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The UQ challenge in the certification context

G: v —R P e M(y)
X — G(X)

You want to certify that

Problem

e You don’t know .
and

e You don’t know P



The UQ challenge In the certification context

G: v —R P e M(y)
X — G(X)

You want to certify that

PIG(X) >al <e

You only know (G’ D) E A

Ac {(f, |7 j,f(ﬁ}




Optimal bounds on P|G(X) > a]

U(A) = sup plf(X) > d
(f.u)EA _ =
L(A) = (f%feAu[f(X) > a

L(A) <P[G(X) >a] <U(A)
U(A) < e: Safe even in worst case.

e < L(A): Unsafe even in best case.

<

e <U(A): Cannot decide.

Unsate due to lack of information.

L(A)




OUQ problems are a priori infinite dimensional,
non-convex and highly constrained

But as In linear programming
OuUQ problems reduce to searches over finite dimensional
families of extremal scenarios of _4

ex(\A)

The dimension of the reduced problem is proportional
to the number of probabilistic inequalities that
describe _4




A simple example

What is the least upper bound on

> X > a

If all you know is E[X] < m
and P0<X <1 =17

Answer Sup M [X 2 a/}

A= {ue M(D.1)[E




You are given one pound of play-doh. i
How much mass can you put above a while
keeping the seesaw balanced around m? =&

1 —=p p
A a 1
O T
Answer ) sy
\subject toap <m

Markov’s inequality | [SUP U [X > CL} —
neA

A= € M([0,1]) |E, [ X] < mj




Reduction theorems

I fr Xy xX, — R,l
N — {-p ::\ 1 — 114 ) . < A 11
A= /K1) 1 & & i,
(fi1) <0
(7 generalized moment constraints on w. E,lof] <0
() <0e "8  Balti) 2
- |7k generalized moment constraint ks Ep [Py ;1 <0
N N
sup E,lgf| = su O
Theorem P H qf b H qf
(frm)eA (fs1)EAA
I (g 18 a sum of at most 1
A . — (£ 1\ —c A ! 1 o, L we 1ichtad
vL/\ \J ’ /./(/} o v\ 1y REZ 1L VvU 5.]..].[) \U |
1 Dirac measures on Y J




Reduction of optimization variables

{f: X =R, ueP(X)}

|

k
{fr X — R, pe€P(X) /«L—Z%%}
1=1

A4
{f:{1,2,...,nt =R, peP{L,2,....,n})}

{

H1,2,...,q9}, p e PHL2,...,n})}




Literature

U(A) == sup E,|q4
(g,n)EA

Non-convex and infinite dimensional optimization problems

Can be considered as a generalization of classical Chebyshev inequalities

History of classical inequalities: Karlin, Studden (1966, Tchebycheft
systems with applications in analysis and statistics)

Connection between Chebyshev inequalities and optimization theory

« Mulholland & Rogers (1958, Representation theorems for distribution functions)

» Godwin (1973, Manipulation of voting schemes: a general result)

* Isii (1959, On a method for generalization of Tchebycheff's inequality
1960, The extrema of probability determined by generalized moments
1962, On sharpness of Techebycheff-type inequalities)

* Olhin & Pratt (1958, A multivariate Tchebycheff inequality)

* Classical Markov-Krein theorem (Karlin, Studden, 1958)

* Dynkin (1978, Sufficient statistics & extreme points)

» Karr (1983, Extreme points of probability measures with applications)

» Artzner et al (1997, risk measures, value at risk, etc...)

» Betsimas & Popescu (2008, convex optimization approach to inequalities in prob. theo.



Literature

U(A) == sup E,|q4
(g,n)EA

Our work: Further generalization to

* |Independence constraints

 More general domains (Suslin spaces)
(non metric, non compact)

* More general classes of functions (measurable)
(non continuous, non-bounded)

e More general classes of probability measures

* More general constraints (inequalities, on measures and
functions)

Theory of majorization

» Marshall & Olkin (1979, Inequalities: Theory of majorization and its applications)



Inequalities of

* Anderson (1955, the integral of a symmetric unimodal function over a symmetric
convex set and some probability inequalities)

» Hoeffding (1956, on the distribution of the number of successes in independent trials)

» Joe (1987, Majorization, randomness and dependence for multivariate distributions)

» Bentkus, Geuze, Van Zuijlen (2006, Optimal Hoeffding like inequalities under a
symmetry assumption)

* Pinelis (2007, Exact inequalities for sums of asymmetric random variables with
applications.
2008, On inequalities for sums of bounded random variables)

Our proof rely on

* Winkler (1988, Extreme points of moment sets)

 Follows from an extension of Choquet theory (Phelps 2001, lectures on Choquet’s
theorem) by Von Weizsacker & Winkler (1979, Integral representation in the set of
solutions of a generalized moment problem)

» Kendall (1962, Simplexes & Vector lattices)



Another simple example

What can be said about P[G(X) < 0] if all that is known are the values of
G on O C|0,1]7

® (=1,G(=)) ® (:5.G(=))

@ (2, G(=))

success T . _ _ ] _
faillure | 0 0.3 0.50 0.75 1.00

Sharpest Possible Answer. ..

With so little information, the only rigorous bounds that can be given are
the trivial ones: 0 < P|G(X) <0] < 1.

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi & M. Ortiz
“Optimal uncertainty quantification for legacy data observations of Lipschitz functions”



The effect of information

What can be said about P|G/(X) < 0] if all that is known are the values of
G on O C [0,1], and that |G(x) — G(«")| < L|x — 2'|?

1.0

slope +L

J )

0.5

success T .
failure | o

1.00

Sharpest Possible Answer. ..

...we might discover that P[G(X) < 0] = 0 or = 1, but otherwise no
improvement on the trivial bound 0 < P|G(X) < 0] < 1.




The effect of information

What can be said about P|G(X) < 0] if all that is known are the values of
G on O C [0,1], that |G(x) — G(2")| < L|x — 2’|, and that E[G(X )] > m?

][_.1 L

0.5

T

. 0 T T g T
failure J, 0 0.25 X 0.50 0.75 1.00

Sharpest Possible Answer. ..

...is non-trivial, and can be found using optimization techniques. This is
the Optimal UQ viewpoint.



The effect of information

What can be said about P|G(X) < 0] if all that is known are the values of
G on O C [0,1], that |G(z) — G(2")| < L|x — 2’|, and that E[G(X)] > m?

a possible G
1.0} mpm
o a possible P
success T
; ] & T 1 ¥
failure l, 0 0.25 X 0.50 0.75 1.00

Sharpest Possible Answer. ..

...is non-trivial, and can be found using optimization techniques. This is
the Optimal UQ viewpoint.




The reduced problem

The original problem entails optimizing over an infinite-dimensional
collection of (g, ;+) that could be (G, P). In the reduced problem, we only
have to move around and re-weight two Dirac measures (point masses)
and the values of g over those two points.

infinite-dimensional problem ~~ equivalent 5-dimensional problem!

g = a possible G

]_[_;l .

[ = a possible P

m

success T

) 0 ¥ } ’ }
failure J, 0 0.25 E 0.50 0.75 1.00




Problem formulation

What is the admissible set A in this case?

( /1 a probability measure on [0, 1], )
A=< (g.p1) g:10,1) = R is L-Lipschitz, .
g=GonO,and E,[g(X)] >m |

\

In other words, any (g. pt) for which g is L-Lipschitz, agrees with the
legacy data, and has the right mean under . could be (G, P). The reduced
admissible set, over which the quantity of interest has the same extreme

values, is

b

( jt a probability measure on [0, 1],
L [t =poy, + (1 —p)o,, for some p, xg, 1 € [0,1],

Aa =9 (9:1) g: OU{xg, 1} — Ris L-Lipschitz, (-
g=Gon O, and E,|[g(X)] >m )




The reduced problem

The original problem entails optimizing over an infinite-dimensional
collection of (g, ;t) that could be (G.P). In the reduced problem, we only
have to move around and re-weight two Dirac measures (point masses)
and the values of g over those two points.

infinite-dimensional problem ~~ equivalent 5-dimensional problem!

= a possible G

fJ % o

]_[_:l L

m

success T ~
. 0 T ¥ ¥ ' T
failure J, 0 0.25 0.50 0.75 1.00
mass p mass 1 —p

at oy at



The reduced problem

The original problem entails optimizing over an infinite-dimensional
collection of (g, ;) that could be (G, P). In the reduced problem, we only
have to move around and re-weight two Dirac measures (point masses)
and the values of ¢ over those two points.

infinite-dimensional problem ~» equivalent 5-dimensional problem!

(o, o) (z1,71)

Jj /‘/ (g,p) € A
O

e v

Lo
L
m
Yo = g(xo)
Y1 = g(z)
success 1 p = n({zo)
failure | o

at .y at



Application: Optimal concentration inequality

f: A1 x---x X, — R,
MGM(X1)®'”®M<Xm)7

ﬂu[f] S 07
Osc;(f) < D;

Anvp = < (f; 1)

Osc;i(f) := sup sup (f(,a:z,)—f(,azg,))

(1, T )EX T, EX;

U(Anp) == sup  plf(X) > a]
(f>n)EAMD

a2
McDiarmid inequality [4(Anp) < exp (-22@1 Dg)




Reduction of optimization variables

——
Q
M
s@
]
«
<
/N Z
5
-~
—

Theorem

U(Arp) =U(Ac)




Explicit Solution m=2

Theorem 1717) — 2

0 if D1 —+ D2 S a
U(App) = B P20) if |Dy— Ds| <a<Di+ Dy
1 — max(gl,Dg) if OSCLS |D1—D2|

OUQ bound a=1 ‘

Corollary If D1 > a + D+, then
U(Arp)(a, D1, Do) =U(Aynp)(a, D1,0)




Explicit Solution m=3

Theorem 17, — 3 Dy > Dy > D4y
‘Z/{(AMD) — max(}—l,fg)‘

/ (0 if D+ Dy+Ds<a

— 3 .
f (D1+DatDs—a) if D+ Dy—2Ds<a<Dy-+ Dy+ Ds
[ 1721473 - -
1 fl o < (D1+D2—G)2 i I N - . - N N aN
iD.D; it D1—Dy<a<Di+Dy—2D5

11— if 0<a<D;— Do

a
max(Dl ,Dg)

2 Fo = max ¢(v;)(vi)

i€{1,2,3}
J2 5D, — 2D 4D, —
3 2 3 2 2 — @ _
L L+ = 5p,—p, W+t op, =, =%




city Impact Range

Plate thickness Perforation area

Plate Obliquity

We want to certify that

Projectile velocity

PG =0|<e¢




Caltech Hypervelocity Impact Surrogate Model

Plate thickness /; € X1 = 1524’ 2667] min,
Plate Obliquity v € X := [0, %],
Projectile velocity ¢) < XS = 217 28] km - S_l.

Thickness, obliquity, velocity: independent random variables

Mean perforation area: in between 5.5 and 7.5 mm”2

Deterministic surrogate model for the perforation area (in mm”2)

H(h,o,v) = K (Dﬂpf (cos )" (tanh (vibl - 1))7:

Hy=0.5794km- s~  s=1.4004, n=0.4482, K = 10.3936 mm?,

p = 0.4757, uw = 1.0275, m = 0.4682. ony = H < I )3

(cos a)™



Optimal bound on the probability of non perforation

p=p1 & p2 & 13,
5.5mm* < E,[f] < 7.5mm?,

Avep = (f; 1) Osc;(f) < Osc;(H) fori =1,2,3

f=0
U(Amep) == sup  p|f(X) =0
(f?/’l’)EAMCD
IP)[H — O] S U(AMCD) S eXP ‘ — Qm% l — 66.4%.

—3 ~ FTT\D
\  2ui=1 USCilLL)" )/

P[H = 0] <U(Amep) = 43.7%]




Optimal bound on the probability of non perforation

p= 1 & 2 & us,
A=< (f,p)|5.5mm?* <E,[f] <7.5mm?,

f=H

U(A) = sup pl[f(X)=0]
(f.n)EA

Application of the reduction theorem

The measure of probability can be reduced to the tensorization of
2 Dirac masses on thickness, obliquity and velocity

U(A) = 37.9%




The optimization variables can be reduced to the tensorization

of 2 Dirac masses on thickness. obliauitv and velocitv

e 2.7
o 262
® e,
° +2.5 ]
{'2.4
® +2-3
& 4‘2.2
@ |
° <
< 25
— < 20.Q
65 3 < 15 &
L 80 - . ! < 10 &
thiny 90 ; 5
Ckp Ness 25 500

Support Points at iteration O



Numerical optimization

-
& ‘r 2.6 5
. r25%
® 2.4
s o 2.3
£22
|
®
< 25
: - 20
, &
65 : <15 o
L S . 10 &

80 ,
85 .
ik ”@gso 9 100 "

Support Points at iteration 150




Numerical optimization

3 H
S -
¥ - z : - 20 -{C%
&5 s < 15 &
70 75 80 T : < 10 F
85 90 ; 5

thf
Ckness 9> 100

Support Points at iteration 200




Velocity and obliquity marginals each collapse to a single Dirac mass. The plate
thickness marainal collapses to have suppnort on the extremes of its range.

—
M
(o)}

velocity

O
2 Iteration
< 28 1000
ey © <20
65 -, o < 15 @..a
¥ i 80 s ’ ; - 10 ©
th@‘”ﬂig 9 100 2

Probability non-perforation maximized by distribution supported on minimal,
not maximal, impact obliquity. Dirac on velocity at a non extreme value.




Important observations

Extremizers are singular

They identify key players
i.e. vulnerabilities of the physical system

Extremizers are attractors




Initialization with 3 support points per marginal
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Initialization with 3 support points per marginal
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Initialization with 3 support points per marginal
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Initialization with 3 support points per marginal
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Initialization with 5 support points per marginal
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Initialization with 5 support points per marginal

e
o
N
)

0 o <15
0 g5 e 7 &
thff;:’ 0 o 5
Ness 2> 100

Support Points at iteration 1000




Initialization with 5 support points per marginal
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Initialization with 5 support points per marginal

85 o ey ’
1B e = 7 o
80 ,
85 . ”

thfq’ EEE v 100

Support Points at iteration 7100




Unknown response function G
Objective

We want least upper bound on P|G(h, a,v) < 6]

Constrain on input variables

h, o, v: independent
(h,a,v) € [0.062,0.125]in x [0,30] deg x [2300, 3200] m/

Constrain on the mean perf. area |[E[G(h, o, v)] > 11.0 mm?

Modified Lipschitz continuity constrain on response function

G(h,a,v) — G, o', v")| <dp((h,a,v), (b, o', 0") + T,

dr,((h,a,v), (W', a’,v") := Lplh — W'| + Lo|a — o'| + Ly|v — '

2
2 /. 2 2
Ly :=175.0mm* /in, L, :=0.075mm”/deg, L, :=0.1mm”/(m/s).



Legacy Data

32 data points

(steel-on-aluminium shots A48—
A81) from summer 2010 at
Caltech’s SPHIR facility:

These constrain the value
of G at 32 points

ID h o v | G(h,a,v)

(inches) (degrees) (m/s) (mm?)
A48 0.062 0.0 2288.0 7.73
A49 0.125 30.0 2840.0 13.38
A50 0.125 0.0 2556.0 11.83
A51 0.062 30.0 2329.0 6.31
A52 0.062 0.0 2363.0 7.78
A53 0.125 0.0 2326.0 9.26
Ab54 0.125 30.0 3235.0 15.98
A55 0.062 0.0 2686.0 9.86
A56 0.062 30.0 2728.0 11.35
A57 0.062 30.0 2627.0 12.09
ASS 0.125 30.0 2531.0 11.24
A60 0.125 0.0 2363.0 0.93
A61 0.062 0.0 2707.0 9.96
AG2 0.062 30.0 2756.0 11.07
AG3 0.062 0.0 2614.0 9.02
A64 0.125 0.0 2439.0 10.52
A65 0.062 0.0 2485.0 8.56
AGG 0.125 0.0 2607.0 12.46
AG7 0.125 30.0 3036.0 15.36
A68R 0.125 30.0 2325.0 8.15
AG9 0.062 30.0 2702.0 10.81
A70 0.062 30.0 2473.0 0.52
AT1 0.121 30.0 2520.0 0.47
AT72 0.121 0.0 2439.0 10.19
AT73 0.121 30.0 2366.0 0.42
AT74 0.121 30.0 2402.0 R.68
AT75 0.062 30.0 2413.0 9.19
ATT 0.062 30.0 2756.0 11.32
AT8 0.121 30.0 2432.0 10.00
AT79 0.062 30.0 2393.0 9.29
ARD 0.121 30.0 2479.0 9.53
AS81 0.060 30.0  2356.0 8.27




0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.6 12.0

0.715| |0.741| |0.762| |0.783| [0.805| |0.828] |0.852( [0.878] |0.906| [0.935]| |10.967| [1.000| [1.00C
1.00 o © ©

@
@ @
o

d @ o
0.75 [ @

= 050 +
0%

0.25 +

OIIIIIIIIII\\
o 1 2 3 4 5 6 7T 8 9 10 11 12

6 / mm?

Least upper bound on P|G(h, a,v) < 0]
The numerical results demonstrate agreement with the Markov bound

M —m
P < 0] <

M := sup inf (G(z)—l—dr(z (h, a, UW—I—T) ~ 39.895 mm?
(hav)é?(zeo

Only 2 data points out of 32 carry information about the optimal bound



Legacy Data

32 data points

(steel-on-aluminium shots A48—
A81) from summer 2010 at
Caltech’s SPHIR facility:

Only A54 and A67 carry information

The other 30 data points carry
no information about least upper bound
and could have be ignored.

ID h o v | G(h,a,v)

(inches) (degrees) (m/s) (mm?)
A48 0.062 0.0 2288.0 7.73
A49 0.125 30.0 2840.0 13.38
A50 0.125 0.0 2556.0 11.83
A51 0.062 30.0 2329.0 6.31
A52 0.062 0.0 2363.0 7.78
A53 0.125 0.0 2326.0 9.26
Ab54 0.125 30.0 3235.0 15.98
A55 0.062 0.0 2686.0 9.86
A56 0.062 30.0 2728.0 11.35
A57 0.062 30.0 2627.0 12.09
ASS 0.125 30.0 2531.0 11.24
A60 0.125 0.0 2363.0 0.93
A61 0.062 0.0 2707.0 9.96
AG2 0.062 30.0 2756.0 11.07
AG3 0.062 0.0 2614.0 9.02
A64 0.125 0.0 2439.0 10.52
A65 0.062 0.0 2485.0 8.56
AGG 0.125 0.0 2607.0 12.46
AG7 0.125 30.0 3036.0 15.36
A68R 0.125 30.0 2325.0 8.15
AG9 0.062 30.0 2702.0 10.81
A70 0.062 30.0 2473.0 0.52
AT1 0.121 30.0 2520.0 0.47
AT72 0.121 0.0 2439.0 10.19
AT73 0.121 30.0 2366.0 0.42
AT74 0.121 30.0 2402.0 R.68
AT75 0.062 30.0 2413.0 9.19
ATT 0.062 30.0 2756.0 11.32
AT8 0.121 30.0 2432.0 10.00
AT79 0.062 30.0 2393.0 9.29
ARD 0.121 30.0 2479.0 9.53
AS81 0.060 30.0  2356.0 8.27




Dimensional collapse 0 = 9 mm?

. Position Weight |
7 e - | §3§§% T o

= 0.09

0.08 |
200 400 600 800 1000 1200

0.07
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25

1000 1200

20
8 15
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5
0
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2900
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2600
2500

0
1000 1200 24000
0

1000 1200 600 800 1000 1200
T 1 1 T

o

PM

400
00 600 800 1000 1200
00

200
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-0.4

-0.5
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-0.7
-0.8

—ulg( X) <6]

-0.9
—-1.0 -

200 4
0] 200 400 600 800 1000 1200 200 4 600 800 1000 1200

1t collapses from a 2 x 2 x 2 measure to a 1 X 1 X 2 measure

At the optimum only the v marginal has support on 2 points
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OUQ with sausage around a model

X := [60, 105] mil x [0,30] deg x [2.1,2.8] km/s A

A :

sup(, yed Pulg(h, a,v) < 0]

0.2 -

6 / mm?

( g: X >R, "
po=jip @ fla @ pty € P(X),
Y R R b o o) > 55
wlg(h,a,v)] > 5.5 mm=,
\ Hg o FStStSurrHoo E (j'fy ) >
C, = 0.05
= 0.5




Optimal bounds for other admissible sets
Admissible scenarios, A U(A) Method

Amep: independence, oscillation and mean < 66.4% | McD. ineq.
constraints (exact response H not given) = 43.7% | Opt. McD.

A:={(f,p) | f=H and E,[H] € [5.5,7.5]} | "=37.9% ouQ

11-median velocity num o
Aﬂ{(f,u)‘ o AR km . ] } = 30.0% ouQ

AN (f, 1) ‘ u-median obliquity = 75} "="36.5% ouQ

AN (f, ) ‘ obliquity = Z p-a.s.} "="28.0% ouQ

Should we compare those bounds to the true P.O.F.7|

One should be careful with such comparisons in presence of asymmetric information

The real question is how to construct a selective information set A.




Selection of the most decisive experiment

A = Asafe U Aunsafe
Asate = {11, f) € A: p[f(X) = a] <€}
Aunsafe = {(:ua f) c A: :uf(X) > a’] > 6}

Experiments P (G, P)

Ex: ®,(G,P) = P[X € A By (G, P) = Ep[G]
dsafe(q)> — 1111 @(fa /UJ>7 ou P @(fa lu)
fnue-Asafe f,/LE-Asafe
dunsafe(@) = F Melﬁlf @(fa #)7 Sup @<f7 PJ)
, unsafe f;MEAunsafe




Selection of the most decisive experiment

Jsafe(q)l)
___

Junsafe ((I)l )

Jsafe ((I)Z)
S —

Junsafe ((1)2)

Jsafe ((I)S)
ey

Junsafe ((1)3)

Jsafe ((I)él)
5—’

Junsafe ((1)4)




Selection of the most predictive experiment

LA) <PGX)>al <U(A)

@ If your objective is to have an “accurate” prediction of P|G(X) < 6
in the sense that U(A) — L(A) is small, then proceed as follows:

@ Let Ap . denote those scenarios in A that are compatible with
obtaining outcome ¢ from experiment E.

@ [ he experiment that is most predictive even in the worst case is
defined by a minimax criterion: we seek

E* € argmin ( sup (Z/((AE.JE(AE‘C))).

experiments F \outcomes c

sup  U(Ag.) — L(Ap.:)

outcomes ¢




@ T[his idea of experimental selection can be extended to plan several
experiments in advance, i.e. to plan campaigns of experiments.




Plan several experiments in advance, i.e. campaigns of experiments

@ This is a kind of infinite-dimensional Cluedo, played on spaces of
admissible scenarios, against our lack of perfect information about
reality, and made tractable by the reduction theorems.
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Seismic Safety Assessment of Truss Structures

Seismogram from U. C. Santa Barbara
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Ground
Acceleration

|“'_"4’|:=
—n

— min( Yield Strain
- Axial Strain )

F(a) = min, (S; — [|Yi|loo)

S@ . Yield s

‘rain of member 2

Y;(t): Axia,

strain of member 7
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Ground — min( Yield Strain
Acceleration - Axial Strain )

We want to certify that

> F(a) < 0] <e
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Matsuda-Asano shape function (mean power spectrum)

s(w) =

w2 w?

g

(W2—w?)2+462w2w?2

White noise

Filter

Ground acceleration




OuUQ vs Filtered White Noise
A: Set of measures 1 on a

Maximum grounded acceleration bounded
Mean power spectrum given

./4 Hwn



Vulnerability Curves (vs earthquake magnitude)
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»—» Max PoF
<+«—a Min PoF

A involves 600 random
variables with unknown
distribution
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Modeling in the frequency domain

W
I .— Z((A6k_5’ A6k—47 A@k_g) COS(QTFCUkt)
k=1

+ (A6k—2, Ask—1, Ask) sin(2mwyt))

wk::% 1"=20s W :=100

% OT al® dt < a%‘x
ﬁ AI: (A17°"7A6W)
P|A € B(0, max)| =1




Esteva’s semi-empirical expression

q o aoe)\ML
Imax <« (RO_|_R)2

||4 Epicentral Distance

Place of

Epicenter
Interest

R: source to site distance
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E[AZ] = b,

a’ s(wg)
b6k—j — Ifzax W s(wn)]

7€{0,...,5}

Matsuda-Asano shape function

w2 w?

¢« — g
s(w) . — (w2 w2)2—|—4§2w 02
wy: natural frequency ot the site.
¢,: natural damping factor of the site.




Modeling in the frequency domain

Number of truss structure (electric tower) members : 198

Number of random Fourier coefficients (with unknown pdf): 600

Dimension of the Reduced Problem 1200

Reduced problem solved with a Differential Evolution Algorithm
modified to use large-scale parallel computing resources

Differential Evolution Algorithm population size 40

High performance computer cluster: 88 cores

shc (PSAAP) with 11 core-4 nodes (44 total)
foxtrot (DANSE) with 4 core-12 nodes, 11/12 (44 total)

Convergence time: 15 hours

Number of iterations: 2000
Number of function evaluations: 35,000 to 50,000



Punch lines
and
Important points to remember



OuQ is the business of finding optimal bounds on quantities
of interest given the information at hand.

You want to estimate (I)(C;'7 D)
Example (I)(f7 ,LL) L= ,u[f 2 CZ]

You only know (G, D) E ./4

You (G, P) U(A) = sup D(f,u)

compute ] (f,p)EA

L(A):= iInf &
(A= int ®(f0
The first thing to do in UQ problem is to identify the
quantity of interest(®) whose value we are tying to predict and
quantify the information at hand (define the information set A).




OUQ can be seen as form of interval /sensitivity
analysis but instead of maximizing and minimizing
( e maximize and minimize

|
) over (f,u) € A.

min h(x) /\/

o
<
D
—
&
M




OUQ can be seen as form of interval /sensitivity
analysis but instead of maximizing and minimizing
h(x) over x € |a,b| we maximize and minimize

®(f, ) over (f,p) € A.




OuQ problems are not directly computationally tractable
(optimization variables are infinite dimensional) but using
the reduction theorems found in OUQ we can turn them
into (computationally tractable ) finite dimensional
optimization problems.

{f: X >R, ueP(X)}

k
Cf: X =R, ueP(X) “:Zak5$k>




Even after reduction these problems can be very large, highly
nonlinear and non-convex so we need Mystic to solve them
and Pathos to run Mystic on large computer clusters

(without the need to adapt Mystic to the cluster).

e mystic:
— a highly-configurable optimization framework

e pathos:

— adistributed parallel graph execution framework providing a high-level
programmatic interface to heterogeneous computing

« OUQ + mystic + pathos:

— calculations of uncertainties cast as highly-constrained massively
parallel global optimization problems



OUQ can drive experimental planning

Range of prediction for ¢ given A:

R(qlA) := Sup (¢ ey g7] —inf(s e Eplgy)
R(q|A) small < A very predictive

Let Ap . denotes those scenarios in ¢ that
are consistent with getting outcome c run exp't By
for some experiment c.

The optimal next experiment E™* satisfies a

minmax criterion, i.e. E* is the most -_— -
predictive even in the least predictive
outcome:

run exp't Fi

E* mimimizes sup; )4 R(q|lA)




In OUQ each piece of information is a constraint
on an optimization problem.

Optimization concepts (binding, active) transfer to
UQ concepts

Binding but non

f active constraint
Non binding | 4
constraint \ e Active constraint
A Extremizer/
Worst case scenario

L




With OUQ information may not propagate through hierarchies

One can consider hierarchies (directed acyclic graphs) of OUQ modules:

information on
intermediate
quantities

information on
Input quantities

-l

Figure: Because OUQ is a sharp information propagation scheme, the results of
sensitivity analysis (“inverse OUQ" ) give non-trivial insights into the roles of the
various pieces of input information. Some inputs may even be irrelevant!

C ]—).
information on

final quantity
of interest




OouUQ leads to sparse information trees/graphs




OouUQ leads to sparse information trees/graphs




OUQ is well adapted to exascale computing

OUQ optimization problems can naturally be divided into smaller ones,
which can then be solved concurrently

! 1

Each new piece of information acts as a new constraint for OUQ optimization problems

New information can be added and/or modified on the fly

Information can be coded and processed at different levels of complexity




OUQ Is well adapted to exascale computing

OUQ bounds are sharp and identify (ir)relevant information

: 1

It is not necessary to code all that is known (“too much information kills information”)

We can use exascale and OUQ to design a scheme where information is
coded and processes at different levels of complexity and the most relevant/important
elements are coded/processed first.

Exascale computing can lead to a new paradigm for scientific investigation (optimal
strategies of experimental design, hierarchical information processing, new language)



UQ can be applied to Exascale computing in several places

Exascale computing will allow us to quantify uncertainties and
compute optimal intervals of confidence and make optimal
decisions for very complex systems (for such systems the
reduced optimization problems would still be very large).

Paiak



UQ can be applied to Exascale computing in several places

Mike McKerns is currently developing an OUQ app that will allow
for a OUQ analysis of other proxy apps (treated as black box input
output systems), these OUQ app should allow for the identification
of key variables, major vulnerabilities and sources of uncertainties
In these other apps and it is designed to be user friendly.

/,l‘\-,_/E*“-‘/'

" L\M

.+ .




UQ can be applied to Exascale computing in several places

If we combine Exascale with the generalization of OUQ to sample
data, then we will be able to compute digital libraries for optimal
statistical tests and play information wars/games

UQ can also be applied to Exascale in many other specific places,
but for these other applications it is very important to identify the
QOI and the information at hand (this requires a close collaboration
with someone from LLNL or LANL).



Scientific Computation of
Optimal Statistical Estimators




Solving PDEs: Two centuries ago

A. L. Cauchy
(1789-1857)

e S. D. Poisson
¥ (1781-1840)
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Solving PDEs: Now.
Au=f




Paradigm shift
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J. V. Neumann
(1903-1957)

H. Goldstine
(1913-2004)
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Wher_e are we at In finding statistical estimators?

Percentage Points of the Chi-Square Distribution

Degrees of Probability of a larger value of x b
Freedom 0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05
1 0.000 0.004 0.016 0.102 0.455 1.32 2.71 3.84
2 0.020 0.103 0.211 0.575 1.386 2.77 4.61 5.99
3 0.115 0.352 0.584 5 b 2.366 4.11 6.25 7.81
4 0.297 0.711 1.064 1.923 3.357 5.39 7.78 9.49
5 0.554 1.145 1.610 2.675 4.351 6.63 9.24 11.07
6 0.872 1.635 2.204 3.455 5.348 7.84 10.64 12.59
7 1.239 2.167 2.833 4.255 6.346 9.04 12.02 14.07
a8 1.647 2.733 3.490 5.071 7.344 10.22 13.36 15.51
CCRd¥Semerom 4 2.088 3.325 4.168 5.899 8.343 11.39 14.68 16.92
10 2.558 3.940 4.865 6.737 9,342 12.55 15.99 18.31
11 3.053 4.575 5.578 7.584 10.341 13.70 17.28 19.68
12 3.571 5.226 6.304 8438  11.340  14.85 18.55 21.03
13 4.107 5.892 7.042 9299  12.340  15.98 19.81 22.36
14 4.660 6.571 7790 10165 13339 17.12 21.06 23.68
where 15 5.229 7.261 8547  11.037 14339 1825 22.31 25.00
16 5.812 7.962 LR LT, LI LT ) 23.54 26.30
7. . 17 6.408 8.672 10.085 12792 16338  20.49 24.77 27.59
X<ls Chi-squared, 18 701S 0390 10865 13675 17338 2160 2599  28.87
2 stands for summation, 19 p & el T L SO 3 MR A P U T L s el a3 B e TR
0 |5 the Gbsewed Valuesl ; 20 8.260 10.851 12.443 15.452 19.337 23.83 2841 31.41
. the ey el:telj values 22 0.542 12.338 14.041 17.240 21.337 26.04 30.81 33.92
g 15 P : 24 10.856  13.848 15659  19.037 23.337  28.24 33.20 36.42
26 12.198 15379 17292 20.843 25336 3043 35.56 38.89
28 13.565 16.928 18.939 22.657 27.336 32.62 37.92 41.34
30 14.953  18.493 20599 24478 29336  34.80 40.26 43.77
40 22.164 26.509 29.051 33.660 39.335 45.62 51.80 55.76
50 27.707 34764  37.689 42942 49335  56.33 63.17 67.50

L)
]

37.485 43.188 46.459 52.294 59.335 66.98 74.40 79.08




Where are we at In finding statistical estimators?

Estimate
(G, P)
Available information

(P,G) e A
+ (sample) data

+ (sample) data

'

0(data)



Scientific computing of optimal statistical estimators

Estimate
(G, P)
Available information

(P,G) e A
+ (sample) data

+ (sample) data

'

0(data)



