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Supporting Information Text12

This supplementary document provides an overview of refinements and generalizations on our proposed approach (Sec. 1)13

detailed in subsequent sections. It includes a summary of the principal components of our algorithm (Sec. 2). It includes a14

reminder on Type 2 problems (Sec. 3) and their common GP-based solutions. It discusses the hardness of Type 3 problems,15

presents an overview of causal inference methods, and a well-posed formulation of Type 3 problems (Sec. 4). Additionally,16

this document offers an in-depth description of our developed GP-based solution specifically designed for Type 3 problems17

(Section 5), along with the corresponding algorithmic pseudo-codes (Section 6). It also includes an analysis of the signal-to-noise18

ratio (SNR) test that is integral to our method (Section 7), and furnishes supplementary details concerning the examples19

discussed in the main manuscript (Section 8).20

1. Additional details on our proposed approach.21

The efficacy of our proposed approach is enhanced through a series of refinements (implemented in all our examples), which are22

summarized below and detailed in sections 5, 6 and 7.23

A. Ancestor pruning.. As discussed earlier, rather than using a threshold on the signal-to-noise ratio to prune ancestors, we24

order the ancestors in decreasing contribution to the signal, the final number q of ancestors is determined as the maximizer of25

noise to signal ratio increment V(n)
V(s)+V(n) (q + 1)− V(n)

V(s)+V(n) (q).26

Fig. S1. Histogram of the eigenvalues of Dγ =Eq. (10) for γ = 10−2 (good choice) and γ = 10−6 (bad choice).

B. Parameter Selection.. The choice of the parameter γ in Eq. (2)is a critical aspect of our proposed approach. We provide a27

structured approach for selecting γ based on the characteristics of the kernel matrix Ks. Specifically, when Ks is derived from28

a finite-dimensional feature map ψ (i.e., when Ks(x, x′) := ψ(x)Tψ(x′) where the range of ψ is finite-dimensional) and the data29

cannot be interpolated exactly with Ks (the dimension of the range of ψ is smaller than the number of data points), we employ30

the regression residual to determine γ as follows:31

γ = min
v

∥∥vTψ(X)− Y
∥∥2
RN

. [9]32

Write Ks(X,X) for the N ×N matrix with entries Ks(Xi, Xj). Alternatively, when the data can be interpolated exactly with33

Ks (e.g., when Ks is a universal kernel), we select γ (see Fig. S1) by maximizing the variance of the eigenvalue histogram of34

the N ×N matrix35

Dγ := γ
(
Ks(X,X) + γI

)−1
, [10]36

whose eigenvalues are bounded between 0 and 1 and converge towards 0 as γ ↓ 0 and towards 1 as γ ↑ ∞. We can also select γ37

as the median of the eigenvalues of Dγ .38

C. Z-test quantiles.. The noise-to-signal ratio V(n)
V(s)+V(n) associated with Eq. (2)admits the representer formula Y T D2

γ Y

Y T Dγ Y
. Therefore39

if the data is only comprised of noise (if Y ∼ σ2Z where Z is a random vector with i.i.d. N (0, 1) entries), then the distribution40

of the noise-to-signal ratio follows that of the random variable41

B :=
ZTD2

γZ

ZTDγZ
. [11]42

Therefore, the quantiles of B can be used as an interval of confidence on the noise-to-signal ratio if Y ∼ σ2Z. Fig. 3.(c) shows43

these Z-test quantiles (in the absence of signal, the noise-to-signal ratio should fall within the shaded area with probability 0.9).44

D. Generalizations on our proposed approach..45
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D.1. Complexity Reduction with Kernel PCA Variant.. Write K for the kernel associated with the RKHS H in Problem 1. We46

use a variant of Kernel PCA (1) to significantly reduces the computational complexity of our proposed method, making it47

primarily dependent on the number of principal nonlinear components in the kernel matrix K(X,X) (the N × N matrix48

with entries K(Xi, Xj)) rather than the number of data points. To describe this write λ1 ≥ · · · ≥ λr > 0 for the nonzero49

eigenvalues of K(X,X) indexed in decreasing order and write α·,i for the corresponding unit-normalized eigenvectors, i.e.50

K(X,X)α·,i = λiα·,i. Then |f(X)|2 = |f(ϕ)|2, where f(ϕ) is the r vector with entries f(ϕi) :=
∑N

s=1 f(Xs)αs,i. Furthermore,51

writing r′ ≤ r for the smallest index i such that λi/λ1 < ϵ where ϵ > 0 is some small threshold, the complexity of the problem52

can be further reduced (as in PCA) by truncating f(ϕ) to f(ϕ′) = (f(ϕ1), . . . , f(ϕr′ )) and approximating F with the space of53

functions f ∈ H such that |f(ϕ′)|2 ≈ 0.54

D.2. Generalizing Descendants and Ancestors with Kernel Mode Decomposition.. We can extend the concept of descendants and55

ancestors to cover more complex functional dependencies between variables, including implicit ones. This generalization is56

achieved through a Kernel-based adaptation of Row Echelon Form Reduction (REFR), initially designed for affine systems, and57

leveraging the principles of Kernel Mode Decomposition (2). To describe the connection with REFR consider the example in58

which M is the manifold of R3 defined by the affine equations x1 + x2 + 3x3 − 2 = 0 and x1 − x2 + x3 = 0, which is equivalent59

to selecting F = span{f1, f2} with f1(x) = x1 + x2 + 3x3 − 2 and f2(x) = x1 − x2 + x3 in the problem formulation 1. Then,60

irrespective of how we recover the manifold from data, the hypergraph representation of that manifold is equivalent to the row61

echelon form reduction of the affine system, and this representation and this reduction require a possibly arbitrary choice of free62

and dependent variables. So, for instance, if we declare x3 to be the free variables and x1 and x2 to be the dependent variables,63

then we can represent the manifold via the equations x1 = 1− 2x3 and x2 = 1− x3 which have the hypergraph representation64

depicted in Fig. S6.(b). To describe the kernel generalization of REFR assume that the kernel K can be decomposed as the65

additive kernel66

K = Ka +Ks +Kz , [12]67

and write Ha, Hs, and Hz for the RKHS induced by the kernels Ka, Ks, Kz. Then a function f ∈ H can be decomposed68

as f = fa + fs + fz with (fa, fs, fz) ∈ Ha ×Hs ×Hz. Then, generalizing REFR we can approximate the manifold M via a69

manifold parametrized by equations of the form70

fa + fs + fz = 0⇔ ga = fs [13]71

where fa = −ga and ga is a given function in Ha representing a dependent mode, fz = 0 represents a zero mode, and fs ∈ Hs72

is identified (regularized) as the minimizer of the following variational problem73

min
fs∈Hs

∥fs∥2
Ks

+ 1
γ

∣∣(−ga + fs)(ϕ)
∣∣2 . [14]74

Taking ga(x) = x1 and Hs +Hz to be a space of functions that does not depend on x1 recovers our initial example Eq. (1)(with75

the pruning process encoded into the selection of Hz). This generalization is motivated by its potential to recover implicit76

equations. For example, consider the implicit equation x2
1 + x2

2 = 1, which can be retrieved by setting the mode of interest to77

be ga(x) = x2
1 and allowing fs to depend only on the variable x2.78

2. Algorithm Overview for Type 3 problems: An Informal Summary79

In this section, we provide an accessible overview of our algorithm’s key components, which are further detailed in Algorithms80

1 and 2 in Section 6. Our method focuses on determining the edges within a hypergraph. To achieve this, we consider each81

node individually, finding its ancestors and establishing edges from these ancestors to the node in question. While we present82

the algorithm for a single node, it can be applied iteratively to all nodes within the graph.83

Algorithm for finding the ancestors of a node:84

1. Initialization: We start by assuming that all other nodes are potential ancestors of the current node.85

2. Selecting a Kernel: We choose a kernel function, such as linear, quadratic, or fully nonlinear kernels (refer to Example86

1). The kernel selection process is analogous to the subsequent pruning steps, involving the determination of a parameter87

γ, regression analysis, and evaluation based on signal-to-noise ratios.88

• Kernel Selection Method: The choice of kernel follows a process similar to the subsequent pruning steps,89

including γ selection, regression analysis, and signal-to-noise ratio evaluation.90

• Low Signal-to-Noise Ratio for All Kernels: If the signal-to-noise ratio is insufficient for all possible kernels,91

the algorithm terminates, indicating that the node has no ancestors.92

3. Pruning Process: While there are potential ancestors left to consider (details in Section C.5):93

(a) Identify the Least Important Ancestor: Ancestors are ranked based on their contribution to the signal (see94

Sec. C.3).95
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(b) Noise prior: Determine the value of γ (see Section B).96

(c) Regression Analysis: Predict the node’s value using the current set of ancestors, excluding the least active one97

(i.e., the one contributing the least to the signal). We employ Kernel Ridge Regression with the selected kernel98

function and parameter γ (see Sec. C.3 and C.3).99

(d) Evaluate Removal: Compute the regression signal-to-noise ratio (see Sec. C.4 and 7):100

• Low Signal-to-Noise Ratio: If the signal-to-noise ratio falls below a certain threshold, terminate the algorithm101

and return the current set of ancestors (see Section C.6).102

• Adequate Signal-to-Noise Ratio: If the signal-to-noise ratio is sufficient, remove the least active ancestor103

and continue the pruning process.104

Fig. S2. Formal description of Type 2 problems.

3. Type 2 problems: Formal description and GP-based Computational Graph Completion105

A. Formal description of Type 2 problems. Consider a computational graph (as illustrated in Fig. S2.(a)) where nodes represent106

variables and edges are directed and they represent functions. These functions may be known or unknown. In Fig. S2.(a), edges107

associated with unknown functions (f5,1, f1,2, f3,6) are colored in red, and those associated with known functions (f2,5) are108

colored in black. Round nodes are utilized to symbolize variables, which are derived from the concatenation of other variables109

(e.g, in Fig. S2.(a), x3 = (x2, x4)). Therefore, the underlying graph is, in fact, a hypergraph where functions may map groups110

of variables to other groups of variables, and we use round nodes to illustrate the grouping step. Given partial observations111

derived from N samples of the graph’s variables, we introduce a problem, termed a Type 2 problem, focused on approximating112

all unobserved variables and unknown functions. Using Fig. S2.(a)-(b) as an illustration we call a vector (Xs,1, . . . , Xs,6) a113

sample from the graph if its entries are variables satisfying the functional dependencies imposed by the structure of the graph114

(i.e., Xs,1 = f5,1(Xs,5), Xs,2 = f1,2(X2,s), Xs,3 = (Xs,2, Xs,4), Xs,5 = fs,5(Xs,s), and Xs,6 = f3,6(Xs,3). These samples can115

be seen as the rows of given matrix X illustrated in Fig. S2.(b) for N = 3. By partial observations, we mean that only a116

subset of the entries of each row may be observed, as illustrated in Fig. S2.(b)-(c). Note that a Type 2 problem combines a117

regression problem (approximating the unknown functions of the graph) with a matrix completion/data imputation problem118

(approximating the unobserved entries of the matrix X).119

B. Reminder on Computational Graph Completion for Type 2 problems. Within the context of Sec. A, the proposed GP solution120

to Type 2 problems is to simply replace unknown functions by GPs and compute their Maximum A Posteriori (MAP)/Maximum121

Likelihood Estimation (MLE) estimators given available data and constraints imposed by the structure of the graph. Taking122

into account the example depicted in Fig. S2, and substituting f5,1, f1,2, and f3,6 with independent GPs, each with kernels123

K,G, and Γ respectively, the objective of this MAP solution becomes minimizing ∥f5,1∥2
K + ∥f1,2∥2

G + ∥f3,6∥2
Γ (writing ∥f∥K for124

the RKHS norm of f induced by the kernel K) subject to the constraints imposed by the data and the functional dependencies125

encoded into the structure of the graph.126

C. A system identification example.. In order to exemplify Computational Graphical Completion (CGC), consider the system127

identification problem depicted in Fig. S3, sourced from (3). Our objective is to identify a nonlinear electric circuit, as illustrated128

in Fig. S3.(a), from scarce measurement data. The nonlinearity of the circuit emanates from the resistance, capacitance, and129

inductances, which are nonlinear functions of currents and voltages, as shown in Fig. S3.(b). Assuming these functions to be130

unknown, along with all currents and voltages as unknown time-dependent functions, we operate the circuit between times 0131

and 10. Measurements of a subset of variables, representing the system’s state, are taken at times ts = s/10 for s ∈ 0, . . . , 99.132

Given these measurements, the challenge arises in approximating all unknown functions that define currents and voltages as133

time functions, capacitance as a voltage function, and inductances and resistance as current functions. Fig. S3.(c) displays134

the available measurements, which are notably sparse, preventing us from reconstructing the underlying unknown functions135

independently. Thus, their interdependencies must be utilized for approximation. It is crucial to note that the system’s state136

variables are interconnected through functional relations, as per Kirchhoff’s laws for this nonlinear electric circuit, illustrated in137
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Fig. S3. (a) Electric circuit. (b) Resistance, capacitance, and inductances are nonlinear functions of currents and voltages (c) Measurements. (d) Kirchhoff’s circuit laws. (e)
The computational graph with unknown functions represented as red edges. (f) Recovered functions.

Fig. S3.(d). These functional dependencies can be conceptualized as a computational graph, depicted in Fig. S3.(e), where138

nodes represent variables and directed edges represent functions. Known functions are colored in black, unknown functions in139

red, and round nodes aggregate variables, meaning edges map groups of variables, forming a hypergraph. The CGC solution140

involves substituting the graph’s unknown functions with Gaussian Processes (GPs), which may be independent or correlated,141

and then approximating the unknown functions with their Maximum A Posteriori (MAP) estimators, given the available data142

and the functional dependencies embedded in the graph’s structure. Fig. S3.(f) showcases the true and recovered functions,143

demonstrating a notably accurate approximation despite the data’s scarcity.144

This simple example generalizes to an abstract framework detailed in (3). This framework has a wide range of applications145

because most problems in CSE can also be formulated as completing computational graphs representing dependencies between146

functions and variables, and they can be solved in a similar manner by replacing unknown functions with GPs and by computing147

their MAP/EB estimator given the data. These problems include those illustrated in Fig. 1.(d-h).148

4. Hardness and well-posed formulation of Type 3 problems.149

In this subsection, we describe why Type 3 problems are challenging and why they can even be intractable if not formalized150

and approached properly.151

A. Curse of combinatorial complexity.. First, the problem suffers from the curse of combinatorial complexity in the sense that152

the number of hypergraphs associated with N nodes blows up rapidly with N . As an illustration, Fig. S4 shows some of153

the hypergraphs associated with only three nodes. A lower bound on that number is the A003180 sequence, which answers154

the following question (4): given N unlabeled vertices, how many different hypergraphs in total can be realized on them by155

counting the equivalent hypergraphs only once? For N = 8, this lower bound is ≈ 2.78× 1073.156

B. Nonidentifiability and implicit dependencies.. Secondly, it is important to note that, even with an infinite amount of data,157

the exact structure of the hypergraph might not be identifiable. To illustrate this point, let’s consider a problem where we have158
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Fig. S4. Computational Hypergraph Discovery with three variables

N samples from a computational graph with variables x and y. The task is to determine the direction of functional dependency159

between x and y. Does it go from x to y (represented as x y
f ), or from y to x (represented as y x

f )?160

If we refer to Fig. S5.(a), we can make a decision because y can only be expressed as a function of x. In contrast, if we161

examine Fig. S5.(b), the decision is also straightforward because x can solely be written as a function of y. However, if the162

data mirrors the scenario in Fig. S5.(c), it becomes challenging to decide as we can write both y as a function of x and x as a163

function of y. Further complicating matters is the possibility of implicit dependencies between variables. As illustrated in164

Fig. S5.(d), there might be instances where neither y can be derived as a function of x, nor x can be represented as a function165

of y.166

Fig. S5. The structure of the hypergraph is identifiable in (a), (b), and non-identifiable in (c). The relationship between variables is implicit in (d).

C. Causal inference and probabilistic graphs.. Causal inference methods broadly consist of two approaches: constraint and167

score-based methods. While constraint-based approaches are asymptotically consistent, they only learn the graph up to an168

equivalence class (5). Instead, score-based methods resolve ambiguities in the graph’s edges by evaluating the likelihood of169

the observed data for each graphical model. For instance, they may assign a higher evidence to y → x over x → y if the170

conditional distribution x|y exhibits less complexity than y|x. The complexity of searching over all possible graphs, however,171

grows super-exponentially with the number of variables. Thus, it is often necessary to use approximate, but more tractable,172

search-based methods (6, 7) or alternative criteria based on sensitivity analysis (8). For example, the preference could lean173

towards y → x rather than x→ y if y demonstrates less sensitivity to errors or perturbations in x. In contrast, our proposed174

GP method avoids the growth in complexity by performing a guided pruning process that assesses the contribution of each node175

to the signal. We also emphasize that our method is not limited to learning acyclic graph structures as it can identify feedback176

loops between variables. Alternatively, methods for learning probabilistic undirected graphical models, also known as Markov177

networks, identify the graph structure by assuming the data is randomly drawn from some probability distribution (9). In this178

case, edges in the graph (or lack thereof) encode conditional dependencies between the nodes. A common approach learns the179

graph structure by modeling the data as being drawn from a multivariate Gaussian distribution with a sparse inverse covariance180

matrix, whose zero entries indicate pairwise conditional independencies (10). Recently, this approach has been extended using181

models for non-Gaussian distributions, e.g., in (11, 12), as well as kernel-based conditional independence tests (13). In this182

work, we learn functional dependencies rather than causality or probabilistic dependence. We emphasize that we also do not183

assume the data is randomized or impose strong assumptions, such as additive noise models, in the data-generating process.184

We complete this paragraph by comparing the hypergraph discovery framework to structure learning for Bayesian networks185

and structural equation models (SEM). Let x ∈ Rd be a random variable with probability density function p that follows the186

autoregressive factorization p(x) =
∏d

i=1 pi(xi|x1, . . . , xi−1) given a prescribed variable ordering. Structure learning for Bayesian187

networks aims to find the ancestors of variable xi, often referred to as the set of parents Pa(i) ⊆ {1, . . . , i− 1}, in the sense that188

pi(xi|x1, . . . , xi−1) = pi(xi|xP a(i)). Thus, the variable dependence of the conditional density pi is identified by finding the parent189

set so that xi is conditionally independent of all remaining preceding variables given its parents, i.e., xi ⊥ x1:i−1\P a(i)|xP a(i).190

Finding ancestors that satisfy this condition requires performing conditional independence tests, which are computationally191
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expensive for general distributions (14). Alternatively, SEMs assume that each variable xi is drawn as a function of its ancestors192

with additive noise, i.e, xi = f(xP a(i)) + ϵi for some function f and noise ϵ (7). For Gaussian noise ϵi ∼ N (0, σ2), each193

marginal conditional distribution in a Bayesian network is given by pi(xi|x1:i−1) ∝ exp(− 1
2σ2 ∥xi − f(x1:i−1)∥2). Thus, finding194

the parents for such a model by maximum likelihood estimation corresponds to finding the parents that minimize the expected195

mean-squared error ∥xi − f(xP a(i))∥2. Our approach minimizes a related objective, without imposing the strong probabilistic196

assumptions that are required in SEMs and Bayesian Networks. We also observe that while the graph structure identified in197

Bayesian networks is influenced by the specific sequence in which variables are arranged (a concept exploited in numerical198

linear algebra (15, 16) where Schur complementation is equivalent to conditioning GPs and a carefully ordering leads to the199

accuracy of the Vecchia approximation pi(xi|x1, . . . , xi−1) ≈ pi(xi|xi−k, . . . , xi−1) (17)), the graph recovered by our approach200

remains unaffected by any predetermined ordering of those variables.201

Fig. S6. (a) CHD formulation as a manifold discovery problem and hypergraph representation (b) The hypergraph representation of an affine manifold is equivalent to its Row
Echelon Form Reduction.

D. Well-posed formulation of the problem.. In this paper, we focus on a formulation of the problem that remains well-posed202

even when the data is not randomized, i.e., we formulate the problem as the following manifold learning/discovery problem.203

Problem 1. Let H be a Reproducing Kernel Hilbert Space (RKHS) of functions mapping Rd to R. Let F be a closed linear204

subspace of H and let M be a subset of Rd such that x ∈M if and only if f(x) = 0 for all f ∈ F . Given the (possibly noisy205

and nonrandom) observation of N elements, X1, . . . , XN , of M approximate M.206

To understand why problem 1 serves as the appropriate formulation for hypergraph discovery, consider a manifold M⊂ Rd.207

Suppose this manifold can be represented by a set of equations, expressed as a collection of functions (fk)k satisfying208

∀x ∈M, fk(x) = 0. To keep the problem tractable, we assume a certain level of regularity for these functions, necessitating209

they belong to a RKHS H, ensuring the applicability of kernel methods for our framework. Given that any linear combination210

of the fk will also be evaluated to zero onM, the relevant functions are those within the span of the fk, forming a closed linear211

subspace of H denoted as F . The manifold M can be subsequently represented by a graph or hypergraph (see Fig. S6.(a)),212

whose ambiguity can be resolved through a deliberate decision to classify some variables as free and others as dependent. This213

selection could be arbitrary, informed by expert knowledge, or derived from probabilistic models or sensitivity analysis.214

5. A Gaussian Process method for Type 3 problems215

A. Affine case and Row Echelon Form Reduction.. To describe the proposed solution to Problem 1, we start with a simple216

example. In this example H is a space of affine functions f of the form217

f(x) = vTψ(x) with ψ(x) :=
(

1
x

)
and v ∈ Rd+1 , . [15]218

As a particular instantiation (see Fig. S6.(b)), we assume M to be the manifold of R3 (d = 3) defined by the affine equations219

M =

{
x ∈ R3

∣∣∣∣∣
{
x1 + x2 + 3x3 − 2 = 0
x1 − x2 + x3 = 0

}
, [16]220

which is equivalent to selecting F = span{f1, f2} with f1(x) = x1 + x2 + 3x3 − 2 and f2(x) = x1 − x2 + x3 in the problem221

formulation 1.222

Then, irrespective of how we recover the manifold from data, the hypergraph representation of that manifold is equivalent223

to the row echelon form reduction of the affine system, and this representation and this reduction require a possibly arbitrary224

choice of free and dependent variables. So, for instance, for the system Eq. (16), if we declare x3 to be the free variables and x1225

and x2 to be the dependent variables, then we can represent the manifold via the equations226

M =

{
x ∈ R3

∣∣∣∣∣
{
x1 = 1− 2x3

x2 = 1− x3

}
, [17]227

which have the hypergraph representation depicted in Fig. S6.(b).228
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Now, in the N > d regime where the number of data points is larger than the number of variables, the manifold can simply229

be approximated via a variant of PCA. Take f∗ ∈ F , we have f∗(x) = v∗Tψ(x) for a certain v∗ ∈ Rd+1. Then for Xs ∈ M,230

f∗(Xs) = ψ(Xs)T v∗ = 0. Defining231

CN :=
N∑

s=1

ψ(Xs)ψ(Xs)T [18]232

we see that f∗(Xs) = 0 for all Xs is equivalent to CNv
∗ = 0. Since N > d, we can thus identify F exactly as {vTψ for v ∈233

Ker(CN )}. We then obtain the manifold234

MN =
{
x ∈ Rd | vTψ(x) = 0 for v ∈ Span(vr+1, . . . , vd+1)

}
[19]235

where Span(vr+1, . . . , vd+1) is the zero-eigenspace of CN . Here we write λ1 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λd+1 for the236

eigenvalues of CN (in decreasing order), and v1, . . . , vd+1 for the corresponding eigenvectors (CNvi = λivi). The proposed237

approach extends to the noisy case (when the data points are perturbations of elements of the manifold) by simply replacing238

the zero-eigenspace of the covariance matrix by the linear span of the eigenvectors associated with eigenvalues that are smaller239

than some threshold ϵ > 0, i.e., by approximatingM with Eq. (19) where r is such that λ1 ≥ · · · ≥ λr ≥ ϵ > λr+1 ≥ · · · ≥ λd+1.240

In this affine setting Eq. (19) allows us to estimate M directly without RKHS norm minimization/regularization because linear241

regression does not require regularization in the sufficiently large data regime. Furthermore the process of pruning ancestors242

can be replaced by that of identifying sparse elements v ∈ Span(vr+1, . . . , vd+1) such that vi = 1.243

Fig. S7. Feature map generalization

B. Feature map generalization.. This simple approach can be generalized by generalizing the underlying feature map ψ used to244

define the space of functions (writing dS for the dimension of the range of ψ)245

H =
{
f(x) = vTψ(x) | v ∈ RdS

}
. [20]246

For instance, if we use the feature map247

ψ(x) :=
(
1, . . . , xi, . . . , xixj , . . .

)T [21]248

then H becomes a space of quadratic polynomials on Rd, i.e.,249

H =
{
f(x) = v0 +

∑
i

vixi +
∑
i≤j

vi,jxixj | v ∈ RdS
}
, [22]250

and, in the large data regime (N > dS), identifying quadratic dependencies between variables becomes equivalent to (1) adding251

nodes to the hypergraph corresponding to secondary variables obtained from primary variables xi through known functions (for252

Eq. (21), these secondary variables are the quadratic monomials xixj , see Fig. S7.(a)), and (2) identifying affine dependencies253

between the variables of the augmented hypergraph. The problem can, therefore, be reduced to the previous affine case. Indeed,254

as in the affine case, the manifold can then be approximated in the regime where the number of data points is larger than the255

dimension dS of the feature map by Eq. (19), where vr, . . . , vN are the eigenvectors of CN =Eq. (18) whose eigenvalues are256

zero (noiseless case) or smaller than some threshold ϵ > 0 (noisy case).257

Furthermore, the hypergraph representation of the manifold is equivalent to a feature map generalization of Row Echelon258

Form Reduction to nonlinear systems of equations. For instance, choosing x3 as the dependent variable and x1, x2 as the free259

variables, M = {x ∈ R3 | x3 − 5x2
1 + x2

2 − x1x2 = 0} can be represented as in Fig. S7.(b) where the round node represents260

the concatenated variable (x1, x2) and the red arrow represents a quadratic function. The generalization also enables the261

representation of implicit equations by selecting secondary variables as free variables. For instance, selecting x2
3 as the free262

variable and x1, x2 as the free variables, M = {x ∈ R3 | x2
1 + x2

2 + x2
3 − 1 = 0} can be represented as in Fig. S7.(c).263
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C. Kernel generalization and regularization.. This feature-map extension of the previously discussed affine case can evidently264

be generalized to arbitrary degree polynomials and to other basis functions. However, as the dimension dS of the range of265

the feature map ψ increases beyond the number N of data points, the problem becomes underdetermined: the data only266

provides partial information about the manifold, i.e., it is not sufficient to uniquely determine the manifold. Furthermore, if the267

dimension of the feature map is infinite, then we are always in that low data regime, and we have the additional difficulty that268

we cannot directly compute with that feature map. On the other hand, if dS is finite (i.e., if the dictionary of basis functions is269

finite), then some elements of F (some constraints defining the manifold M) may not be representable or well approximated as270

equations of the form vTψ(x) = 0. To address these conflicting requirements, we need to kernelize and regularize the proposed271

approach (as done in interpolation).272

C.1. The kernel associated with the feature map.. To describe this kernelization, we assume that the feature map ψ maps Rd to some273

Hilbert space S that could be infinite-dimensional, and we write K for the kernel defined by that feature map. To be precise,274

we now consider the setting where the feature map ψ is a function from Rd to a (possibly infinite-dimensional separable) Hilbert275

(feature) space S endowed with the inner product
〈
·, ·
〉

S
. To simplify notations, we will still write vTw for

〈
v, w
〉

S
and vwT

276

for the linear operator mapping v′ to v
〈
w, v′〉

S
. Let277

H := {vTψ(x) | v ∈ S} [23]278

be the space of functions mapping Rd to R defined by the feature map ψ. To avoid ambiguity, assume (without loss of279

generality) that the identity vTψ(x) = wTψ(x) holds for all x ∈ Rd if and only if v = w. It follows that for f ∈ H there exists280

a unique v ∈ S such that f = vTψ. For f, g ∈ H with f = vTψ and g = wTψ, we can then define281 〈
f, g
〉

H
:= vTw . [24]282

Observe that H is a Hilbert space endowed with the inner product
〈
·, ·
〉

H
. For x, x′ ∈ X , write283

K(x, x′) := ψ(x)Tψ(x′) , [25]284

for the kernel defined by ψ and observe that (H,
〈
·, ·
〉

H
) is the RKHS defined by the kernel K (which is assumed to contain F285

in Problem 1). Observe in particular that for f = vTψ ∈ H, K satisfies the reproducing property286 〈
f,K(x, ·)

〉
H

= vTψ(x) = f(x) . [26]287

C.2. Complexity Reduction with Kernel PCA Variant.. We will now show that the previous feature-map PCA variant (characterizing288

the subspace of f ∈ H such that f(X) = 0) can be kernelized as a variant of kernel PCA (1). To describe this write K(X,X)289

for the N ×N matrix with entries K(Xi, Xj). Write λ1 ≥ λ2 ≥ · · · ≥ λr > 0 for the nonzero eigenvalues of K(X,X) indexed290

in decreasing order and write α·,i for the corresponding unit-normalized eigenvectors, i.e.291

K(X,X)α·,i = λiα·,i and |α·,i| = 1 . [27]292

Write f(X) for the N vector with entries f(Xs). For i ≤ r, write293

ϕi :=
N∑

s=1

δXsαs,i [28]294

and295

f(ϕi) :=
N∑

s=1

f(Xs)αs,i . [29]296

Write f(ϕ) for the r vector with entries f(ϕi).297

Then, we have the following proposition.298

Proposition 1. The subspace of functions f ∈ H such that f(ϕ) = 0 is equal to the subspace of f ∈ H such that f(X) = 0.299

Furthermore for f ∈ H with feature map representation f = vTψ with v ∈ S we have the identity (where CN =Eq. (18))300

vTCNv = |f(ϕ)|2 = |f(X)|2 . [30]301

Proof. Write λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂r̂ > 0 for the nonzero eigenvalues of CN =Eq. (18) indexed in decreasing order. Write v1, . . . , vr302

for the corresponding eigenvectors, i.e.,303

CNvi = λ̂ivi . [31]304

Observing that305

CN =
r∑

i=1

λ̂iviv
T
i [32]306
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we deduce that the zero-eigenspace of CN is the set of vectors v ∈ S such that vT vi = 0 for i = 1, . . . , r. Write fi := vT
i ψ.307

Observe that for f = vTψ, we have vT
i v =

〈
fi, f

〉
K

. Multiplying Eq. (31) by ψT (x) implies308

N∑
s=1

K(x,Xs)fi(Xs) = λ̂ifi(x) [33]309

Eq. (33) implies that for f = vTψ310

vT
i v =

N∑
s=1

λ̂−1
i fi(Xs)

〈
K(·, Xs), f

〉
K

=
N∑

s=1

λ̂−1
i fi(Xs)f(Xs) [34]311

where we have used the reproducing property Eq. (26) of K in the last identity. Write312

α̂s,i := λ
−1/2
i fi(Xs) . [35]313

Using Eq. (33) with x = Xs′ implies that α̂·,i is an eigenvector of the N × N matrix K(X,X) with eigenvalue λ̂i. Taking314

f = fi in Eq. (34) implies that 1 = vT
i vi = |α̂·,i|2. Therefore, the α̂·,i are unit-normalized. Summarizing, this analysis (closely315

related to the one found in kernel PCA (1)) shows that the nonzero eigenvalues of K(X,X) coincide with those of CN and we316

have r̂ = r, λ̂i = λi and α̂·,i = α·,i. Furthermore, Eq. (34) and Eq. (35) imply that for i ≤ r, v ∈ S and f = vTψ, we have317

vT
i v = λ

−1/2
i f(X)α·,i . [36]318

The identity Eq. (36) then implies Eq. (30).319

Remark 1. As in PCA the dimension/complexity of the problem can be further reduced by truncating ϕ to ϕ′ = (ϕ1, . . . , ϕr′ )320

where r′ ≤ r is identified as the smallest index i such that λi/λ1 < ϵ where ϵ > 0 is some small threshold.321

C.3. Kernel Mode Decomposition.. When the feature map ψ is infinite-dimensional, the data only provides partial information322

about the constraints defining the manifold in the sense that f(X) = 0 or equivalently f(ϕ) = 0 is a necessary but not sufficient323

condition for the zero level set of f to be a valid constraint for the manifold (for f to be such that f(x) = 0 for all x ∈M). So324

we are faced with the following problems: (1) How to regularize? (2) How do we identify free and dependent variables? (3)325

How do we identify valid constraints for the manifold? The proposed solution will be based on the Kernel Mode Decomposition326

(KMD) framework introduced in (2) (which shares conceptual foundations with Smoothing Spline ANOVA (18)).327

Reminder on KMD We will now present a quick reminder on KMD in the setting of the following mode decomposition problem.328

So, in this problem, we have an unknown function f† mapping some input space X to the real line R. We assume that this329

function can be written as a sum of m other unknown functions f†
i which we will call modes, i.e.,330

f† =
m∑

i=1

f†
i . [37]331

We assume each mode f†
i to be an unknown element of some RKHS HKi defined by some kernel Ki. Then we consider the332

problem in which given the data f†(X) = Y (with (X,Y ) ∈ XN × RN ) we seek to approximate the m modes composing the333

target function f†. Then, we have the following theorem.334

Theorem 1. (2) Using the relative error in the product norm ∥(f1, . . . , fm)∥2 :=
∑m

i=1 ∥fi∥2
Ki

as a loss, the minimax optimal335

recovery of (f†
1 , . . . , f

†
m) is (f1, . . . , fm) with336

fi(x) = Ki(x,X)K(X,X)−1Y , , [38]337

where K is the additive kernel338

K =
m∑

i=1

Ki . [39]339

The GP interpretation of this optimal recovery result is as follows. Let ξi ∼ N (0,Ki) be m independent centered GPs with340

kernels Ki. Write ξ for the additive GP ξ :=
∑m

i=1 ξi. Eq. (38) can be recovered by replacing the modes f†
i by independent341

centered GPs ξi ∼ N (0,Ki) with kernels Ki and approximating the mode i by conditioning ξi on the available data ξ(X) = Y342

where ξ :=
∑m

i=1 ξi is the additive GP obtained by summing the independent GPs ξi, i.e.,343

fi(x) = E
[
ξi(x) | ξ(X) = Y

]
. [40]344

Furthermore (f1, . . . , fm) can also be identified as the minimizer of345 
Minimize

∑m

i=1 ∥fi∥2
Ki

over (f1, . . . , fm) ∈ HK1 × · · · × HKm

s. t. (
∑m

i=1 fi)(X) = Y .

[41]346
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The variational formulation Eq. (41) can be interpreted as a generalization of Tikhonov regularization which can be recovered347

by selecting m = 2, K1 to be a smoothing kernel (such as a Matérn kernel) and K2(x, y) = σ2δ(x − y) to be a white noise348

kernel.349

Now, this abstract KMD approach (2) is associated with a quantification of how much each mode contributes to the overall350

data or how much each individual GP ξi explains the data. More precisely, the activation of the mode i or GP ξi can be351

quantified as352

p(i) =
∥fi∥2

Ki

∥f∥2
K

, [42]353

where f =
∑m

i=1 fi. These activations p(i) satisfy p(i) ∈ [0, 1] and
∑m

i=1 p(i) = 1 they can be thought of as a generalization354

of Sobol sensitivity indices (19–21) to the nonlinear setting in the sense that they are associated with the following variance355

representation/decomposition (2) (writing
〈
·, ·
〉

K
for the RKHS inner product induced by K):356

Var
[〈
ξ, f
〉

K

]
= ∥f∥2

K =
m∑

i=1

∥fi∥2
Ki

=
m∑

i=1

Var
[〈
ξi, f

〉
K

]
[43]357

Application to CHD, general case. Now, let us return to our original manifold approximation problem 1 in the kernelized setting358

of Eq. (25). Given the data X we cannot regress an element f ∈ F directly since the minimizer of ∥f∥2
K + γ−1∥f(X)∥2

RN359

is the null function. To identify the functions f ∈ F , we need to decompose them into modes that can be interpreted as a360

generalization of the notion of free and dependent variables. To describe this, assume that the kernel K can be decomposed as361

the additive kernel362

K = Ka +Ks +Kz. [44]363

Then HK = HKa + HKs + HKz implies that for all function f ∈ HK , f can be decomposed as f = fa + fs + fz with364

(fa, fs, fz) ∈ Ha ×Hs ×Hz.365

Example 1. As a running example, take K to be the following additive kernel366

K(x, x′) = 1 + β1
∑

i

xix
′
i + β2

∑
i≤j

xixjx
′
ix

′
j + β3

∏
i

(1 + k(xi, x
′
i)) , [45]367

that is the sum of a linear kernel, a quadratic kernel, and a fully nonlinear kernel. Take Ka to be the part of the linear kernel368

that depends only on x1, i.e.,369

Ka(x, x′) = β1x1x
′
1 . [46]370

Take Ks to be the part of the kernel that does not depend on x1, i.e.,371

Ks = 1 + β1
∑
i̸=1

xix
′
i + β2

∑
i≤j,i,j ̸=1

xixjx
′
ix

′
j + β3

∏
i ̸=1

(1 + k(xi, x
′
i)) . [47]372

And take Kz to be the remaining portion,373

Kz = K −Ka −Ks . [48]374

Therefore the following questions are equivalent:375

• Given a function ga in the RKHS HKa defined by the kernel Ka is there a function fs in the RKHS HKs defined by the376

kernel Ks such that ga(x) ≈ fs(x) for x ∈M?377

• Given a function ga ∈ HKa is there a function f in the RKHS HK defined by the kernel K such that f(x) ≈ 0 for x ∈M378

and such that its fa mode is −ga and its fz mode is zero?379

Then, the natural answer to the questions is to identify the modes of the constraint f = fa +fs +fz ∈ H (such that f(x) ≈ 0380

for x ∈M ) such that fa = −ga and fz = 0 by selecting fs to be the minimizer of the following variational problem381

min
fs∈Hs

∥fs∥2
Ks

+ 1
γ

∣∣(−ga + fs)(ϕ)
∣∣2 . [49]382

This is equivalent to introducing the additive GP ξ = ξa + ξs + ξz + ξn whose modes are the independent GPs ξa ∼ N (0,Ka),383

ξs ∼ N (0,Ks), ξz ∼ N (0,Kz), ξn ∼ N (0, γδ(x− y)) (we use the label “n” in reference to “noise”), and then recovering fs as384

fs = E
[
ξs | ξ(X) = 0, ξa = −ga, ξz = 0

]
. [50]385

Application to CHD, particular case. Taking ga(x) = x1 for our running example 1, the previous questions are, as illustrated386

in Fig. 2.(b), equivalent to asking whether there exists a function fs ∈ HKs that does not depend on x1 (since Ks does not387

depend on x1) such that388

x1 ≈ fs(x2, . . . , xd) for x ∈M . [51]389

Therefore, the mode fa can be thought of as a dependent mode (we use the label “a” in reference to “ancestors”), the mode fs390

as a free mode (we use the label “s” in reference to “signal”), the mode fz as a zero mode.391

While our numerical illustrations have primarily focused on the scenario where ga takes the form of ga(x) = xi, and we aim392

to express xi as a function of other variables, the generality of our framework is motivated by its potential to recover implicit393

equations. For example, consider the implicit equation x2
1 + x2

2 = 1, which can be retrieved by setting the mode of interest to394

be ga(x) = x2
1 and allowing fs to depend only on the variable x2.395
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C.4. Signal-to-noise ratio.. Now, we are led to the following question: since the mode fs (the minimizer of Eq. (49)) always exists396

and is always unique, how do we know that it leads to a valid constraint? To answer that question, we compute the activation397

of the GPs used to regress the data. We write398

V(s) := ∥fs∥2
Ks
, [52]399

for the activation of the signal GP ξs and400

V(n) := 1
γ

∣∣(−ga + fs)(X)
∣∣2 [53]401

for the activation of the noise GP ξn, and then these allow us to define a signal-to-noise ratio defined as402

V(s)
V(s) + V(n) . [54]403

Note that this corresponds to activation ratio of the noise GP defined in (42). This ratio can then be used to test the validity404

of the constraint in the sense that if V (s)/(V (s) + V (n)) > τ (with τ = 0.5 as a prototypical example), then the data is mostly405

explained by the signal GP and the constraint is valid. If V (s)/(V (s) + V (n)) < τ , then the data is mostly explained by the406

noise GP and the constraint is not valid.407

C.5. Iterating by removing the least active modes from the signal.. If the constraint is valid, then we can next compute the activation408

of the modes composing the signal. To describe this, we assume that the kernel Ks can be decomposed as the additive kernel409

Ks = Ks,1 + · · ·+Ks,m , [55]410

which results in HKs = HKs,1 + · · ·+HKs,m , which results in the fact that ∀fs ∈ Hs, fs can be decomposed as411

fs = fs,1 + · · ·+ fs,m , [56]412

with fs,i ∈ HKs,i . The activation of the mode i can then be quantified as p(i) = ∥fs,i∥2
Ks,i

/∥fs∥2
Ks

, which combined with413

∥fs∥2
Ks

=
∑m

i=1 ∥fs,i∥2
Ks,i

leads to
∑m

i=1 p(i) = 1.414

As our running example 1, we can decompose Ks =Eq. (47) as the sum of an affine kernel, a quadratic kernel, and a fully415

nonlinear kernel, i.e., m = 3, Ks,1 = 1 + β1
∑

i ̸=1 xix
′
i, Ks,2 = β2

∑
i≤j,i,j ̸=1 xixjx

′
ix

′
j and Ks,3 = β3

∏
i̸=1(1 + k(xi, x

′
i)).416

As another example for our running example, we can take Ks to be the sum of the portion of the kernel that does not depend on417

x1 and x2 and the remaining portion, i.e., m = 2, Ks,1 = 1+β1
∑

i̸=1,2 xix
′
i +β2

∑
i≤j,i,j ̸=1,2 xixjx

′
ix

′
j +β3

∏
i̸=1,2(1+k(xi, x

′
i))418

and Ks,2 = Ks −Ks,1.419

Then, we can order these sub-modes from most active to least active and create a new kernel Ks by removing the least active420

modes from the signal and adding them to the mode that is set to be zero (see Fig. S8). To describe this, let π(1), · · · , π(m)421

be an ordering of the modes by their activation, i.e., ∥fs,π(1)∥2
Ks,π(1)

≥ ∥fs,π(2)∥2
Ks,π(2)

≥ · · · .422

Writing Kt =
∑m

i=r+1 Ks,π(i) for the additive kernel obtained from the least active modes (with r + 1 = m as the value423

used for our numerical implementations), we update the kernels Ks and Kz by assigning the least active modes from Ks to Kz,424

i.e., Ks −Kt → Ks and Kz +Kt → Kz (we zero the least active modes).425

Fig. S8. Iterating by removing the least active modes from the signal

Finally, we can iterate the process. This iteration can be thought of as identifying the structure of the hypergraph by426

placing too many hyperedges and removing them according to the activation of the underlying GPs.427

For our running example 1, where we try to identify the ancestors of the variable x1, if the sub-mode associated with the428

variable x2 is found to be least active, then we can try to remove x2 from the list of ancestors and try to identify x1 as a429

function of x3 to xd. This is equivalent to selecting Ka(x, x′) = β1x1x
′
1,430

Ks/t = 1 + β1
∑

i ̸=1,2

xix
′
i + β2

∑
i≤j,i,j ̸=1,2

xixjx
′
ix

′
j + β3

∏
i ̸=1,2

(1 + k(xi, x
′
i)) , [57]431

and Kz∪t = K − Ka − Ks/t to assess whether there exists a function fs ∈ HK that does not depend on x1 and x2 s.t.432

x1 ≈ fs(x3, . . . , xd) for x ∈M.433

12 of 19 Théo Bourdais, Pau Batlle, Xianjin Yang, Ricardo Baptista, Nicolas Rouquette, Houman Owhadi



C.6. Alternative determination of the list of ancestors.. Our initial approach to determining the list of ancestors of a given node is434

to use a fixed threshold (e.g., τ = 0.5) to prune nodes. We propose a refined approach that mimics the strategy employed435

in Principal Component Analysis (PCA) for deciding which modes should be kept and which ones should be removed. The436

PCA approach is to order the modes in decreasing order of eigenvalues/variance and (1) either keep the smallest number437

modes holding/explaining a given fraction (e.g., 90%) of the variance in the data, (2) or use an inflection point/sharp drop438

in the decay of the eigenvalues to select which modes should be kept. Here, we propose a similar strategy. First we employ439

an alternative determination of the least active mode: we iteratively remove the mode that leads to the smallest increase in440

noise-to-signal ratio, i.e., we remove the mode t such that,441

t = argmint
V(n)

V(s/t) + V(n) . [58]442

For our running example 1 in which we try to find the ancestors of the variable x1 this is equivalent to removing the variables
or node t whose removal leads to the smallest loss in signal-to-noise ratio (or increase in noise-to-signal ratio) by selecting

Ks/t = 1 + β1
∑
i̸=1,t

xix
′
i + β2

∑
i≤j,i,j ̸=1,t

xixjx
′
ix

′
j + β3

∏
i ̸=1,t

(1 + k(xi, x
′
i)) .

Next, we iterate this process, and we plot (a) the noise-to-signal ratio, and (b) the increase in noise-to-signal ratio as a function443

of the number of ancestors ordered according to this iteration. Fig. S9 illustrates this process and shows that the removal of an444

essential node leads to a sharp spike in increase in the noise-to-signal ratio (the noise-to-signal ratio jumps from approximately445

50-60% to 99%). The identification of this inflection point can be used as a method for effectively and reliably pruning ancestors.446

Fig. S9. Computing the ancestors of the variable ẋ0 in the Fermi-Pasta-Ulam-Tsingou problem. (a) Noise-to-Signal Ratio, denoted as V(n)
V(s)+V(n) (q), with respect to the

number of proposed ancestors, represented by q. Additionally, we include a visualization of the quantiles derived from the Z-test, as described in Section C. Notably, when
there is no signal present, the noise-to-signal ratio is expected to fall within the shaded area with a probability of 0.9. (b) Increments in the Noise-to-Signal Ratio, defined as

V(n)
V(s)+V(n) (q) − V(n)

V(s)+V(n) (q − 1), as a function of the number of ancestors, denoted as q. The horizontal axis represents the number of proposed ancestors for ẋ0.
Determining an appropriate stopping point based solely on absolute noise-to-signal ratio levels can be challenging. In contrast, the increments in the noise-to-signal ratio clearly
exhibit a discernible maximum, offering a practical point for decision-making.

6. Algorithm pseudocode.447

Our overall method is summarized in the pseudocode Alg. 1 and Alg. 2 that we will now describe. Alg. 1 takes the data448

D (encoded into the samples X1, . . . , XN of Problem 1) and the set of nodes V as an input and produces, as described in449

Sec. C, for each node i ∈ V its set of minimal ancestors Ai and the simplest possible function fi such that xi ≈ fi

(
(xj)j∈Ai

)
.450

It employs the default threshold of 0.5 on the signal-to-noise ratios for its operations. Line 1 normalizes the data (via an451

affine transformation) so that the samples Xi are of mean zero and variance 1. Given a node with index i = 1 in Line 2452

(i runs through the set of nodes, and we select i = 1 for ease of presentation), the command in Line 3 refers to selecting a453

signal kernel of the form Ks =Eq. (47) (where k is selected to be a vanilla RBF kernel such as Gaussian or Matérn), with454

1 ≥ β1 > 0 = β2 = β3 for the linear kernel, 1 ≥ β1 ≥ β2 > 0 = β3 for the quadratic kernel and 1 ≥ β1 ≥ β2 ≥ β3 > 0 for the455

fully nonlinear (interpolative) kernel. The ComputeSignalToNoiseRatio function in Line 5 computes the signal-to-noise ratio456

with ga(x) = x1 and with the kernel selected in Line 3. The value of γ is selected automatically by maximizing the variance of457

the histogram of eigenvalues of Dγ as described in Sec. B (with the kernel K = Ks =Eq. (47) selected in Line 3 and Y = ga(X)458

with ga(x) = x1). The value of γ is re-computed whenever a node is removed from the list of ancestors, and Ks is nonlinear.459

Lines 9, 10 and 11 are described in Sec. C.5. They correspond to iteratively identifying the ancestor node t contributing the460
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Algorithm 1 CHD by thresholding the signal-to-noise ratio
Input: Data D, set of nodes V , threshold τ (τ = 0.5 as a default value)
Output: Learned hypergraph // Set of ancestors for each node

1: D ← NormalizeData(D) // Normalize the data
2: for v ∈ V do
3: for kernel ∈ [“linear”, “quadratic”, “nonlinear”] do // Find the kernel
4: SetOfAncestors(v) ← All other nodes
5: SignalToNoiseRatio ← ComputeSignalToNoiseRatio(kernel, node, D)
6: if SignalToNoiseRatio > τ then choose that kernel and exit the for loop
7: else remove all ancestors from node
8: while SignalToNoiseRatio > τ do // Prune ancestors
9: Find least important ancestor

10: Recompute SignalToNoiseRatio without ancestor
11: if SignalToNoiseRatio > τ then Remove that ancestor

least to the signal and removing that node from the set of ancestors of the node 1 if the removal of that node t does not send461

the signal-to-noise ratio below the default threshold 0.5.462

Algorithm 2 CHD by inflection point in the noise-to-signal ratio
Input: Data D, set of nodes V , threshold τ (τ = 0.5 as a default value)
Output: Learned hypergraph // Set of ancestors for each node

1: D ← NormalizeData(D) // Normalize the data
2: for node v ∈ V do
3: for kernel ∈ [“linear”, “quadratic”, “nonlinear”] do // Find the kernel
4: SetOfAncestors ← All other nodes
5: SignalToNoiseRatio ← ComputeSignalToNoiseRatio(kernel, node, D)
6: if SignalToNoiseRatio > τ then choose that kernel and exit the for loop
7: else remove all ancestors from node
8: q ← Cardinal(All other nodes)
9: SetOfAncestors(q) ← All other nodes

10: while q ≥ 1 do
11: NoiseToSignalRatio(q) ← ComputeNoiseToSignalRatio(kernel, node, D)
12: LeastImportantAncestor ← Find least important ancestor in SetOfAncestors(q)
13: SetOfAncestors(q − 1) ← SetOfAncestors(q) \ LeastImportantAncestor
14: q ← q − 1
15: q† ← Inflection point in (q → NoiseToSignalRatio(q)) or spike in (q → NoiseToSignalRatio(q) - NoiseToSignalRatio(q−1))
16: FinalSetOfAncestors(v) ← SetOfAncestors(q†)

Algorithm 2 distinguishes itself from Algorithm 1 in its approach to pruning ancestors based on signal-to-noise ratios.463

Instead of using a default threshold of 0.5 like Algorithm 1, Algorithm 2 computes the noise-to-signal ratio, represented as464
V(n)

V(s)+V(n) (q). This ratio is calculated as a function of the number q of ancestors, which are ordered based on their decreasing465

contribution to the signal. The detailed methodology behind this computation can be found in Section C.6 and is visually466

depicted in Figure S9. The final number q of ancestors is then determined by finding the value that maximizes the difference467

between successive noise-to-signal ratios, V(n)
V(s)+V(n) (q + 1)− V(n)

V(s)+V(n) (q).468

7. Analysis of the signal-to-noise ratio test.469

A. The signal-to-noise ratio depends on the prior on the level of noise.. The signal-to-noise ratio Eq. (54) depends on the value470

of γ, which is the variance prior on the level of noise. The goal of this subsection is to answer the following two questions: (1)471

How do we select γ? (2) How do we obtain a confidence level for the presence of a signal? Or equivalently for a hyperedge of472

the hypergraph? To answer these questions, we will now analyze the signal-to-noise ratio in the following regression problem in473

which we seek to approximate the unknown function f† : X → R based on noisy observations474

f†(X) + σZ = Y [59]475

of its values at collocation points Xi ((X,Y ) ∈ XN × RN , Z ∈ RN , and the entries Zi of Z are i.i.d N (0, 1)). Assuming σ2
476

to be unknown and writing γ for a candidate for its value, recall that the GP solution to this problem is approximate f† by477

interpolating the data with the sum of two independent GPs, i.e.,478

f(x) = E[ξ(x)|ξ(X) +√γZ = Y ] , [60]479
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where ξ ∼ N (0,K) is the GP prior for the signal f† and √γZ ∼ N (0, γIN ) is the GP prior for the noise σZ in the measurements.480

Following Sec. C.3 f can also be identified as a minimizer of481

minimizef ′∥f ′∥2
K + 1

γ
∥f ′(X)− Y ∥2

RN , [61]482

the activation of the signal GP can be quantified as s = ∥f∥2
K , the activation of the noise GP can be quantified as483

V(n) = 1
γ
∥f(X)−Y ∥2

RN . We can then define the noise to signal ratio V(n)
V(s)+V(n) , which admits the following representer formula,484

V(n)
V(s) + V(n) = γ

Y T
(
K(X,X) + γI

)−2
Y

Y T
(
K(X,X) + γI

)−1
Y
. [62]485

Observe that when applied to the setting of Sec. C.4, this signal-to-noise ratio is calculated with K = Ks and Y = ga(X).486

Now we have the following proposition, which follows from Eq. (62).487

Proposition 2. It holds true that V(n)
V(s)+V(n) ∈ [0, 1], and if K(X,X) has full rank,488

lim
γ↓0

V(n)
V(s) + V(n) = 0 and lim

γ↑∞

V(n)
V(s) + V(n) = 1 . [63]489

Therefore, we are led to the following question: if the signal f† and the level of noise σ2 are both unknown, how do we490

select γ to decide whether the data is mostly signal or noise?491

B. How do we select the prior on the level of noise?. Our answer to this question depends on whether the feature-map associated492

with the base kernel K is finite-dimensional or not.493

B.1. When the kernel is linear, quadratic or associated with a finite-dimensional feature map.. If the feature-map associated with the base494

kernel K is finite-dimensional, then γ can be estimated from the data itself when the number of data-points is sufficiently large495

(at least larger than the dimension of the feature-space S). A prototypical example (when trying to identify the ancestors of496

the variable x1) is K = Ks=Eq. (47) with β3 = 0. In the general setting assume that K(x, x′) := ψ(x)Tψ(x′) where the range497

S of ψ is finite-dimensional. Assume that f† belongs to the RKHS defined by ψ, i.e., assume that it is of the form f† = vTψ498

for some v in the feature-space. Then Eq. (59) reduces to499

vTψ(X) + σZ = Y , [64]500

and, in the large data regime, σ2 can be estimated by501

σ̄2 := 1
N

inf
w∈S

∥∥wTψ(X)− Y
∥∥2
RN

. [65]502

Our strategy, when the feature map is finite-dimensional, is then to select503

γ = Nσ̄2 = inf
w∈S

∥∥wTψ(X)− Y
∥∥2
RN

. [66]504

B.2. When the kernel is interpolatory (associated with an infinite-dimensional feature map).. If the feature-map associated with the base505

kernel K is infinite-dimensional (or has more dimensions than we have data points) then it can interpolate the data exactly506

and the previous strategy cannot be employed since the minimum of Eq. (65) is zero. A prototypical example (when trying to507

identify the ancestors of the variable x1) is K = Ks=Eq. (47) with β3 > 0. In this situation, we do not attempt to estimate the508

level of noise σ but select a prior γ such that the resulting noise-to-signal ratio can effectively differentiate noise from signal.509

To describe this, observe that the noise-to-signal ratio Eq. (62) admits the representer formula510

V(n)
V(s) + V(n) =

Y TD2
γY

Y TDγY
, [67]511

involving the N ×N matrix512

Dγ := γ
(
K(X,X) + γI

)−1
. [68]513

Observe that 0 ≤ Dγ ≤ I, and514

lim
γ↓0

Dγ = 0 and lim
γ↑∞

Dγ = I . [69]515

Write (λi, ei) for the eigenpairs of K(X,X) (K(X,X)ei = λiei) where the λi are ordered in decreasing order. Then the516

eigenpairs of Dγ are (ωi, ei) where517

ωi := γ

γ + λi
. [70]518

Note that the ωi are contained in [0, 1] and also ordered in decreasing order.519
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Writing Ȳi for the orthogonal projection of Y onto ei, we have520

V(n)
V(s) + V(n) =

∑n

i=1 ω
2
i Ȳ

2
i∑n

i=1 ωiȲ 2
i

, [71]521

It follows that if the histogram of the eigenvalues of Dγ is concentrated near 0 or near 1, then the noise-to-signal ratio is522

non-informative since the prior γ dominates it. To avoid this phenomenon, we select γ so that the eigenvalues of Dγ are well523

spread out in the sense that the histogram of its eigenvalues has maximum or near-maximum variance (see Fig. S1 for a good524

choice and a bad choice for γ). If the eigenvalues have an algebraic decay, then this is equivalent to taking γ to be the geometric525

mean of those eigenvalues.526

In practice, we use an off-the-shelf optimizer to obtain γ by maximizing the sample variance of (ωi)n
i=1. If this optimization527

fails, we default to the median of the eigenvalues. This ensures a balanced, well-spread spectrum for Dγ, with half of the528

eigenvalues λi being lower and half being higher than the median.529

B.3. Rationale for the choices of γ. The purpose of this section is to present a rationale for the proposed choices for γ in Sec. B.1530

and B.2. For the choice Sec. B.1, we present an asymptotic analysis of the signal-to-noise ratio in the setting of a simple531

linear regression problem. According to Eq. (66), γ must scale linearly in N ; this scaling is necessary to achieve a ratio532

that represents the signal-to-noise per sample. Without it (if γ remains bounded as a function of N), this scaling of the533

signal-to-noise would converge towards 0 as N → ∞. To see how we will now consider a simple example in which we seek534

to linearly regress the variable y as a function of the variable x, both taken to be scalar (in which case ψ(x) = x). Assume535

that the samples are of the form Yi = aXi + σZi for i = 1, . . . , N , where a, σ ̸= 0, the Zi are i.i.d. N (0, 1) random variables,536

and the Xi satisfy 1
N

∑N

i=1 Xi = 0 and 1
N

∑N

i=1 X
2
i = 1. Then, the signal-to-noise ratio is V(s)

V(s)+V(n) with V(s) = |v|2 and537

V(n) = 1
γ

∑N

i=1 |vXi − Yi|2 and v is a minimizer of538

min
v∈R
|v|2 + 1

γ

N∑
i=1

|vXi − Yi|2 . [72]539

In asymptotic N →∞ regime, we have v ≈ aN
γ+N

and540

V(s)
V(s) + V(n) ≈

γ
N
a2

−a2(γ/N + 1) + (a2 + σ2)(γ/N + 1)2 . [73]541

If γ is bounded independently from N , then V(s)
V(s)+V(n) converges towards zero as N →∞, which is undesirable as it does not542

represent a signal-to-noise ratio per sample. If γ = N , then V(s)
V(s)+V(n) ≈

a2

4σ2+2a2 , which does not converge to 1 as a→∞ and543

σ → 0, which is also undesirable. If γ is taken as in Eq. (66), then γ ≈ Nσ2 and544

V(s)
V(s) + V(n) ≈

a2

(σ2 + 1)(a2 + σ2 + 1) , [74]545

which converges towards 0 as σ →∞ and towards 1/(1 + σ2) as a→∞, which has, therefore, the desired properties.546

Moving to Sec. B.2, because the kernel can interpolate the data exactly we can no longer use Eq. (65) to estimate the level of547

noise σ. For a finite-dimensional feature map ψ, with data (X,Y ), we can decompose Y = vTψ(X) + σZ into a signal part Ys548

and noise part Ys, s.t. Y = Ys + Yn. While Ys belongs to the linear span of eigenvectors of K(X,X) associated with non-zero549

eigenvalues, Yn also activates the eigenvectors associated with with the null space of K(X,X) and the projection of Y onto550

that null-space is what allows us to derive γ in Sec. B.1. Since in the interpolatory case, all eigenvalues are strictly positive, we551

need to choose which eigenvalues are associated with noise differently, as is described in the previous section. With a fixed γ,552

we see that if λi ≫ γ, then ωi ≈ 0, which contributes in (71) to yield a low noise-to-signal ratio. Similarly, if λi ≪ γ, this553

eigenvalue yields a high noise-to-signal ratio. Thus, we see that the choice of γ assigns a noise level to each eigenvalue. While in554

the finite-dimensional feature map setting, this assignment is binary, here we perform soft thresholding using λ 7→ γ/(γ + λ) to555

indicate the level of noise of each eigenvalue. This interpretation sheds light on the selection of γ in equation Eq. (66). Let ψ556

represent the feature map associated with K. Assuming the empirical mean of ψ(Xi) is zero, the matrix K(X,X) corresponds557

to an unnormalized kernel covariance matrix ψT (X)ψ(X). Consequently, its eigenvalues correspond to N times the variances558

of the ψ(Xi) across various eigenspaces. After conducting Ordinary Least Squares regression in the feature space, if the noise559

variance is estimated as σ̄2, then any eigenspace of the normalized covariance matrix whose eigenvalue is lower than σ̄2 cannot560

be recovered due to the noise. Given this, we set the soft thresholding cutoff to be γ = Nσ̄2 for the unnormalized covariance561

matrix K(X,X).562

C. Z-score/quantile bounds on the noise-to-signal ratio.. If the data is only comprised of noise, then an interval of confidence563

can be obtained on the noise-to-signal ratio. To describe this consider the problem of testing the null hypothesis H0 : f† ≡ 0564

(there is no signal) against the alternative hypothesis H1 : f† ̸≡ 0 (there is a signal). Under the null hypothesis H0, the565

distribution of the noise-to-signal ratio Eq. (67) is known and it follows that of the random variable566

B :=
ZTD2

γZ

ZTDγZ
. [75]567
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Therefore, the quantiles of B can be used as an interval of confidence on the noise-to-signal ratio if H0 is true. More precisely,568

selecting β such that ¶[B ≤ βα] ≈ α with α = 0.05 as a prototypical example, we expect the noise to signal ratio Eq. (67) to569

be, under H0, to be larger than βα with probability ≈ 1− α. The estimation of β requires Monte-Carlo sampling.570

An alternative approach (in the large data regime) to using the quantile βα is to use the Z-score571

Z :=
Y T D2

γ Y

Y T Dγ Y
− E[B]√

Var[B]
, [76]572

after estimating E[B] and Var[B] via Monte-Carlo sampling. In particular if H0 is true then |Z| ≥ zα should occur with573

probability ≈ α with z0.1 = 1.65, z0.05 = 1.96 and z0.01 = 2.58.574

Remark 2. Although the quantile βα or the Z-score Z can be employed to produce an interval of confidence on the noise-to-signal575

ratio under H0 we cannot use them as thresholds for removing nodes from the list of ancestors as discussed in Sec. C.4 Indeed,576

observing a noise-to-signal ratio Eq. (67) below the threshold βα does not imply that all the signal has been captured by the577

kernel; it only implies that some signal has been captured by the kernel K. To illustrate this point, consider the setting where578

one tries to approximate the variable x1 as a function of the variable x2. If x1 is not a function of x2, but of x2 and x3, as579

in x1 = cos(x2) + sin(x3), then applying the proposed approach with Y encoding the values of x1, X encoding the values of580

x2, and the kernel K depending on x2 could lead to a noise-to-signal ratio below βα due to the presence of a signal in x2.581

Therefore, although we are missing the variable x3 in the kernel K, we would still observe a possibly low noise-to-signal ratio582

due to the presence of some signal in the data. Summarizing if the data only contains noise then V(n)
V(s)+V(n) ≥ βα should occur583

with probability 1− α. If the event V(n)
V(s)+V(n) < βα is observed in the setting of K = Ks/t=Eq. (57) where we try to identify584

the ancestors of x1, then we can only deduce that x3, . . . , xd contain some signal but perhaps not all of it (we can use this a585

criterion for pruning x2).586

8. Supplementary information on examples.587

A. Algebraic equations.. Although we have used Alg. 2 for the algebraic equations examples presented in Fig. 4, Alg. 1 yields588

the same results with the default signal-to-noise threshold τ = 0.5.589

B. The chemical reaction network.. Consider the chemical reaction network example illustrated in Fig. 4.(a). The proposed590

mechanism for the hydrogenation of ethylene (C2H4) to ethane (C2H6), is (writing [H] for the concentration of H) modeled by591

the following system of differential equations592

d[H2]
dt

= −k1[H2] + k−1[H]2

d[H]
dt

= 2k1[H2]− 2k−1[H]2 − k2[C2H4][H]− k3[C2H5][H]

d[C2H4]
dt

= −k2[C2H4][H]

d[C2H5]
dt

= k2[C2H4][H]− k3[C2H5][H]

[77]593

The primary variables are the concentrations [H2], [H], [C2H4] and [C2H5] and their time derivatives d[H2]
dt

, d[H]
dt

, d[C2H4]
dt

and594

d[C2H5]
dt

. The computational hypergraph encodes the functional dependencies Eq. (77) associated with the chemical reactions.595

The hyperedges of the hypergraph are assumed to be unknown and the primary variables are assumed to be known. Given N596

samples from the graph of the form597 (
[H2](ti), [H](ti), [C2H4](ti), [C2H5](ti)

)
i=1,...,N

[78]598

our objective is to recover the structure of the hypergraph given by Eq. (77), representing the functions by hyperedges. We599

create a dataset of the form Eq. (78) by integrating 50 trajectories of Eq. (77) for different initial conditions, and each equispaced600

50 times from t = 0 to t = 5. The dataset is represented in Fig. 4.(b) (the time derivatives of concentrations are estimated by601

taking the derivatives of the interpolants of those concentrations). We impose the information that the derivative variables are602

function of the non-derivative variables to avoid ambiguity in the recovery, as Eq. (77) is not the unique representation of the603

functional relation between nodes in the graph. We implement Alg. 1 with weights β = [0.1, 0.01, 0.001] for linear, quadratic,604

and nonlinear, respectively (Alg. 2 recovers the same hypergraph). The output graph can be seen in Fig. 4.(b). We obtain a605

perfect recovery of the computational graph and a correct identification of the relations being quadratic.606

C. The Google Covid 19 open data.. Consider the example illustrated in Fig. 3.(e-k). Categorical data are treated as scalar607

values, with all variables scaled to achieve a mean of 0 and a variance of 1. We implement three distinct kernel types: linear,608

quadratic, and Gaussian, with a length scale of 1 for the latter. A weight ratio of 1/10 is assigned between kernels, signifying609

that the quadratic kernel is weighted ten times less than the linear kernel. Lastly, the noise parameter, γ, is determined using610

the optimal value outlined in Sec. 7. Initially, a complete graph is constructed using all variables, depicted in Fig. 3.(g). This611
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construction is done using only linear and quadratic kernels. The full graph is highly clustered and redundant information is612

eliminated by selecting representative nodes for each cluster. Eliminating redundant nodes is important for two reasons: firstly,613

it improves the graph’s readability, especially with 31 variables; secondly, it avoids hindering graph discovery. In an extreme614

case, treating two identical variables as distinct would result in one variable’s ancestor simply being its duplicate, yielding615

an uninformative graph. Subsequently, the graph discovery algorithm is rerun, with reduced variables due to eliminating616

redundancy, ushering us into a predominantly noisy regime. With fewer variables available, we use additionally the nonlinear617

kernel. Two indicators are employed to navigate our discovery process: the signal-to-noise ratio and the Z-test. The former618

quantifies the degree to which our regression is influenced by noise, while the latter signals the existence of any signal. We619

follow the procedure in algorithm 2, resulting in the graph presented in Fig. 3.(k).620

D. Cell signaling network. Consider the example Fig. 1.(l) from (22) and Fig. 4.(h-j). To identify the ancestors of each node, we621

apply the algorithm in two stages. First, we learn the dependencies using only linear and quadratic kernels. Fig. 4.(h) identifies622

the resulting graph learned given a subset of N = 2, 000 samples chosen uniformly at random from the dataset. We observe623

that the graph identified by the algorithm consists of four disconnected clusters where the molecule levels in each cluster are624

closely related by linear or quadratic dependencies (all connections are linear except for the connection between Akt and625

PKA, which is quadratic). These edges match a subset of the edges found in the gold standard model identified in (22). With626

perfect dependencies that have no noise, one can define constraints that reduce the total number of variables in the system.627

For this noisy dataset that, we treat these dependencies as forming groups of similar variables and introduce a hierarchical628

approach to learn the connections between groups. Second, we run the graph discovery algorithm after grouping the molecules629

into clusters. For each node in the graph, we identified the ancestors of each node by constraining the dependence to be a630

subset of the clusters. In other words, when identifying the ancestors of a given node i in cluster C, the algorithm is only631

permitted to (1) use ancestors that do not belong to cluster C, and (2) include all or none of the variables in each cluster (j in632

cluster D ̸= C is listed as an ancestor if and only if all other nodes j′ in cluster D are also listed as ancestors). The ancestors633

were identified using a Gaussian (fully nonlinear) kernel and the number of by ancestors were selected manually based on634

the inflection point in the noise-to-signal ratio. The resulting graph is depicted in Fig. 4.(i). Each edge is weighted based635

on its signal-to-noise ratio. We observe that there is a stronger dependence of the Jnk, PKC, and P38 cluster on the PIP3,636

Plcg, and PIP2 cluster, which closely matches the gold standard model. As compared to approaches based on acyclic DAGs,637

however, the graph identified by our algorithm also contains feedback loops between the various molecule levels. Fig. 4.(i-j)638

displays a side-by-side comparison between the graph identified with our method and the graph generated in (22). To aid639

in this comparison, we have highlighted different clusters in distinct colors. We emphasize that while the Bayesian network640

analysis in (22) relied on the control of the sampling of the underlying variables (the simultaneous measurement of multiple641

phosphorylated protein and phospholipid components in thousands of individual primary human immune system cells, and642

perturbing these cells with molecular interventions), the reconstruction obtained by our method did not use this information643

and recovered functional dependencies rather than causal dependencies. Interestingly, the information recovered through our644

method appears to complement and enhance the findings presented in (22) (e.g., the linear and noiseless dependencies between645

variables in the JNK cluster is not something that could easily be inferred from the graph produced in (22)).646

E. BCR reaction network. In the high-dimensional example of the BCR reaction network, the computations of terms of647

the form yT ko(X,X)y (i.e., the activations), where y ∈ Rn and ko(X,X) is the o-th coordinate of the quadratic kernel648

(k(xi, xj) = (1 + ⟨xi, xj⟩)2) becomes the computational bottleneck of our method. If we let x1, . . . , xn ∈ Rp be the points and649

xo
i be the o-th coordinate of xi, we can compute the activation of the o−th coordinate using650

ko(xi, xj) = (1 + xo
ix

o
j )2 − 1 + 2xo

ix
o
j ⟨x−o

i , x−o
j ⟩ [79]651

where ko is the o−th coordinate of the kernel and x−o
i represents the remaining coordinates of xi. To compute the n × n652

kernel matrix of ko for each o ∈ {1, .., p}, we must compute p× n× n inner products in Rp, which is a very large computation.653

Instead, we may use the following reformulation to speed up computations. Notice ⟨xi, xj⟩ = xo
ix

o
j + ⟨x−o

i , x−o
j ⟩, and therefore654

ko(xi, xj) = 2xo
ix

o
j ⟨xi, xj⟩+ 2xo

ix
o
j − (xo

ix
o
j )2. Now, define vo = (xo

i yi)p
i=1 and wo = ((xo

i )2yi)p
i=1, and note that655

yTKoy =
∑
i,j

2yix
o
i yjx

o
j (1 + ⟨xi, xj⟩)−

∑
i,j

yiyj(xo
ix

o
j )2 [80]656

and so defining K̃ = (2(1 + ⟨xi, xj⟩))n
i,j=1 we have that657

yTKoy = voT K̃vo −

(
p∑

i=1

wo
i

)2

[81]658

Note that K̃ is computed just once for all p, and only vo and wo change for every ancestor calculation, which is where the659

main computational gain comes from. One may find in the GitHub repository of the paper a comparison of the two methods of660

computations and observe a tenfold speedup. This speedup is even larger in our implementation of the BCR example, as GPU661

acceleration enables the second method to run even faster.662
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