" /Q!. The main point is to observe that the decay of the Green’s function in
(Q))" /% can be bounded independently from y (due to the maximum principle).

Observe that the choice of the subdomain Q; in (3.30) can be chosen to be the same
as in (3.20) if its intersection with high-contrast inclusions is void (i.e., if the maximum
eigenvalue of a over Q; remains bounded independently from y); otherwise the choice
of Q; in (3.30) has to be enlarged (when compared to that associated with (3.20)) to
contain the high-contrast inclusion (plus its buffer).

4. The basis remains accurate for parabolic PDEs. The computational gain
of the method proposed in this paper is particularly significant for time-dependent pro-
blems. One such problem is the parabolic equation associated with the operator
—div(aV). More precisely, consider the time-dependent PDE

(1) { e ) = (e Tulr ) = o, (50 € Rrig € 1),

where a and Q satisfy the same assumptions as those associated with PDE (1.1), Qq :==
Q x [0, T] for some T > 0, and 0Q = (0Q x [0, T]) U (Q x {t = 0}).

Let V, be the finite-dimensional approximation space defined in (3.7). Let u;, be the
finite element solution of (4.1); i.e., u; can be decomposed as

(4.2) up(z, t) = Zci(’f)%(fﬂ)
and solves for all j
(4.3) (Wj»atuh)p(g) = —a[%« up + (1//1'* g)LZ(Q)

with afv, w] == [4(Vv)TaVw. Write

T
2 — 2
(4.4) H’UHLQ(OYT'HS)(Q)) -—/0 L|Vv| (z, t)dzdt.
TaEOREM 4.1. We have

(4.5) [ (u — up) (., T)HL?(Q) + [lu — Uh”L?(o,T,Hg)(g)) < C||9HL2(QT)(h + h272a)'

Proof. The proof is a generalization of the proof found in [50] (in which approxima-
tion spaces are constructed via harmonic coordinates). Let A be the bilinear form on
L2(0, T, H}(Q)) defined by

(46) AT[wl, ﬂ)Q] = /O\T a[wl, IUQ]dt
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Observe that for all v € L*(0, T, V),
(4.7 (v,0,(v — up)) 2@,y + Arlv, u — ] = 0.
Writing A7[v] := Ar[v, v], we deduce that for v € L*(0, T, V}),
1 2
S ) D) Bagy + Al = ]
(4.8) = (u—v,0,(u—w)) (o, +Arlu—v,u—w).

Using 0,uy, in (4.3) and integrating, we obtain that

1
(4.9) HatuhH%Z(QT) +5 alug (., T), up (., T)] = (0pun, 9) 20,

Using Minkowski’s inequality, we deduce that

(4.10) ||atUhH2L2<QT) + afup (-, T), up (-, T)) < C”Q”%?(Qﬂ'
Similarly,
(411) 100l g, + aliC Tl T < Clglag

Using the Cauchy—Schwarz and Minkowski inequalities in (4.8), we obtain that

(4.12) l(u = up) (. D2 q) + Arlu — w] < Cllu— vl apllgllz@,) + CArlu— o).
Take v = Rju to be the projection of u onto L*(0, T, V) with respect to the bilinear

form Ag. Observing that —div(aVu) = g — d,u with (g — d,u) € L*(Qr), we obtain
from Theorem 3.1 that

(4.13) (Ag[u—Ryu)) < Cllgllpy) (h + h72).
Let us now show (using a standard duality argument) that
(4.14) v —Ryull 2o,y < C(h+ B2 gll 12,

Choose v* to be the solution of the following linear problem: For all w € L*(0, T, H}(R)),

(4.15) Ar[w, v*] = (0, u — Ryu)20,)-

Taking w = u — Ryu in (4.15), we obtain that

(4.16) ||u— Rh“”%z(gﬂ = Ap[u — Ryu, v* — Ryv*].

Hence by the Cauchy—Schwarz inequality and (4.13),

(4.17) lu=Ryull}q,, < Ch+1272) | gll 2o, (Ar[v" = Ryo'])2.

Using Theorem 3.1 again, we obtain that
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(4.18) (Ap[v — Ryv*])E < Cllu — Rl 2y (b + B22).

Combining (4.18) with (4.17) leads to (4.14). Combining (4.12) with v = R,u, (4.14),
and (4.13) leads to

(4.19) 1w = un) (- D)) + Arlu — u] < C(h+ B2l 7. -

which concludes the proof of Theorem 4.1. 0
Discretization in time. Let (t,) be a discretization of [0, T] with time-steps
|tns1 — to| = At. Write Z%, the subspace of L*(0, T, V},), such that

ARES {1} € L*0, T, Vy):v(z, t) = Zci(t)l/fi(:c), ¢;(t) are constants on (t,,, tn+1]}.
(4.20)

Write uy, a, the solution in Z%, of the following system of implicit weak formulation (such
that uy a¢(2,0) =0): For each n and ¥ € V,

(W unar(tnin)) o) = (Vs unar(tn)) 2o

t77+1
(4.21) A Al ai(fyn)] + (w, / g(t)dt) .
b (@)

Then, we have the following theorem.
THEOREM 4.2. We have

1(u = wnae) (D)l 20) + 1w = unacll 20,7, ) < CUAL + A+ A7)
(4.22) 0
“(l0egll 20,71 1@)) + 19C )l 2(0) + 191l 22 (0r)-

The proof of Theorem 4.2 is similar to that of Theorem 1.6 of [50] and will not be
given here. Observe that homogenization in space allows for a discretization in time with
time-steps O(h + h*~2*) without compromising the accuracy of the method.

5. The basis remains accurate for hyperbolic PDEs. Consider the hyperbolic
PDE

p(2)Fu(z, t) — div(a(z)Vu(z, t) = g(z,t), (2,t) € Qp;g € L*(Qr),
(5.1) {u:O on 0Qr,
ou=0 onQ x {t=0},

where a, Q, Qp, and 0Q  are defined as in section 4. In particular, a is assumed to be only
uniformly elliptic and bounded (a;; € L>*(Q)). We will further assume that p is uni-
formly bounded from below and above (p € L>(Q) and essinf p(z) > ppi, > 0). It is
straightforward to extend the results presented here to nonzero boundary conditions
(provided that frequencies larger than 1 /h remain weakly excited, because the waves
equation preserves energy, and homogenization schemes cannot recover energies put
into high frequencies; see [51]). For the sake of conciseness, we will give those results
with zero boundary conditions. PDE (5.1) corresponds to acoustic wave equations in
a medium with density p and bulk modulus a~.

Let V), be the finite-dimensional approximation space defined in (3.7). Let u;, be the
finite element solution of (5.1); i.e., u; can be decomposed as
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(5.2) up(x, t) Zc

and solves for all j
(53) (W]va uh)Lz(ng wf]’uh] (1//]" g)L2<Q)7

where

(5.4) (v, W) p2(p.0) = /Q vwp.
TueoreM 5.1. If 9,9 € L*(Qr) and g(z,0) € L*(Q), then

10:(w — up) (s D)l 20 + 1w — unll 20, 7.1 02))
0

5.5
> < C10:l 2y + 1902 0) | 2y (b + h22).

Remark 5.1. We refer the reader to [59] for an analysis of the suboptimal rate of
convergence associated with finite-difference simulation of wave propagation in discon-
tinuous media (see also [18], [56]). We refer the reader to [51] for an alternative upscaling
strategy based on harmonic coordinates. If the medium is locally ergodic with long range
correlations [8] and also characterized by scale-separation, then we refer the reader to
HMM based methods [28], [1]. Homogenization based methods require that frequencies
larger than 1/h remain weakly excited. For high frequencies, and smooth media (or
away from local resonances, e.g., local, nearly resonant cavities), we refer the reader
to the sweeping preconditioner method [30], [31].

Proof. Let Ag be the bilinear form on L*(0, T', H}(Q)) defined in (4.6). Observe
that for all v € L2(0, T, V),

(5.6) (0,07 (u = up)) 2.0, + Arlv,u —u] = 0.

Taking d;u — d;u;, — (d;u — 9;v) as a test function in (5.6) and integrating in time, we
deduce that for o,v € L*(0, T, V),

S 10— ) T2 g + 5 ol — ) )

= (0y(u —v), 07 (u — Uh))L?(p,gT) + Ar[0,(u — v), u — uy),

(5.7)

where (v, w) 2,0, = [{ [ouwpdzdt. Taking the derivative of the hyperbolic equation
for u in time, we obtain that

(5.8) d}u — div(aVo,u) = d,g.

Integrating (5.8) against the test function 0?u and observing that 0%u(z, 0) = g(z,0), we
also obtain that

(5.9) (. Dy g + aldrul T)] < CloglZ g, + 19(.0) 2 )

Similarly, we obtain that
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(5.10) 103un (. T2, 0 + aldsun(s )] < C(019]12: .., + 19(2 0)[Z2q)-

Take 0,v = R;,0,u to be the projection of d,u onto L*(0, T, V) with respect to the
bilinear form A7. Observing that —div(aVo,u) = 0,9 — d?u with (g — d?u) € L*(Qy),
we obtain from (5.9) and Theorem 3.1 that

(5.11) (Aglu = Ryu]) < C(10ugll 20y + 19z, 0) 12(0) (B + h272).
Furthermore, using the same duality argument as in the parabolic case, we obtain that
(5.12) lu = Ryullpp0,) < Ch+ 127221019l 120,y + 19(2, 0) | 12(0))-

Using the Cauchy—Schwarz and Minkowski inequalities and the above estimates in
(5.7), we obtain that

19, (= up) (. T) 72, ) + al(u = ug) (.. T)]

(5.13)
< C(h+ 72 (Ag[u — ] + 10,9l 12(0,) + 19(2. 0) [ 12(0)-

We conclude using Grownwall’s lemma. |

6. Numerical experiments.

6.1. Elliptic equation. We compute the solutions of (1.1) up to time 1 on the fine
mesh and in the finite-dimensional approximation space V), defined in (3.7). The phy-
sical domain is the square [—1, 1]%. Global equations are solved on a fine triangulation
with 66049 nodes and 131072 triangles.

The elements (¢;) of subsection 3.1 are weighted extended B-splines (WEB) [38],
[39] (obtained by tensorizing one-dimensional elements and using weight function
(1 —2?)(1 — y?) to enforce the Dirichlet boundary condition). The order of accuracy
is not affected by the choice of weight function, given that the boundary is piecewise
smooth. Our motivation for using WEB elements lies in the fact that, with those
elements, (Dirichlet) boundary conditions become simple to enforce. This being said,
any finite elements satisfying the properties (3.1), (3.2), (3.3), and (3.4) would be
adequate [14].

We write h the size of the coarse mesh. Elements y; are obtained by solving (3.6) on
localized subdomains of size hy. Table 6.1 shows errors with @ = 1 /2 for a given by (6.1)
(see [49, section 3, Example 1], trigonometric multiscale; see also [45]), i.e., for

TasBLE 6.1
Ezxample 1 of section 3 of [49] (trigonometric multiscale; see also [45]) with « =1 /2.

h 2 H! L>
0.5 0.0119 0.0913 0.0157
0.25 0.0057 0.0664 0.0115
0.125 0.0027 0.0482 0.0075
0.0625 0.0005 0.0207 0.0032
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olz) = 1 (1.1 +sin(2nz/e;) 1.1 +sin(2ny/ey) 1.1+ cos(2mz /e3)
6 \1.1 +sin(2ry/e;) 1.1+ cos(2nz/ey) 1.1+ sin(2ny /es)

1.1+ sin(2wy/eq) 1.1+ cos(2mz /e5)
1.1 4 cos(2nx/eq) 1.1 +sin(2my/e5)

(6.1) + sin(42%y?) + 1),

_1 _ 1 _1 _1 _ 1
where € =z, € = 13, €3 = 75, €4 = 37, and €5 = ;.

Figure 6.1 shows the logarithm (in base 2) of the error with respect to log,(hg /h)
(for h = 0.125) and the value of T used in (3.6) for a given by [49, section 3, Example 5]
(percolation at criticality; the conductivity of each site is equal to y or 1/y with
probability 1 /2 and y = 4).

Figure 6.2 shows the logarithm (in base 2) of the error with respect to logy(hg /h)
(for h = 0.125) and the value of T used in (3.6) for a given by [49, section 3, Example 3|;
ie., a(r) = e"?) with h(z) = > k<r(ar sin(27k - x) + by cos(27k - 7)), where @), and by
are independent uniformly distributed random variables on [—0.3,0.3] and R = 6.

Remark 6.1. Two factors contribute to the error plots shown in Figures 6.1 and 6.2:
a localization error that becomes dominant when h /h is small (i.e., the fact (2.6) is not
solved over the whole domain Q) and the distortion of the transfer property resulting
from the 1 /T term in (3.9). As expected, both figures show that when h /h is large, the
error due to the distortion of the transfer property is dominant and is minimized by a

—T=eo

0.5 1 15 2 25 05 1 15 2 25
(a) L? error (b) H' error

Fic. 6.1. Ezample5 of section 3 of [49] (percolation at criticality). Logarithm (in base 2) of the error with
respect to logy(hg /h) (for h =0.125) and the value of T used in (3.6).

—T==
—T=1
—T=05
——T=025
—T=0.125

T=0.0625]

05 1 15 2 25 05 1 5 2 25
(a) L? error (b) H! error

Fic. 6.2. Ezample 3 of section 3 of [49] (exponential of a sum of trigonometric functions with strongly
overlapping frequencies). Logarithm (in base 2) of the error with respect tology(hg /h) (for h = 0.125) and the
value of T used in (3.6).
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large T. However, when hy /h is small, the localization error is dominant and is mini-
mized by a small 7. The fact that in Figure 6.2 this error is minimized by the second
smallest T instead of the smallest T is explained by the fact that the localization error
remains bounded when hj /h is of the order of one, whereas the error due to the distor-
tion of the transfer property blows up as T ] 0. The fact that in both figures curves
associated with different 7T interest each other is indicative of the fact that for inter-
mediate values of hy /h, the error can be minimized via a fine-tuning of T' as explained
in section 3. The differences in the locations of these intersections can be explained by a
larger localization error associated with the example of Figure 6.2 (due to longer corre-
lation ranges). In particular, the comparison between Figures 6.1 and 6.2 indicates larger
errors for Figure 6.2.

6.2. High contrast, with and without buffer. In this example, a is character-
ized by a fine and long-ranged high-conductivity channel (Figure 6.3). We choose
a(z) =100, if z is in the channel, and a(z) is the percolation medium if z is not in
the channel (the conductivity of each site not in the channel is equal to y or 1 /y with
probability 1 /2 and y = 4). Figure 6.4 shows the log, of the numerical error (in L? and
H' norm) versus logy (k). The three cases for the localization are by = O(v/h In 1) witha

buffer b; around the high-conductivity channel (see subsection 3.4) of size O(v/h In 1),
hy = 3h with no buffer around the high-conductivity channel, and hy = 3h with a buffer
b; around the high-conductivity channel of size 3h. The first case shows that the method
of subsection 3.4 is converging as expected. The second case shows that, as expected,
taking @ = 1 does not guarantee convergence. The third case shows that adding a buffer
around the high-conductivity channel improves numerical errors but is not sufficient to

i
il P

Fic. 6.3. High-conductivity channel.

—hy=Ch"%In (1/h)
—_ h0:3h, without buffer
—— hg=3h, with buffer

—hg=C h"21n (1/h)
—_ hozah‘ without buffer,
——h,=3h, with buffer

~4 35 -3 25 -2 -15 -1 24 35 -3 -25 -2 -15 -1
(a) L? error (b) H! error

Fic. 6.4. High-conductivity channel (Figure 6.3). The z-axis shows logy(h), the y-azis shows the logy of
the error in L? and H'-norm. The three cases for the localization are hy = O(\/E In %) with a buffer around
the high-conductivity channel (see subsection 3.4) of size O(v/h In %) hg = 3h with no buffer around the

high-conductivity channel, and hy = 3h with a buffer around the high-conductivity channel of size 3h.
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(a) u (b) up,

FiG. 6.5. Wave equation. Trigonometric case, fine mesh solution, h = 0.125, hy = 3h, T = h. The I?,
H', and L™ relative numerical errors are 0.0339, 0.1760, and 0.0235.

0.05
0.04
0.03
0.02

0.01

-0.01

-0.02

Fic. 6.6. Wave equation. Channel case, coarse mesh solution, h = 0.125, hy = 3h, T = h. The L?, H',
and L™ relative numerical errors are 0.0439, 0.2684, and 0.0389.

guarantee convergence (as expected, we also need o < 1). The percolating background
medium has been resampled for each case; the effect of this resampling can be seen for
the largest value of & (i.e., logy(h) = —1).

6.3. Wave equation. We compute the solutions of (5.1) up to time 1 on the fine
mesh and in the finite-dimensional approximation space V, defined in (3.7). The initial
condition is u(z,0) =0 and wu;(z,0) = 0. The boundary condition is u(z,t) =0 for
z € 0Q. The density is uniformly equal to one, and we choose g = sin(nz)sin(wy).
Figure 6.5 shows the fine mesh solutions « and u,, at time one, for a given by the tri-
gonometric example (6.1), with A = 0.125, hy = 3h, and T = h. Figure 6.6 shows the
coarse mesh solutions v and u,, at time one, for a given by the high-conductivity channel
example (Figure 6.3), with A = 0.125, hyg = 3h, and T = h.

We refer the reader to [52] for a list of movies on the numerical homogenization
of the wave equation with and without high contrast and with and without buffers
(extended buffers in the high-contrast case).

Appendix A. Proof of Proposition 3.2. The proof of Proposition 3.2 is a gen-
eralization of the proof of the control of the resonance error in periodic medium given
in [35].

First we need the following lemma, which is the cornerstone of Cacciopoli’s
inequality.

Lemma A.1. Let D be a subdomain of Q with piecewise Lipschitz boundary, and let
v solve

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/19/17 to 131.215.248.112. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1392 HOUMAN OWHADI AND LEI ZHANG

(A1) {LT) —div(a(z)Vu(z)) = f(z), z€ Dif € H (D),

v=0 on adD.

Let£:D — R* be a function of class C' such that ¢ is identically null on an open neigh-
borhood of the support of f. Then,

(A.2) / V()P < C /D 2|V,

where C' only depends on the essential supremum and infimum of the maximum and
minimum eigenvalues of a over D.
Proof. Multiplying (A.1) by {%v and integrating by parts, we obtain that

2
(A.3) AC%—FLV(CZU)(IVU:O.
Hence,

v? _ )
(A.4) A)CT-F/DV(CU)G,V(Z:U)—A’U V¢aVe,

which concludes the proof. 0

Lemva A.2. Let D be a subdomain of Q with piecewise Lipschitz boundary. Write
G p for the Green’s function of the operator ; — div(aV) with Dirichlet boundary con-
dition on dD. Then,

C |z — y]
A5 G : < - _ ,
49 ol y) = |z —y|2 eXp( C\/T>

where C only depends on d and the essential supremum and infimum of the mazximum
and minimum eigenvalues of a over D.
Proof. Extending a to R? and using the maximum principle, we obtain that

(A.6) Grp(z,y) < Grri(z,y);

we conclude by using the exponential decay of the Green’s function in R? (we refer the
reader to Lemma 2 of [35]). a

Lemma A.3. Letyr; ¢ be the solution of (3.9) and ¥, o, the solution of (3.20). Let Q;
be a subdomain of Q; such that S; C Q) and dist(S;, Q; /Q}) > 0. We have

Ch! dist(S;, Q/Q)
A7 ; 1 N < _ T NTw TR T ,
D Werlinm < (dist(S,. @ /) ( cVT )
and

Chi™! dist(9;, Q /)
A8 ; ) W< R i A
( ) Hl,,/z,T.QL”H (@ /@) = (diSt(Si, / ;))d ex ( C\/_T )

Proof. For A C Q, write A" for the set of points of Q that are at distance at most r
from A. Let us now use Cacciopoli’s inequality to bound [, e |V, 7|*. Using
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Lemma A.1 with ¢ identically equal to one on Q/Q!, zero on (Q/Q)" with
r=dist(S;, Q/QL) /3, and |V{| < C/r, we obtain that

C
(A.9) / [V, p* < —2/ i
Q/Q ™ J@/Q)r

Next, observe that for z € (Q /Q})",

(A.10) V(@) == [ VGrala.n)Ve.(s)d.
Hence,
(A.11) Vi (@] < (IVeill 25 IV Gralz, )2,

Another use of Cacciopoli’s inequality leads to

o
(A.12) IVGra. sy < 1Grale e,

Combining (A.9) with (A.11) and (A.12), we obtain that
(A.13) VY < 190025 1Gra(z.)7
. /e Tl = ill(r2(s,))? T4 @/ T.Q\Ls - LQ(S;»).

We conclude the proof of (A.7) using Lemma A.2 and (3.3). The proof of (A.8) is similar
observing that dist(S;, Q/Q}) < dist(S;, Q; /). O

Lemva A4. Let D be a subdomain of Q with piecewise Lipschitz boundary. Let
v € HY(Q), and let v solve

(A.14) {? — div(a(z)Vo(z)) =0, z€ D,

v=1Y onadD.

Write S for the intersection of the support of ¥ with D. Let D, be a subdomain of D such
that dist(Dy, S) > 0; then

C . dist(Dy, S)
A15 2e Y (7 12y, _ @SR 9) )
w19) [V < o (1 1 o~ )

where C does not depend on D, Dy, or S.
Proof. Write w := v — . Then,

w _ div(a(z)Vw(z)) = — % + div aVy), z€D,
mo {1
Thus,
(A17) w(@) = = [ (Y2 Gro(an) + V¥V Grp(enn) ) .

Using the Cauchy—Schwarz inequality, we obtain that
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1
(A.18) lw(z)| < C||W||H1(Q) <T|GT,D(='Ev -)||L2(s) + HVGT,D(x’-)“(L?(S))")‘

For A C D, write A" for the set of points of D that are at distance at most r from A. Let
us now use Cacciopoli’s inequality to bound f D |[Vwl|?. Using Lemma A.1 with ¢ iden-
tically equal to one on Dy, zero on D /D', and such that |V¢| < C/r, we obtain that

(A.19) Vw|? < 22/ w?,
D'l

D, 1

provided that dist(D{', S) > 0. Hence, for 7, := dist(D;, S) /3, we obtain (A.19). Taking
ro := dist(Dy, S) /3 and using Cacciopoli’s inequality again, we also obtain that

C
(A.20) IVGrp(@ )z < P Gr.p(@ ) 2(5m)-

Combining (A.19) with (A.18) and (A.20) and observing that w = v on D}', we obtain
that

C
(21) [ VR < o (T 4 12 [ Gk
Using Lemma A.2, we deduce that

(A.22) Vup < 2y (712 (

dist(Dy, S))
D, ~ (dist(Dy, 9)) '

cV'T

This concludes the proof of Lemma A.4. 0
LemmA A5, Letyr; ¢ be the solution of (3.9) and ¥, pq. the solution of (3.20). Let Q;
be a subdomain of Q; such that dist(Q /Q,, Q%) > 0. We have

C(T '+ 1)ht! dist(Q/Q;, Q]
(A2)  Wir = Viralie < g e g @2~ )

(dist(Q/€;, Q7)™ VT

Proof. Lemma A.5 is a direct consequence of Lemma A.4. To this end, we choose
D=Q;, v=Y,7— V¥, 10, and D; := Q). We also choose ¥ == ny; p, where n:Q —
[0,1] is C*, equal to one on Q/Q; and 0 on (Q/Q;)" with r:= dist(Q/Q;,Q})/3
(A" being the set of points in Q at distance at most r from A), and |Vn| < C /7.
We obtain from Lemma A.4 that

O(T ' +1) dist(Q/Q,, Q)
A.24 i — W, N < R S ——
( ) ||WZ.T wl,T.QZ‘HHl(QL) = (dlSt(Q/QZ,Q;))d ||'(//||H1(Q) exp Cﬁ
We conclude using (3.3) and [|¥/[| j1(q) < mHV%H@z(Q))d. O

Observing that

Vi — Wi.T,Ql”Hl(Q) <|ir— Wi,T,QjHHI(Q;) + H%,T”Hl(g/gg) + ”wi,T.Q,”Hl(QI/Q;)’
(A.25)
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we conclude the proof of Proposition 3.2 by using Lemma A.5 and Lemma A.3 with
Q) == ST, where S are the points in Q; at distance at most r from S; with r:=

Appendix B. On the compactness of the solution space. Although the foun-
dations of classical homogenization [9] were laid down based on assumptions of periodi-
city (or ergodicity) and scale-separation, numerical homogenization, as described here,
is independent from these concepts and solely relies on the strong compactness of the
solution space (and the fact that a compact set can be covered with a finite number of
balls of arbitrary sizes). Observe that an analogous notion of compactness supports the
foundations of G- and H-convergence (see [47], [57], [32]). The main difference is that G-
and H-convergence rely on precompactness and weak convergence of fluxes, and here,
we rely on compactness in the (strong) Hj-norm, i.e., the following theorem.

Let W be the range of g in (1.1). Write

(B.1) V= {u € H}(Q):usolves (1.1) for some g € W}.

TureoreM B.1. Let v < 1. If W is a closed bounded subset of H"(Q), then W is a
compact subset of H}(Q) (in the strong H}-norm).

Proof. Wehave (aVu),,, = —VA™!g. So using the same notation as in (2.4), we get
(aV V) = —VA~W. Let u, be a sequence in V; then there exists a sequence in W
such that —div(aVu,) = g,. Using the fact that —VA~'W is a compact subset of
(L*(Q))? (we refer, for instance, to the Kondrachov embedding theorem), we get that
there exists g* € W such that |[VA~lg, — VA~lg*|| ;2 — 0. Writing u* for the solution
of —div(aVu*) =g¢* and using (aV(u, — u)), = —VA (g, — g*), we get that
[(aV (u, — u*)),tll ;2 = 0. Using the equivalence between the flux-norm and the Hj
norm we deduce that ||u, — u*|| w1y — 0. This finishes the proof. 0

This notion of compactness of the solution space constitutes a simple but fundamen-
tal link between classical homogenization, numerical homogenization, and reduced order
modeling (or reduced basis modeling [20], [43]) (we also refer the reader to the discussion
in section 6 of [10]). This notion is also what allows for atomistic to continuum upscaling
[64]; the basic idea is that if source (force) terms are integrable enough (for instance, in
I? instead of H~'), then the solution space is no longer H' but a subspace V that is
compactly embedded into H', and, hence, it can be approximated by a finite-
dimensional space (in the H'-norm). In other words, if these systems are “excited”
by “regular” forces or source terms (think compact, low dimensional), then the solution
space can be approximated by a low dimensional space (of the whole space), and the
name of the game becomes “how to approximate” this solution space (and this can be
done by using local time-independent solutions).

Acknowledgments. We thank L. Berlyand for stimulating discussions. We also
thank Ivo Babuska, John Osborn, George Papanicolaou, and Bjorn Engquist for point-
ing us in the direction of the localization problem. Finally, we thank Sydney Garstang
for proofreading the manuscript.

REFERENCES

[1] A. AspurLe axp M. J. GRoTE, Finite element heterogeneous multiscale method for the wave equation,
Multiscale Model. Simul., 9 (2011), pp. 766-792.

[2] G. ALraRE AND R. Brizzi, A multiscale finite element method for numerical homogenization, Multiscale
Model. Simul., 4 (2005), pp. 790-812.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/19/17 to 131.215.248.112. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1396 HOUMAN OWHADI AND LEI ZHANG

3]
(4]

[5]
[6]
[7]
(8]
19]
[10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]

20]

21]

22]
(23]

[24]

[26]
27]
28]

29]

T. ArBocast AND K. J. Boyp, Subgrid upscaling and mized multiscale finite elements, SIAM J. Numer.
Anal., 44 (2006), pp. 1150-1171.

T. ArBocast, C.-S. Huang, AND S.-M. Yanc, Improved accuracy for alternating-direction methods for
parabolic equations based on regular and mized finite elements, Math. Models Methods Appl.
Sci., 17 (2007), pp. 1279-1305.

I. BaBUSKA, G. CaLOz, AND J. E. OsBORN, Special finite element methods for a class of second order elliptic
problems with rough coefficients, STAM J. Numer. Anal., 31 (1994), pp. 945-981.

I. BaBUSKA AND R. LipTON, Optimal local approximation spaces for generalized finite element methods with
application to multiscale problems, Multiscale Model. Simul., 9 (2011), pp. 373-406.

I. BaBusSka AND J. E. OsBoORrN, Generalized finite element methods: Their performance and their relation to
mized methods, STAM J. Numer. Anal., 20 (1983), pp. 510-536.

G. BaL anp W. Jing, Corrector theory for msfem and hmm in random media, Multiscale Model. Simul., to
appear.

A. BEnsoussaN, J.-L. Lions, anp G. PapanicorLaou, Asymptotic Analysis for Periodic Structure,
North-Holland, Amsterdam, 1978.

L. BERLYAND AND H. OwHADI, Fluz norm approach to finite dimensional homogenization approximations
with non-separated scales and high contrast, Arch. Ration. Mech. Anal., 198 (2010), pp. 677-721.

C. BERNARDI AND R. VERFURTH, Adaptive finite element methods for elliptic equations with non-smooth
coefficients, Numer. Math., 85 (2000), pp. 579-608.

X. Branc, C. Le Bris, AND P.-L. Lions, Une variante de la théorie de [’homogénéisation stochastique des
opérateurs elliptiques, C. R. Math. Acad. Sci. Paris, 343 (2006), pp. 717-724.

X. Brang, C. Lt Bris, anp P.-L. Lions, Stochastic homogenization and random lattices, J. Math. Pures
Appl. (9), 88 (2007), pp. 34-63.

D. Bragss, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge
University Press, London, 2007.

A. Brames, I'-Convergence for Beginners, Oxford Lecture Ser. Math. Appl. 22, Oxford University Press,
Oxford, 2002.

L. V. BrANETS, S. S. GHal, S. L. Lyons, axp X.-H. Wu, Challenges and technologies in reservoir modeling,
Commun. Comput. Phys., 6 (2009), pp. 1-23.

S. C. BRENNER AND L. R. Scort, The Mathematical Theory of Finite Element Methods, 2nd ed., Texts
Appl. Math. 15, Springer, New York, 2002.

D. L. Brown, A note on the numerical solution of the wave equation with piecewise smooth coefficients,
Math. Comp., 42 (1984), pp. 369-391.

L. A. CarrAReLLI AND P. E. Soucanipis, A rate of convergence for monotone finite difference approzima-
tions to fully nonlinear, uniformly elliptic PDEs, Comm. Pure Appl. Math., 61 (2008), pp. 1-17.

E. Cancis, C. LE Bris, Y. Mapay, N. C. NGuYeN, A. T. PATERA, AND G. S. H. Pau, Feasibility and com-
petitiveness of a reduced basis approach for rapid electronic structure calculations in quantum chem-
istry, in High-Dimensional Partial Differential Equations in Science and Engineering, CRM Proc.
Lecture Notes 41, AMS, Providence, RI, 2007, pp. 15-47.

K. D. CHEREDNICHENKO, V. P. SMYSHLYAEV, AND V. V. ZHiKov, Non-local homogenized limits for composite
media with highly anisotropic periodic fibres, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006),
pp. 87-114.

C.-C. Cuu, I. G. GraHAM, AND T. Y. Hou, A new multiscale finite element method for high-contrast elliptic
interface problems, Math. Comp., 79 (2010), pp. 1915-1955.

A. DoostaN aND H. OwHADI, A non-adapted sparse approzimation of pdes with stochastic inputs, J. Com-
put. Phys., 230 (2011), pp. 3015-3034.

W. E, B. Excquist, X. Li, W. REN, AND E. VANDEN-ELNDEN, Heterogeneous multiscale methods: A review,
Commun. Comput. Phys., 2 (2007), pp. 367-450.

Y. Erenpiev, J. Garvis, aND X. Wu, Multiscale finite element and domain decomposition methods
for high-contrast problems using local spectral basis functions, J. Comput. Phys., 230 (2011),
pp. 937-955.

Y. ErenpiEv, V. GINTING, T. HOoU, AND R. EWING, A ccurate multiscale finite element methods for two-phase
flow simulations, J. Comput. Phys., 220 (2006), pp. 155-174.

Y. ErenpIEV AND T. Hou, Multiscale finite element methods for porous media flows and their applications,
Appl. Numer. Math., 57 (2007), pp. 577-596.

B. Encquist, H. HorsT, anDp O. RunNBoRrG, Multi-scale methods for wave propagation in heterogeneous
media, Commun. Math. Sci., 9 (2011), pp. 33-56.

B. Encquist AND P. E. Soucanipis, Asymptotic and numerical homogenization, Acta Numer., 17 (2008),
pp. 147-190.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/19/17 to 131.215.248.112. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

(30]
(31]
32]
33]
34]
(35]
(36]
37]
(38]
39]
(40]
[41]
[42]
43]
[44]
[45]
[46]
[47]
(48]
[49]
[50]
[51]
52|
53]
[54]
[55]
[56]
[57]

(58]

wn

9]

LOCALIZED BASES FOR HOMOGENIZATION 1397

. Excquist anD L. YING, Sweeping preconditioner for the Helmholtz equation: Hierarchical matriz re-

presentation, Comm. Pure Appl. Math., 64 (2011), pp. 697-735.

. Encquist anD L. YING, Sweeping preconditioner for the Helmholtz equation: Moving perfectly matched

layers, Multiscale Model. Simul., 9 (2011), pp. 686-710.

. D. Giorat, Sulla convergenza di alcune successioni di integrali del tipo dell’aera, Rend. Mat. Appl. (7),

8 (1975), pp. 277-294.

. D. Giorai, New problems in I'-convergence and G-convergence, in Free Boundary Problems, Vol. II,

Ist. Naz. Alta Mat. Francesco Severi, Rome, 1980, pp. 183-194.

. GLor1a, An analytical framework for the numerical homogenization of monotone elliptic operators and

quasiconvez energies, Multiscale Model. Simul., 5 (2006), pp. 996-1043.
GLORIA, Reduction of the resonance error. Part 1: Approzimation of homogenized coefficients, Math.
Models Methods Appl. Sci., 21 (2011), pp. 1601-1630.

. GLor1a AND F. OtT10, An optimal error estimate in stochastic homogenization of discrete elliptic equa-

tions, Ann. Appl. Probab., to appear.

. HARBRECHT, R. SCHNEIDER, AND C. SCHWAB, Sparse second moment analysis for elliptic problems in

stochastic domains, Numer. Math., 109 (2008), pp. 385-414.
Hotvig, Finite Element Methods with B-Splines, Frontiers Appl. Math. 26, SIAM,
Philadelphia, PA, 2003.

Houruice, U. REr, AND J. WirPER, Weighted extended B-spline approzimation of Dirichlet problems,
SIAM J. Numer. Anal., 39 (2001), pp. 442-462.

. Y. Hou axp X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials

and porous media, J. Comput. Phys., 134 (1997), pp. 169-189.

. Y. Hou, X.-H. Wu, anp Z. Ca1, Convergence of a multiscale finite element method for elliptic problems

with rapidly oscillating coefficients, Math. Comp., 68 (1999), pp. 913-943.

. M. KozLov, The averaging of random operators, Mat. Sb., 109 (1979), pp. 188-202.
. MacHIELS, Y. MADAY, I. B. OLIVEIRA, A. T. PATERA, AND D. V. Rovas, Output bounds for reduced-basis

approximations of symmetric positive definite eigenvalue problems, C. R. Math. Acad. Sci. Paris, 331
(2000), pp. 153-158.

. M. MELENK, On n-widths for elliptic problems, J. Math. Anal. Appl., 247 (2000), pp. 272-289.
. Mixc anD X. YUE, Numerical methods for multiscale elliptic problems, J. Comput. Phys., 214 (2006),

pp. 421-445.

. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978),

pp. 489-507.

. MuraT AND L. TARTAR, H-convergence, Séminaire d’Analyse Fonctionnelle et Numérique de

I"Université d’Alger, 1978.

. NorEN, G. Papranicoraou, AND O. PIRONNEAU, A framework for adaptive multiscale methods for elliptic

problems, Multiscale Model. Simul., 7 (2008), pp. 171-196.
Ownapr AND L. ZuaNG, Metric-based wupscaling, Comm. Pure Appl. Math., 60 (2007),
pp. 675-723.

. OwHADI AND L. ZuaNG, Homogenization of parabolic equations with a continuum of space and time

scales, SIAM J. Numer. Anal., 46 (2007), pp. 1-36.
OwnADI AND L. ZHaNG, Homogenization of the acoustic wave equation with a continuum of scales,
Comput. Methods Appl. Mech. Engrg., 198 (2008), pp. 97-406.

. OwHADI AND L. Znana, Numerical Homogenization with Localized Bases, http://www.youtube.com/

view_play _list?p=2009D30DEF7B07294 (2010).

C. PapanicoLaou AND S. R. S. VARADHAN, Boundary value problems with rapidly oscillating random
coefficients, in Random Fields, Vol. I, II, Colloq. Math. Soc. Janos Bolyai 27, North-Holland,
Amsterdam, 1981, pp. 835-873.

Pinkus, n-Width in Approzimation Theory, Springer, New York, 1985.

PiNkus, n- Widths in Approzimation Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3)
[Results in Mathematics and Related Areas (3)] 7, Springer, Berlin, 1985.

. Set AND W. W. SyMEs, Error analysis of numerical schemes for the wave equation in heterogeneous

media, Appl. Numer. Math., 15 (1994), pp. 465-480.

. SpaGNoOLO, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche., Ann. Sc. Norm. Super.

Pisa Cl. Sci. (5), 22 (1968), pp. 571-597.

. SpaaNoLo, Convergence in energy for elliptic operators, in Numerical Solution of Partial Differential

Equations, III, Academic Press, New York, 1976, pp. 469—498.

[59] W. W. SvmEs axp T. VDoviNa, Interface error analysis for numerical wave propagation, Comput. Geosci.,

13 (2009), pp. 363-371.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


http://www.youtube.com/view_play_list?p=2009D30DF7B07294
http://www.youtube.com/view_play_list?p=2009D30DF7B07294
http://www.youtube.com/view_play_list?p=2009D30DF7B07294
http://www.youtube.com/view_play_list?p=2009D30DF7B07294

Downloaded 07/19/17 to 131.215.248.112. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1398 HOUMAN OWHADI AND LEI ZHANG

[60] R. A. Topor anp C. Scuwas, Convergence rates for sparse chaos approzimations of elliptic problems with
stochastic coefficients, IMA J. Numer. Anal., 27 (2007), pp. 232-261.

[61] C.D. Wuite anD R. N. HorNg, Computing absolute transmissibility in the presence of finescale hetero-
geneity, in Proceedings of the SPE Symposium on Reservoir Simulation, 1987, p. 16011.

[62] X.H.Wu, Y. Erenpiev, anp T. Y. Hou, Analysis of upscaling absolute permeability, Discrete Contin. Dyn.
Syst. Ser. B, 2 (2002), pp. 185-204.

[63] V. V. Yurinski, Averaging of symmetric diffusion in a random medium, Sibirsk. Mat. Zh., 27 (1986),
pp.- 167-180.

[64] L. Znanc, L. BeEruyanp, M. FEperov, AND H. OwnaD1, Global energy matching method for atomistic-to-
continuum modeling of self-assembling biopolymer aggregates, Multiscale Model. Simul., 8 (2010),
pp. 1958-1980.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



