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a b s t r a c t

We describe a rigorous approach for certifying the safe operation of complex systems that bypasses the

need for integral testing. We specifically consider systems that have a modular structure. These systems

are composed of subsystems, or components, that interact through unidirectional interfaces. We show

that, for systems that have the structure of an acyclic graph, it is possible to obtain rigorous upper

bounds on the probability of failure of the entire system from an uncertainty analysis of the individual

components and their interfaces and without the need for integral testing. Certification is then achieved

if the probability of failure upper bound is below an acceptable failure tolerance. We demonstrate the

approach by means of an example concerned with the performance of a fractal electric circuit.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper describes a rigorous approach for certifying the safe
operation of complex systems that bypasses the need for integral
testing. Certification, as understood here, is a process that seeks to
establish whether the probability of failure of a system is below
an acceptable tolerance. Such a determination is particularly
critical for systems whose failure may have severe consequences,
be them economic, loss of life, or others. Within this framework,
certification may be regarded as a tool for making high-conse-
quence decisions regarding the deployment of high-value assets
and systems (for background on the question of certification from
a national security perspective see, e.g., [26,4,23,3,7]). In the
present work, we specifically consider systems that have a
modular structure, i.e., are composed of subsystems, or compo-

nents, that interact with each other through unidirectional inter-

faces. We show that, for certain classes of systems having the
structure of an acyclic graph, it is possible to obtain rigorous
upper bounds on the probability of failure (PoF) of the entire
system from an uncertainty analysis of the individual compo-
nents and their interfaces and without the need for integral
testing. Certification is then achieved if the PoF upper bound is
below an acceptable failure tolerance.

Following [13], we specifically consider PoF upper bounds of
the concentration of measure type [2,18,14,12]. In their simplest
version, such bounds pertain to a system characterized by N

uncorrelated real random inputs X ¼ ðX1, . . . ,XNÞAEDRN and a

single real performance measure YAR. Suppose that the function
F : RN-R describes the response function of the system. Suppose
that the system fails when Yra, where a is a threshold for the
safe operation of the system. Then, a direct application of
McDiarmid’s inequality [18,6] gives the following upper bound
on the PoF of the system:

P½Fra�rexp �2
M2

U2

� �
, ð1Þ

where

M¼ ðE½F��aÞþ ð2Þ
is the design margin and

U ¼DF ¼
XN
i ¼ 1

sup
x1 ,...,xN ,x0i

jFðx1, . . . ,xi, . . . ,xNÞ�Fðx1, . . . ,x0i, . . . ,xNÞj2
( )1=2

ð3Þ
is the system uncertainty. In this latter expression, the supremum
is taken over the entire range of variation of the inputs. From (1) it
follows that the system is certified if:

exp �2
M2

U2

� �
re, ð4Þ

where e is the PoF tolerance, or, equivalently, if

CF¼ M

U
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

ffiffiffi
1

e

rs
, ð5Þ

where CF is the confidence factor (cf. [4,26,23]). In writing (2) and
subsequently, we use the function xþ ¼maxð0,xÞ. We see from
the preceding expressions that McDiarmid’s inequality supplies
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rigorous quantitative definitions of design margin and system
uncertainty. In particular, the latter is measured by the system

diameter DF, which measures the largest deviation in performance
resulting from arbitrarily large perturbations of one input para-
meter at a time. We note from definition (3) that

DF ¼
XN
i ¼ 1

D2
F,i

( )1=2

, ð6Þ

where

DF,i ¼ sup
x1 ,...,xN ,x0i

jFðx1, . . . ,xi, . . . ,xNÞ�Fðx1, . . . ,x0i, . . . ,xNÞj2 ð7Þ

is the subdiameter corresponding to variable Xi. The subdiameter
DF,i may be regarded as a measure of the uncertainty contributed
by the variable Xi to the total uncertainty of the system.

We note that, in the preceding framework, the quantification of
system uncertainties, as measured by the system diameter DF, Eq. (3),
entails the solution of a global optimization problem. Each objective
function evaluation in that optimization problem requires the execu-
tion of two integral tests for the evaluation of FðX1, . . . ,Xi, . . . ,XNÞ and
FðX1, . . . ,X

0
i, . . . ,XNÞ, respectively. For some systems, integral tests are

prohibitively expensive, outside the scope of laboratory testing, or
otherwise unfeasible. In this paper, we show how subsystem uncer-
tainties, measured by the corresponding subsystem diameters, can be
compounded to obtain rigorous upper bounds of the probability of
failure of modular systems. Evidently, the composition of subsystem
uncertainties requires a quantitative understanding of the interfaces
through which the subsystems interact. In the present work, the
strength of those interactions is measured by the moduli of continuity

of the interfaces (cf., e.g., [5,27]). We specifically show that, once the
individual subsystem uncertainties—the subsystem diameters—and
the interaction strengths—the interface moduli of continuity—are
known, a rigorous upper bound on the entire system diameter DF can
be computed. Since the McDiarmid inequality (1) is monotonic in DF,
the upper bound on DF in turn provides a conservative upper bound
on the PoF of the system and, by extension, a conservative certifica-
tion criterion.

2. Moduli of continuity

The concept of modulus of continuity plays a pivotal role in the
uncertainty analysis of modular systems presented in this paper.
We recall that, given a function f : Rn-Rm, a real number d40
and a subset A�Rn, the modulus of continuity oijðf ,d,AÞ of fiðxÞ
with respect to xj over A is defined as [5,27]

oijðf ,d,AÞ ¼ supfjfiðxÞ�fiðx0Þj : x,x0AA, xk ¼ x0k
for ka j, jxj�x0jjrdg: ð8Þ

We note that the computation ofoijðf ,d,AÞ requires the solution of
a global optimization problem over a set of dimension nþ1. It
follows from definition (8) that

jfiðx1, . . . ,xj, . . . ,xnÞ�fiðx1, . . . ,x0j, . . . ,xnÞjroijðf ,d,AÞ if jxj�x0jjrd:

ð9Þ
Thus, oijðf ,d,AÞ measures the variation of the function fiðxÞ over A
when the variable xj is allowed to deviate by less than d. We note
that this component-wise definition of the modulus of continuity
does not require the range or image of the function f to be a
normed space. This is important in practice, since the inputs and
outputs of subsystems often comprise variables of varying phy-
sical origins with diverse units which therefore define vector
spaces with no natural norm. The definition of the modulus of
continuity and its properties can naturally be extended to situa-
tions where f is a function from a Cartesian product of metric
spaces onto another Cartesian product of metric spaces. In this

case, the definition of the modulus of continuity is not indepen-
dent from the metrics used on input and output spaces. We also
note that the modulus of continuity is always well-defined, and
its continuity at d¼ 0 is equivalent to the uniform continuity of
the function, which places rather modest regularity requirements
on the response functions of the interfaces. Evidently, the mod-
ulus of continuity is monotonic on d and A, i.e.,

oijðf ,d,AÞroijðf ,d0,AÞ, if drd0, ð10aÞ

oijðf ,d,AÞroijðf ,d,A0Þ, if ADA0: ð10bÞ
Suppose that A is a hyper-rectangle, i.e., A¼ Qn

i ¼ 1½ai,bi�. Let dj40,
j¼ 1, . . . ,n, and let x,x0ARn be such that jxj�x0jjrdj. Then, writing

fiðxÞ�fiðx0Þ ¼ fiðx1,x2, . . . ,xn�1,xnÞ�fiðx01,x2, . . . ,xn�1,xnÞ
þ fiðx01,x2, . . . ,xn�1,xnÞ�fiðx01,x02, . . . ,xn�1,xnÞþ � � �
þ fiðx01,x02, . . . ,xn�1,xnÞ�fiðx01,x02, . . . ,x0n�1,xnÞ
þ fiðx01,x02, . . . ,x0n�1,xnÞ�fiðx01,x02, . . . ,x0n�1,x

0
nÞ ð11Þ

and using the triangular inequality, it follows that:

jfiðxÞ�fiðx0Þjr
Xn
j ¼ 1

oijðf ,dj,AÞ: ð12Þ

A fundamental property of the moduli of continuity is that they
are natural with respect to composition of functions in the
following sense. Consider two functions f : A�Rn-Rm and
g : B�Rm-Rp, with B a hyper-rectangle such that f ðAÞ � B, and
let d40. Let g3f : A�Rn-Rp be the composition of the f and g,
i.e., ðg3f ÞðxÞ ¼ gðf ðxÞÞ. Then, by (12) and monotonicity we have

jgiðf ðx1, . . . ,xj, . . . ,xnÞÞ�giðf ðx1, . . . ,x0j, . . . ,xnÞÞj

r
Xm
k ¼ 1

oikðg,okjðf ,d,AÞ,BÞ: ð13Þ

Therefore, by the least-upper-bound property of the supremum it
follows that

oijðg3f ,d,AÞr
Xm
k ¼ 1

oikðg,okjðf ,d,AÞ,BÞ: ð14Þ

This inequality shows that the moduli of continuity of a compo-
site function g3f can be estimated conservatively from the moduli
of continuity of the individual functions. This property of the
moduli of continuity in turn enables uncertainties of the integral
system to be bounded once the uncertainties of the subsystems
and their interfaces are known, as shown next.

3. Uncertainty analysis of modular systems

We consider modular systems consisting of subsystems con-
nected by unidirectional interfaces. The system may be regarded
as an oriented graph G(V,E) whose nodes V are the subsystems
and whose edges E are the interfaces between the subsystems,
Fig. 1. Specifically, a node a is an ancestor of a node b—and hence
the graph contains and oriented edge from b to a—if the state of
the subsystem a depends on the state of the subsystem b, i.e.,
if the outputs of subsystem b figure among the inputs of
system a. Here and subsequently we adopt standard conventions
and terminology from graph theory. In particular, we write
a!b if node a is an ancestor of node b, and bga if b is a
descendant of a. Thus, a!b if a takes input from b, and bga if b
feeds into a.

We assume that the response of every subsystem is character-
ized by a function Fa : Xa-Ya that maps vectors of input para-
meters XaAXa to vectors of output performance measures
YaAYa. Then, a node a is an ancestor of b in the graph G(V,E) if
Yb is a subspace of Xa. For purposes of analysis, we assume that
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the graph G(V,E) is acyclic, i.e., it contains no closed-loop paths.
We define the fundamental subsystems—respectively, leaves of
the graph—as those subsystems that take no input from other
subsystems—respectively, those nodes that have no descendants.
We assume that the system contains a single root subsystem—

respectively, root node—i.e., a subsystem that does not feed into
any other subsystem—respectively, a node with no ancestors. We
identify the output of the system with the output of its root
subsystem. We designate by R the root node of the graph and
by VL the set of leaves of the graph. With these conventions,
the space of inputs of the system is X ¼Q

aAVL
Xa, i.e., X is the

Cartesian product of the input spaces of the fundamental sub-
systems, and the space of outputs is Y ¼YR. In addition, for all
subsystems other than the fundamental ones, a=2VL, we assume
the relation Xa ¼

Q
bgaYb, i.e., the input space of subsystems i is

the Cartesian product of the output spaces of all its descendants.
We note that non-fundamental subsystems could in principle
have inputs of their own, not provided by any descendant
subsystem. We can accommodate such cases within the present
framework simply by adding a fundamental subsystem whose
response function is the identity mapping and which supplies the
requisite additional inputs. The function F : X-Y that describes
the response of the integrated system is defined from the
recursive algorithm:

(i) Input XAX . Set V0¼VL, k¼0.
(ii) Reset Vkþ1 ¼ faAV : bA [k

l ¼ 0 Vl, 8bgag.
(iii) For aAVkþ1, compute Xa ¼ ðFbðXbÞ, bgaÞ.
(iv) If Vkþ1 ¼ fRg, output Y ¼ FRðXRÞ, exit. Otherwise, reset k to

kþ1, go to (ii).

Thus, in the example of Fig. 1, the sequence of active subsystems
is V0¼{2,10,11,12,13,14,15,16,17,18,19,20}, V1¼{5,7,8,9},
V2¼{6,4}, V3¼{3} and V4¼{1}. Correspondingly, the sequence of
subsystem outputs is (Y5, Y7, Y8, Y9), (Y6, Y4), Y3 and Y¼Y1.

We now proceed to derive an upper bound on the system
diameter DF, cf. (3), by propagating uncertainties along the graph
G(V,E). As noted in the introduction, an upper bound on the system
diameter immediately translates, through McDiarmid’s inequality
(1), on an upper bound on the PoF of the system and, by extension, a
conservative certification criterion. Let fVk,k¼ 0, . . . ,Ng be the
sequence of nodal sets generated during the recursive definition of
the integrated response function F(X), with V0¼VL and VN¼{R}.
Define Xk ¼

Q
aAVk

Xa and Yk ¼
Q

aAVkþ 1
Xa. We note that X ¼X0,

Yk ¼Xkþ1 and, by assumption, dimYN ¼ dimY ¼ 1. Define further

Fk : Xk-Yk as the Cartesian product FkðXkÞ ¼ ðFaðXaÞ,aAVkÞ, XkAXk.
We then have the composition rule

F ¼ FN3 � � � 3F0: ð15Þ
With this notation and conventions, we may now proceed to state
the main result of this paper.

Theorem 3.1. Suppose that the system inputs are known to take

values in a set A�X . Let

Di ¼ supfjxi�x0ij : x,x0AA, xj ¼ xj
0, for ja ig: ð16Þ

For k¼ 1, . . . ,N, let Bk �Xk be hyper-rectangles containing

ðFk3 � � � 3F0ÞðAÞ. For j¼ 1, . . . ,dimX0 let

Dð0Þ
ij ¼oijðF0,Dj,AÞ, i¼ 1, . . . ,dimY0 ð17Þ

and for k¼ 1, . . . ,N define the sequence

DðkÞ
ij ¼

XdimXk

l ¼ 1

oilðFk,Dðk�1Þ
lj ,BkÞ, i¼ 1, . . . ,dimYk: ð18Þ

Then,

DF,irDðNÞ
1i : ð19Þ

Proof. The proof of inequality (19) is an immediate consequence
of the definitions and the monotonicity and composition proper-
ties of the modulus of continuity. Thus, from (14) and mono-
tonicity we have

oijðF13F0,Dj,AÞr
XdimX1

l ¼ 1

oilðF1,oljðF0,Dj,AÞ,B1Þ

¼
XdimX1

l ¼ 1

oilðF1,Dð0Þ
lj ,B1Þ ¼Dð1Þ

ij ð20Þ

and

oijðF23F13F0,Dj,AÞr
XdimX2

l ¼ 1

oilðF2,oljðF13F0,oijðF13F0,Dj,AÞ,B2Þ

r
XdimX2

l ¼ 1

oilðF2,Dð1Þ
lj ,B2Þ ¼Dð2Þ

ij : ð21Þ

Proceeding by induction we arrive at the inequality

oijðFN3 � � � 3F0,Dj,AÞrDðNÞ
ij : ð22Þ

The bound (19) follows from the definition (7) of the subdia-
meters and the lowest-upper-bound property (9) of the moduli of
continuity. &

The sequence DðkÞ
ij may be regarded as a measure of uncertainty in

the ith output variable due to the variability of the jth input variable
after k levels of operation of the system.We note that the proof of the
theorem is constructive in nature. Consequently, a natural imple-
mentation of the approach is simply to follow the constructions of the
proof. The first step in the application of the approach to a specific
system is to identify its graph structure and the inputs and outputs of
each subsystem. In this work, we assume that the response of the
subsystems can be determined experimentally. The next step in the
analysis is to compute the ranges Di of the input variables, Eq. (16).
For every input variable, this operation requires the solution of a
global optimization problem. However, this optimization problem
becomes trivial if the range A�X of the input parameters is a hyper-
rectangle, which corresponds to the case in which ranges are known
independently for each input variable. Once the ranges Di are known,
we may proceed to the computation of the level-zero uncertainties.
This computation entails the solution of a global optimization
problem of the form (8) yielding the level-zero moduli of continuity
Dð0Þ
ij , Eq. (17). In order to propagate uncertainties further, we need to

determine a hyper-rectangle B1 �Y0 ¼X1 that bounds the range of

Fig. 1. Graph representation of the input–output relations between the subsys-

tems of a modular system. The nodes of the graph represent the subsystems of the

system. An arrow indicates that the outputs of the subsystem at the beginning of

the arrow are among the inputs of the subsystem at the end of the arrow. The

subsystems represented by square boxes do not take input from other systems

and are referred to as fundamental. The system has one single root subsystem, i.e.,

a subsystem that does not feed into any other subsystem and through which the

system output takes place.
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variation of the level-zero output variables, which in turn equal the
level-one input variables. The smallest such hyper-rectangle is
B1 ¼

QdimY0

i ¼ 1 ½minF0i,maxF0i�. Again, the computation of these ranges
requires the solution of two global optimization problems in each
variable. These operations can then be iterated until the root
subsystem is reached. Uncertainties in the input variables associated
with the leaf i are propagated through possibly multiple paths

connecting the node i with the root 1. It is interesting to note that
the computation of DðNÞ

1i additionally results in the identification of
the path responsible for most of the sensitivity of the variable 1 with
respect to the variable i, i.e., the path with the highest flow of

uncertainty. It should be carefully noted that each level of analysis
requires the execution of subsystem tests only, and that at no time
during the analysis an integral test is required.

4. Example of application: fractal electrical circuit

In this section, we apply the preceding approach to a fractal
electrical circuit. Specifically, we consider an LC electrical circuit
consisting of a capacitance C connected to a network of random
inductors placed on the edges of a Sierpinski triangle, Fig. 2. The
Sierpinski triangle is a fractal set that arises in many applications,
including multiband fractal antenna technologies [1]. The fractal
geometry of the Sierpinski triangle is self-similar at all scales,
which lends itself ideally to the type of graph-oriented hierarch-
ical analysis formulated in the preceding section.

The equivalent inductance Leq of the circuit may be written as
a function

Leq ¼ FðL1, . . . ,LNÞ: ð23Þ

of the individual inductances Li of the inductors. We assume that
the operation of the circuit requires that Leq be above a threshold
value. In this manner, Leq is identified as a performance measure
of interest. We recall that when a capacitor of capacitance C and
an inductive circuit with an equivalent inductance Leq are con-
nected, as in the example under consideration, an electrical
current can alternate between them at the resonant frequency
Or ¼ 1=

ffiffiffiffiffiffiffiffiffi
CLeq

p
of the circuit. This resonance has applications in

tuning and antenna technologies, voltage or current amplification,
and induction heating [36,1]. For instance, tuning a radio set to a
particular frequency can be achieved by adjusting the resonant
frequency of an LC circuit.

The effective inductance can conveniently be computed by
recourse to the D2Y transform [9], Fig. 3. We recall that the D2Y

transform is an invertible map which translates inductive circuit
elements from the D configuration to the Y (or star) configuration.

We note from Fig. 3 that the D2Y transform effectively removes
the center node from the Y configuration. Thus, a recursive
application of the D2Y transform generates a series of increas-
ingly simpler LC circuits with the same equivalent inductance.
The recursion ends in a circuit of one single element, whose
inductance is precisely Leq.

We define a hierarchical modular structure on the circuit by
the natural grouping of elements shown in Fig. 4, consisting of
replacing nine inductances by three equivalent ones. In order to
fit the uncertainty analysis into the framework of Section 3, we
regard every such grouping as a subsystem having the original
nine inductances as inputs and the resulting three effective
inductances as outputs. The inductances of the original circuit
at the inputs of the total integrated system, whereas the equiva-
lent inductance Leq is its output. For instance, the depth-three
Sierpinski triangle of Fig. 2 has 27 input parameters ðL1, . . . ,L27Þ,
and the hierarchy of response functions corresponding to the
scheme of Fig. 4 is

Leq ¼ F2ðL2,1,L2,2,L2,3Þ,

L2,1 ¼ F1,1ðL1,1, . . . ,L1,9Þ,

L2,2 ¼ F1,2ðL1,1, . . . ,L1,9Þ,

L2,3 ¼ F1,3ðL1,1, . . . ,L1,9Þ,

L1,1 ¼ F0,1ðL1, . . . ,L9Þ,

L1,2 ¼ F0,2ðL1, . . . ,L9Þ,

L1,3 ¼ F0,3ðL1, . . . ,L9Þ,

L1,4 ¼ F0,4ðL10, . . . ,L18Þ,

L1,5 ¼ F0,5ðL10, . . . ,L18Þ,

L1,6 ¼ F0,6ðL10, . . . ,L18Þ,

L1,7 ¼ F0,7ðL19, . . . ,L27Þ,

L1,8 ¼ F0,8ðL19, . . . ,L27Þ,

L1,9 ¼ F0,9ðL19, . . . ,L27Þ:
The graph structure of the resulting modular system is shown
in Fig. 5.

The ranges ½‘i,ui� of the input inductances Li are chosen such
that ui�‘i ¼ 0:1ð‘iþuiÞ and such that the equivalent inductance of
a circuit with Li ¼ ð‘iþuiÞ=2 is 1. Two cases are considered:

(i) Homogeneous input ranges: In this case, the ranges of all
input inductances are taken to be identical.

(ii) Inhomogeneous input ranges: In this case, we consider three
groups of identical inductance ranges over each one of the
main subtriangles of the circuit.

Fig. 2. An LC electrical circuit with inductors placed on the edges of a Sierpinski

triangle of depth 3.

Fig. 3. The D2Y transform for the determination of the equivalent inductance Leq of

the Sierpinski LC circuit. The invertible map (D2Y transform) between ðLa ,Lb ,LcÞ and
ðL0a ,L0b ,L0cÞ is L0a ¼ LbLc=ðLaþLbþLcÞ, L0b ¼ LcLa=ðLaþLbþLcÞ, and L0c ¼ LaLb=ðLaþLbþLcÞ.
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The modular uncertainty analysis formulated in Section 3
requires the solution of a number global optimization problems.
In all such calculations we use a simulated annealing algorithm
[10] adapted for appropriately generating random neighbors

in the feasible set of the optimization problems. We use a
default cooling schedule of Tnew ¼ 0:8� Told with T0¼1.0, where
T is the numerical temperature. The optimization stops if
Tr10�8, N4Nmax ¼ 2000, or NR4300 where N be the number
of function evaluations and NR is the number of successive
rejected states. Temperature decrease happens if NT 430 or
NS420, i.e., if 30 function evaluations are made or if there are
20 successive accepted optimal states found at the current
temperature. In all calculations, the numerical Boltzmann con-
stant is set to 1.0.

Numerical results for the resonance frequency diameters are
collected in Fig. 6. As expected, the modular upper bound (19) lies
above the system diameters. Thus, the modular upper bound (19)
supplies a conservative estimate of the PoF of the system
when inserted into McDiarmid’s inequality (1) in place of the
system diameter. In addition, we observe that the modular upper
bound is tight, i.e., overestimates the system diameter by a
modest amount. A cost analysis of the computation of the
modular upper bound is also of interest. Thus, the direct compu-
tation of all system subdiameters of the depth-three Sierpinski
triangle requires the solution of 27 global optimization problems
in 28 variables each. By contrast, the computation of the modular
upper bound requires the solution of a larger number of smaller
global optimization problems. In addition, many of the global
optimization problems are decoupled and can be solved
concurrently.

5. Concluding remarks

We have developed a modular/hierarchical uncertainty quan-
tification framework based on concentration of measure inequal-
ities for probability of failure upper bound calculations. In this
framework, the relations between subsystems are represented by
directed, acyclic graphs and the bounded uncertainty in the input
variables is propagated to the output variable, the performance
measure, inductively throughout the underlying graph structure.
Most importantly, the approach bypasses the need to perform

Fig. 4. Decomposition of the Sierpinski triangle of depth 3 into subsystems for purposes of modular UQ analysis.

Fig. 5. Graph representation of the modular decomposition of the Sierpinski triangle of depth 3 shown in Fig. 4.

2/H 3/H 2/NH 3/NH
0

0.02

0.04

0.06

0.08

0.1
direct
modular

Fig. 6. Sierpinski triangles of depth d¼2 and d¼3 with homogeneous and

inhomogeneous inductance ranges. Comparison of resonant frequency diameters

and diameter upper bounds (19) computed from modular approach.
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integral experiments, and all testing can be done at the subsystem
level. In this manner, the present modular approach supplies
rigorous PoF upper bounds and, by extension, conservative
certification criteria, without integral testing. The approach also
affords reductions in computational complexity, especially when
the subsystems are small and weakly coupled. The feasibility of
the approach has been demonstrated by means of an application
to a fractal electrical circuit. In this particular application, the
modular upper bounds of the system diameter are found to
be tight.

It is important to note that the decomposition of a system into
subsystems is not unique in general, and that the modular
uncertainty upper bounds depend on the choice of decomposi-
tion. Evidently, the number of subsystems of a modular system
can be decreased by grouping subsystems. Conversely, the num-
ber of subsystems can be increased by a further decomposition of
the subsystems. An advantage of a fine-grained modular decom-
position is that the resulting subsystems are simple and easy to
test. However, the tightness of the modular uncertainty upper
bound tends to deteriorate with an increasing number of sub-
systems, which results in the composition of a larger number of
conservative upper-bound estimates. Conversely, grouping sub-
systems increases the tightness of the modular uncertainty upper
bound. The tightest upper bound, namely, DF, is obtained when
the entire system is tested as a single unit. However, grouping has
the disadvantage that all the subsystems in a group must be
tested together. Therefore, in general the choice of modular
decomposition is a compromise between the desire to avoid
integral testing and the desire to obtain tight uncertainty
estimates.

Several obvious extensions of the modular approach suggest
themselves as the subject of further research. Thus, extensions to
handle graph structures that are not necessarily acyclic, as well as
fundamental variables that are not independent, would consider-
ably broaden the applicability of the present approach. In addi-
tion, the differing levels of uncertainty attendant to the two
performance measures considered in the Sierpinski triangle,
namely, the equivalent inductance and the resonant frequency,
illustrate the important fact that McDiarmid’s inequality can be
refined through an appropriate choice of coordinate transforma-
tion. For instance, using the results of the Sierpinski triangle
analysis we find P½OrZ1:05�r0:135 from McDiarmid’s inequal-
ity applied to Leq and P½OrZ1:05�r0:240 from McDiarmid’s
inequality applied to Or directly. The question of devising optimal
coordinate transformations delivering the smallest possible PoF
upper bounds remains open at present.

A question of practical concern is whether McDiarmid’s
inequality, which requires rather minimal knowledge of the
distribution of the system inputs, supplies sharp enough PoF
upper bounds in practice. Evidently, McDiarmid’s inequality
supplies small PoF upper bounds, thus possibly enabling certifica-
tion, for systems whose diameter is small compared to the design
margin, i.e., for systems whose response function has small
oscillations over the operating range of the input parameters.
This property may not be exhibited by systems of interest, e.g.,
systems whose response function exhibits cliff behavior, in which
case the question arises as to how McDiarmid’s inequality can be
systematically improved upon. One QMU protocol that reuses
McDiarmid’s inequality while generating a convergent sequence
of PoF upper bounds can be formulated through a recursive
partitioning of the domain of the inputs [28]. By a convergent
sequence of PoF upper bounds here we mean a sequence that
converges to the exact PoF upper bound in the limit of an
infinitely fine partitioning of the domain of the inputs. Because
the partitioned QMU protocol is based on the use of McDiarmid’s
inequality over each subdomain in the partition, it is a simple

matter to combine it with the modular QMU protocol presented
in this paper. This combined protocol delivers rigorous and
convergent PoF upper bounds without the need for integral
testing.

In closing, we remark on the choice of McDiarmid’s inequality
as the basis of the work presented in this paper. McDiarmid’s
inequality is but a simple example of a large class of inequalities
known collectively as ‘concentration of measure’ (CoM) inequal-
ities (cf., e.g., [11] for a monograph and [2,13] for surveys). Several
key properties of CoM inequalities render them attractive for
purposes of QMU. Thus, as their name indicates, CoM inequalities
become sharper as the dimensionality of the response function,
i.e., the number of input parameters, increases. Thus, in this
particular sense, CoM inequalities enjoy a blessing of dimension-

ality, as opposed to suffering from the curse of dimensionality

that plagues other approaches. In addition, CoM inequalities are
well-suited to systems for which failure is a rare event, e.g., as a
result of a large design margin. Indeed, the evaluation of McDiar-
mid’s upper bound requires the same amount of computation
regardless of the choice of margin, i.e., regardless of whether or not
failure is a rare event. By way of sharp contrast, we recall that
Monte Carlo schemes experience great difficulty in dealing
with rare events. The study of the CoM phenomenon was
pioneered in the early seventies by V. Milman in his work on
the asymptotic geometry of Banach spaces [21,20,19,22]. Far-
reaching extensions, that in particular provide dimension-free
concentration of measure inequalities in product spaces, have
more recently been advanced by M. Talagrand, cf. [35,33,31,32,
30,29,24]. A brief compendium of representative concentration of
measure inequalities is collected in [13]. These include: convex-
distance inequality [33,30,14]; CoM inequalities with correlated
random variables [25,15,16,11,8]; CoM inequalities for empirical
processes defined by sampling, [33,30,34,17]; and others. These
more advanced inequalities supply avenues for extension of the
present QMU methodology to modular systems including corre-
lated inputs, inputs with known probability distributions,
unbounded inputs and other cases of interest. However, advanced
bounds such as those based on Talagrand’s convex distance
inequality, while possibly providing sharper bounds than McDiar-
mid’s simple inequality, also render the propagation of uncer-
tainties across subsystems far more costly, e.g., by coupling the
computation of the subdiameters. In summary, McDiarmid’s
simple inequality suffices for the strict purposes of introducing
the basic modular-system QMU protocol presented in this paper
and, in particular, for demonstrating how complex systems can be
rigorously certified without integral testing in practice, hence its
choice as a convenient basis for the present work.
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[32] Talagrand M. Nouvelles inégalités de concentration ‘‘convexifiées’’. C R Acad
Sci Paris Sér I Math 1995;321(10):1367–70.

[33] Talagrand M. New concentration inequalities in product spaces. Invent Math
1996;126(3):505–63.

[34] Talagrand M. A new look at independence. Ann Prob 1996;24(1):1–34.
[35] Talagrand M. Concentration and influences. Israel J Math 1999;111:275–84.
[36] Werner DH, Ganguly S. An overview of fractal antenna engineering research.

IEEE Antennas Propag Mag 2003;45(1):38–57.

U. Topcu et al. / Reliability Engineering and System Safety 96 (2011) 1085–1091 1091


