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The UQ challenge in the certification context

You want to certify that

Problem

and



The UQ challenge in the certification context

You want to certify that

You only know



Optimal bounds on



OUQ problems are a priori infinite dimensional, 
non-convex and highly constrained

But as in linear programming
OUQ problems reduce to searches over finite dimensional 

families of extremal scenarios of 

The dimension of the reduced problem is proportional
to the number of probabilistic inequalities that 

describe



A simple example
What is the least upper bound on

If all you know is

and ?

Answer



Answer

You are given one pound of play-doh. 
How much mass can you put above a while
keeping  the seesaw balanced  around m?

Markov’s inequality



Reduction theorems

Theorem



Reduction of optimization variables



Literature

Non-convex and infinite dimensional optimization problems
Can be considered as a generalization of classical Chebyshev inequalities

History of classical inequalities: Karlin, Studden (1966, Tchebycheff
systems with applications in analysis and statistics)

Connection between Chebyshev inequalities and optimization theory
• Mulholland & Rogers (1958, Representation theorems for distribution functions)
• Godwin (1973, Manipulation of voting schemes: a general result)
• Isii (1959, On a method for generalization of Tchebycheff’s inequality

1960, The extrema of probability determined by generalized moments
1962, On sharpness of Techebycheff-type inequalities)

• Olhin & Pratt (1958, A multivariate Tchebycheff inequality)
• Classical Markov-Krein theorem (Karlin, Studden, 1958)
• Dynkin (1978, Sufficient statistics &  extreme points)
• Karr (1983, Extreme points of probability measures with applications)
• Artzner et al (1997, risk measures, value at risk, etc…)
• Betsimas & Popescu (2008, convex optimization approach to inequalities in prob. theo.



Literature

Our work: Further generalization to
• Independence constraints
• More general domains (Suslin spaces) 
(non metric, non compact)

• More general classes of functions (measurable) 
(non continuous, non-bounded)

• More general classes of probability measures
• More general constraints (inequalities, on measures and 
functions)

Theory of majorization

• Marshall & Olkin (1979, Inequalities: Theory of majorization and its applications)



Inequalities of
• Anderson (1955, the integral of a symmetric unimodal function over a symmetric
convex set and some probability inequalities)

• Hoeffding (1956, on the distribution of the number of successes in independent trials)
• Joe (1987, Majorization, randomness and dependence for multivariate distributions)
• Bentkus, Geuze, Van Zuijlen (2006, Optimal Hoeffding like inequalities under a 
symmetry assumption)

• Pinelis (2007, Exact inequalities for sums of asymmetric random variables with 
applications.
2008, On inequalities for sums of bounded random variables)

Our proof rely on

• Winkler (1988, Extreme points of moment sets)
• Follows from an extension of Choquet theory (Phelps 2001, lectures on Choquet’s
theorem) by Von Weizsacker & Winkler (1979, Integral representation in the set of
solutions of a generalized moment problem)

• Kendall (1962, Simplexes & Vector lattices)



Another simple example

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi & M. Ortiz 
“Optimal uncertainty quantification for legacy data observations of Lipschitz functions”



The effect of information



The effect of information



The effect of information



The reduced problem



Problem formulation



The reduced problem



The reduced problem



Application: Optimal concentration inequality

McDiarmid inequality



Reduction of optimization variables

Theorem



Explicit Solution m=2
Theorem m = 2

OUQ bound   a=1

Corollary

C = {(1, 1)}
hC(s) = a (1 s1)D1 (1 s2)D2



Explicit Solution m=3
Theorem m = 3 D1 D2 D3



Caltech Small Particle Hypervelocity Impact Range

G

Projectile velocity

Plate thickness

Plate Obliquity

Perforation area

We want to certify that



Caltech Hypervelocity Impact Surrogate Model

Projectile velocity

Plate thickness

Plate Obliquity

Deterministic surrogate model for the perforation area (in mm^2)

Thickness, obliquity, velocity: independent random variables

Mean perforation area: in between 5.5 and 7.5 mm^2



Optimal bound on the probability of non perforation



Optimal bound on the probability of non perforation

The measure of probability can be reduced to the tensorization of
2 Dirac masses on thickness, obliquity and velocity

Application of the reduction theorem



The optimization variables can be reduced to the tensorization
of 2 Dirac masses on thickness, obliquity and velocity

Support Points at iteration 0



Numerical optimization

Support Points at iteration 150



Numerical optimization

Support Points at iteration 200



Velocity and obliquity marginals each collapse to a single Dirac mass. The plate 
thickness marginal collapses to have support on the extremes of its range.

Iteration
1000

Probability non-perforation maximized by  distribution supported on minimal, 
not maximal, impact obliquity. Dirac on velocity  at a non extreme value.



Important observations

Extremizers are singular

They identify key players
i.e. vulnerabilities of the physical system

Extremizers are attractors



Initialization with 3 support points per marginal

Support Points at iteration 0



Initialization with 3 support points per marginal

Support Points at iteration 500



Initialization with 3 support points per marginal

Support Points at iteration 1000



Initialization with 3 support points per marginal

Support Points at iteration 2155



Initialization with 5 support points per marginal

Support Points at iteration 0



Initialization with 5 support points per marginal

Support Points at iteration 1000



Initialization with 5 support points per marginal

Support Points at iteration 3000



Initialization with 5 support points per marginal

Support Points at iteration 7100



Unknown response function G

Constrain on the mean perf. area

Modified Lipschitz continuity constrain on response function

Objective

Constrain on input variables



Legacy Data 

32 data points
(steel-on-aluminium shots A48–
A81) from summer 2010 at 
Caltech’s SPHIR facility:

These constrain the value 
of G at 32 points 



The numerical results demonstrate agreement with the Markov bound

Only 2 data points out of 32 carry information about the optimal bound



Legacy Data

32 data points
(steel-on-aluminium shots A48–
A81) from summer 2010 at 
Caltech’s SPHIR facility:

Only A54 and A67 carry information

The other 30 data points carry 
no information about least upper bound
and could have be ignored.



h

v

Position Weight

Dimensional collapse

At the optimum only the v marginal has support on 2 points





OUQ with sausage around a model



One should be careful with such comparisons in presence of asymmetric information

The real question is how to construct a selective information set A.

Optimal bounds for other admissible sets



Selection of the most decisive experiment

Experiments

Ex:



Selection of the most decisive experiment



Selection of the most predictive experiment

E1 E2 E3 E4



E1 E2 E3 E4

F1 F2 F3



Plan several experiments in advance, i.e. campaigns of experiments



Seismic Safety Assessment of Truss Structures



F min( Yield Strain 
- Axial Strain )

Ground
Acceleration



F min( Yield Strain 
- Axial Strain )

Ground
Acceleration

We want to certify that



Historical Data Method

1940 Elcentro

2010 Haiti

1999 Izmit
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Matsuda-Asano shape function (mean power spectrum)



OUQ vs Filtered White Noise



Vulnerability Curves (vs earthquake magnitude)

A involves 600 random 
variables with unknown 
distribution



Modeling in the frequency domain



Esteva’s semi-empirical expression



Matsuda-Asano shape function

j {0, . . . , 5}
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Modeling in the frequency domain

Number of random Fourier coefficients (with unknown pdf): 600
Dimension of the Reduced Problem 1200

Reduced problem solved with a Differential Evolution Algorithm
modified to use large-scale parallel computing resources

High performance computer cluster: 88 cores

Differential Evolution Algorithm population size 40

Convergence time: 15 hours
Number of iterations: 2000
Number of function evaluations: 35,000 to 50,000

Number of truss structure (electric tower) members : 198

shc (PSAAP) with 11 core-4 nodes (44 total) 
foxtrot (DANSE) with 4 core-12 nodes, 11/12 (44 total)



Punch lines 
and

Important points to remember



OUQ is the business of finding optimal bounds on quantities 
of interest given the information at hand.

You want to estimate

Example

You only know

You
compute



h(x)

x
a b



f

A



OUQ problems are not directly computationally tractable 
(optimization variables are infinite dimensional) but using 
the reduction theorems found in OUQ we can turn them 
into (computationally tractable ) finite dimensional 
optimization problems. 



Even after reduction these problems can be very large, highly 
nonlinear and non-convex so we need Mystic to solve them 
and Pathos to run Mystic on large computer clusters 
(without the need to adapt Mystic to the cluster). 

• mystic: 
– a highly-configurable optimization framework 

• pathos: 
– a distributed parallel graph execution framework providing a high-level 

programmatic interface to heterogeneous computing

• OUQ + mystic + pathos:
– calculations of uncertainties cast as highly-constrained massively 

parallel global optimization problems



OUQ can drive experimental planning



f

A

In OUQ each piece of information is a constraint
on an optimization problem.

Optimization concepts (binding, active) transfer to 
UQ concepts

Non binding
constraint

Binding but non
active constraint

Active constraint

Extremizer/
Worst case scenario



With OUQ information may not propagate  through hierarchies



OUQ leads to sparse information trees/graphs
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OUQ leads to sparse information trees/graphs

1

3 4
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OUQ is well adapted to exascale computing
OUQ optimization problems can naturally be divided into smaller ones, 
which can then be solved concurrently

Each new piece of information acts as a new constraint for OUQ optimization problems

Information can be coded and processed at different levels of complexity 

These problems have a natural implementation on massively parallel computing clusters

New information can be added and/or modified on the fly



It is not necessary to code all that is known (“too much information kills information”) 

OUQ bounds are sharp and identify (ir)relevant information 

We can use exascale and OUQ to design a scheme where information is 
coded and processes at different levels of complexity and the most relevant/important
elements are coded/processed first.

Exascale computing can lead to a new paradigm for scientific investigation (optimal 
strategies of experimental design, hierarchical information processing, new language)

OUQ is well adapted to exascale computing



UQ can be applied to Exascale computing in several places

Exascale computing will allow us to quantify uncertainties and 
compute optimal intervals of confidence and make optimal 
decisions for very complex systems (for such systems the 
reduced optimization problems would still be very large).



UQ can be applied to Exascale computing in several places

Mike McKerns is currently developing an OUQ app that will allow 
for a OUQ analysis of other proxy apps (treated as black box input 
output systems), these OUQ app should allow for the identification
of key variables, major vulnerabilities and sources of uncertainties 
in these other apps and it is designed to be user friendly.



UQ can be applied to Exascale computing in several places

If we combine Exascale with the generalization of OUQ to sample 
data, then we will  be able to compute digital libraries for optimal 
statistical tests and play information wars/games

UQ can also be applied to Exascale in many other specific places, 
but for these other applications it is very important to identify the
QOI and the information at hand (this requires a close collaboration
with someone from LLNL or LANL). 



Scientific Computation of 
Optimal Statistical Estimators



Solving PDEs: Two centuries ago

A. L. Cauchy 
(1789-1857)

S. D. Poisson 
(1781-1840)



Solving PDEs: Now.



Paradigm shift

J. V. Neumann 
(1903-1957)

H. Goldstine
(1913-2004)



Where are we at in finding statistical estimators?



Where are we at in finding statistical estimators?



Scientific computing of optimal statistical estimators


