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Main Question
Can we, to some degree,  turn a scientific problem 
into a UQ problem and, to some degree, solve it as 
such in an automated fashion using techniques 
developed to deal with missing information in 
epistemic and model uncertainty?



− div(a∇u) = g, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1)

Ω ⊂ Rd ∂Ω is piec. Lip.

a unif. ell.
ai,j ∈ L∞(Ω)

Problem: Find a method for solving (1) 
as fast as possible to a given accuracy

Example

log10(a)



Multigrid Methods

Multiresolution/Wavelet based methods
[Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 1998]

Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 1978]

[Mandel et al., 1999,Wan-Chan-Smith, 1999, Xu and Zikatanov, 2004, Xu and
Zhu, 2008], [Ruge-Stüben, 1987]

• Linear complexity with smooth coefficients

Severely affected by lack of smoothnessProblem

Robust/Algebraic multigrid

• Some degree of robustness but problem 
remains open with rough coefficients

Why?
Don’t know how to bridge scales with rough 
coefficients!

Interpolation operators are unknown



Low Rank Matrix Decomposition methods

Fast Multipole Method: [Greengard and Rokhlin, 1987]

Hierarchical Matrix Method: [Hackbusch et al., 2002]

[Bebendorf, 2008]:

N lnd+3N complexity



Their process of discovery is based on intuition, 
brilliant insight, and guesswork

Common theme between these methods 

Can we turn this process of discovery into an algorithm?



Yes by identifying an underlying information gameAnswer:

Identify game Play game

[Owhadi 2015, Multi-grid with rough coefficients
and Multiresolution PDE decomposition from
Hierarchical Information Games, arXiv:1503.03467]

N ln2N complexityResulting method:

and finding an optimal strategy for playing the game

This is a theorem



Resulting method:

H1
0 (Ω) =W

(1) ⊕aW(2) ⊕a · · ·⊕aW(k) ⊕a · · ·

(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

For v ∈W(k)

C1
2k
≤ kvka

k div(a∇v)kL2(Ω)
≤ C2

2k

Theorem

< ψ,χ >a:=
R
Ω
(∇ψ)Ta∇χ = 0 for (ψ,χ) ∈W(i) ×W(j), i 6= j

kvk2a :=< v, v >a=
R
Ω
(∇v)T a∇v

Looks like an eigenspace decomposition



Quacks like an eigenspace decomposition

w(k) = F.E. sol. of PDE in W(k)

Can be computed independently

B(k): Stiffness matrix of PDE in W(k)

Theorem λmax(B
(k))

λmin(B(k))
≤ C

Just relax in W(k) to find w(k)

u = w(1) + w(2) + · · ·+ w(k) + · · ·



u
=

w(1) w(2) w(3)

w(4) w(5) w(6)

8× 10−3

1.5× 10−3 4× 10−4 4× 10−5

0.030.14

+

+

+

+

Multiresolution decomposition of solution space

Solve time-discretized wave equation (implicit time steps)
with rough coefficients in O(N ln2N)-complexity

Swims like an eigenspace decomposition



Doesn’t  have the complexity of an eigenspace decomposition

Theorem

Can be performed and stored in

V: F.E. space of H1
0 (Ω) of dim. N

V =W(1) ⊕aW(2) ⊕a · · ·⊕aW(k)

The decomposition

O(N ln2N) operations



ψ
(1)
i χ

(2)
i χ

(3)
i

χ
(4)
i χ

(5)
i

χ
(6)
i

Basis functions look like and behave like wavelets:
Localized and can be used to compress the operator

and locally analyze the solution space



Discovery process (
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

φ1, . . . ,φm ∈ L2(Ω)

u− u∗
L2(Ω)

Player A Player B
Chooses
g ∈ L2(Ω) Sees

Ω
uφ1, . . . , Ω uφm

Chooses u∗ ∈ L2(Ω)kgkL2(Ω) ≤ 1

Max Min

Identify underlying 
information game

Measurement functions:



Player A

Player B

3

1

-2

-2

Deterministic zero sum game

Player A’s payoff

Player A & B both have a blue and a red marble
At the same time, they show each other a marble

How should A & B play the (repeated) game?



Game theory

John Von Neumann

John Nash

Player A

Player B

3

1

-2

-2
A’s expected payoff
= 3pq + (1− p)(1− q)− 2p(1− q)− 2q(1− p)
=1− 3q + p(8q − 3) =− 1

8 for q = 3
8

q 1− q

p

1− p

Optimal strategies 
are mixed strategies

Optimal way to
play is at random



Abraham Wald

The best strategy for A is to play at random
Player’s B best strategy live 

in the Bayesian class of estimators 

Player A Player B
Chooses
g ∈ L2(Ω) Sees

R
Ω
uφ1, . . . ,

R
Ω
uφm

Chooses u∗ ∈ L2(Ω)kgkL2(Ω) ≤ 1 °°u− u∗°°
L2(Ω)

Continuous game but as in decision theory
under compactness it can be approximated
by a finite game



Player B’s class of mixed strategies

(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

(
− div(a∇v) = ξ in Ω,

v = 0 on ∂Ω,

ξ: Random field

u∗(x) := E
£
v(x)

¯̄ R
Ω
v(y)φi(y) dy =

R
Ω
u(y)φi(y) dy,∀i

¤Player B’s bet

g ∈ L2(Ω)
Pretend that player A  is choosing g at random

Player B’s best bet? min max problem
over distribution of ξ

Player’s B optimal strategy?



Theorem

ψi(x) := Eξ∼N (0,Γ)
h
v(x)

¯̄̄ R
Ω
v(y)φj(y) dy = δi,j , j ∈ {1, . . . ,m}

i
ψi: Elementary gambles/bets

ψi
Gamblets

Elementary gambles form deterministic 
basis functions for  player’s B bet

Player B’s bet if
R
Ω
uφj = δi,j , j = 1, . . . ,m

u∗(x) =
Pm

i=1 ψi(x)
R
Ω
u(y)φi(y) dy

ξ ∼ N (0,Γ)Computational efficiency



Depend onWhat are these gamblets?

Example

Γ(x, y) = δ(x− y)
φi(x) = δ(x− xi)

Ω

xi

x1

xm

a = Id ψi: Polyharmonic splines
[Harder-Desmarais, 1972][Duchon 1976, 1977,1978]

ai,j ∈ L∞(Ω) ψi: Rough Polyharmonic splines
[Owhadi-Zhang-Berlyand 2013]

• Γ: Covariance function of ξ (player’s B decision)
• (φi)mi=1: Measurements functions (rules of the game)

[Owhadi, 2014]
arXiv:1406.6668



What is player’s B best choice for

Γ(x, y) = E
£
ξ(x)ξ(y)

¤
What is player’s B best strategy?

Γ = L
L = − div(a∇·)

R
Ω
ξ(x)f(x) dx ∼ N (0, kfk2a)

kfk2a :=
R
Ω
(∇f)Ta∇f

Why? See algebraic generalization

?



Theorem

u∗(x) is the F.E. solution of (1) in span{L−1φi|i = 1, . . . ,m}
ku− u∗ka = infψ∈span{L−1φi:i∈{1,...,m}} ku− ψka

If Γ = L then

The recovery is optimal (Galerkin projection)

L = − div(a∇·)(
− div(a∇u) = g, x ∈ Ω,

u = 0, x ∈ ∂Ω,(1)



Theorem ψi: Unique minimizer of(
Minimize kψka
Subject to ψ ∈ H1

0 (Ω) and
R
Ω
φjψ = δi,j , j = 1, . . . ,m

Pm
i=1 wiψi minimizes kψka

over all ψ such that
R
Ω
φjψ = wj for j = 1, . . . ,m

Theorem
Optimal variational properties

Variational characterization



Selection of measurement functions

Theorem ku− u∗ka ≤ H
λmin(a)

kgkL2(Ω)

φi = 1τi τi

Ω

diam(τi) ≤ H

τj

Indicator functions of aExample

Partition of Ω of resolution H



Elementary gamble

ψi

(
− div(a∇u) = g, x ∈ Ω,

u = 0, x ∈ ∂Ω,(1)

Your best bet on the value of u

τi

Ωτj

1
0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

given the information thatR
τi
u = 1 and

R
τj
u = 0 for j 6= i



Exponential decay of gamblets

TheoremR
Ω∩(B(τi,r))c(∇ψi)

Ta∇ψi ≤ e−
r
lH kψik2a

x-axis slice

ψi

ψi

log10
¡
10−10 + |ψi||

¢x-axis slice

4

−10

r

Ω

τi



r

Ω

τi
Sr

Theorem

ku− u∗,locka ≤ 1√
λmin(a)

HkgkL2(Ω)

u∗,loc(x) =
Pm

i=1 ψ
loc,r
i (x)

R
Ω
u(y)φi(y) dy

If r ≥ CH ln 1
H

No loss of accuracy if
localization ∼ H ln 1

H

ψloc,ri : Minimizer of(
Minimize kψka
Subject to ψ ∈ H1

0 (Sr) and
R
Sr

φjψ = δi,j

for τj ∈ Sr

Localization  of the 
computation of gamblets



Formulation of the hierarchical game



Hierarchy of nested Measurement functions

φ
(1)
2 = 1

τ
(1)
2

φ
(2)
2,3 = 1τ(2)2,3

φ
(k)
i1,...,ik

with k ∈ {1, . . . , q}
φ
(k)
i =

P
j ci,jφ

(k+1)
i,j

τ
(1)
2 τ

(2)
2,3

τ
(3)
2,3,1

φ
(3)
2,3,1 = 1τ(3)2,3,1

Example

φ
(1)
i1

φ
(2)
i1,j1

φ
(2)
i1,j2

φ
(2)
i1,j3

φ
(2)
i1,j4

φ
(3)
i1,j2,k1

φ
(3)
i1,j2,k2

φ
(3)
i1,j2,k3

φ
(3)
i1,j2,k4

φ
(k)
i : Indicator functions of a
hierarchical nested partition of Ω of resolution Hk = 2

−k



i
Π1,2i

I1 I2 I3

j ∈ Π1,2i ⊂ Π2I Π2,3j

Π1,3i

τ
(1)
i τ

(2)
j

φ
(1)
i φ

(2)
i φ

(3)
i

φ
(4)
i φ

(5)
i φ

(6)
i

In the discrete setting simply aggregate elements
(as in algebraic multigrid)



Player A Player B
Chooses
g ∈ L2(Ω)

Formulation of the hierarchy of games

kgkL2(Ω) ≤ 1

(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

Must predict

Sees {
Ω
uφ

(k)
i , i ∈ Ik}

u and {
Ω
uφ

(k+1)
j , j ∈ Ik+1}



Player B’s best strategy(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

(
− div(a∇v) = ξ in Ω,

v = 0 on ∂Ω,

ξ ∼ N (0,L)

u(k)(x) := E
£
v(x)

¯̄ R
Ω
v(y)φ

(k)
i (y) dy =

R
Ω
u(y)φ

(k)
i (y) dy, i ∈ Ik

¤Player B’s bets

Fk = σ(
R
Ω
vφ

(k)
i , i ∈ Ik) v(k)(x) := E

£
v(x)

¯̄
Fk
¤

Theorem Fk ⊂ Fk+1
v(k)(x) := E

£
v(k+1)(x)

¯̄
Fk
¤

The sequence of approximations form a martingale under 
the mixed strategy emerging from the game



Accuracy of the recovery

Theorem ku− u(k)ka ≤ Hk

λmin(a)
kgkL2(Ω)

Hk := maxi diam(τ
(k)
i )

φ
(k)
i = 1

τ
(k)
i

τ
(k)
i

diam(τ
(k)
i ) ≤ Hk



u(1) u(2) u(3)

u(4) u(5) u(6)

log10
ku−u(k)ka

kuka

log10
ku−u(k)ka
kuka

−3.5 −12k k

In a discrete setting the last step of the game recovers 
the solution to numerical precision



Gamblets Elementary gambles form a hierarchy of deterministic 
basis functions for  player’s B hierarchy of bets

Theorem u(k)(x) =
P

i ψ
(k)
i (x)

R
Ω
u(y)φ

(k)
i (y) dy

ψ
(k)
i : Elementary gambles/bets at resolution Hk = 2

−k

ψ
(k)
i (x) := E

h
v(x)

¯̄̄ R
Ω
v(y)φ

(k)
j (y) dy = δi,j , j ∈ Ik

i
ψ
(1)
i ψ

(2)
i ψ

(3)
i

ψ
(4)
i ψ

(5)
i ψ

(6)
i



Theorem

V(k) ⊂ V(k+1)

V(k) := span{ψ(k)i , i ∈ Ik} ψ
(1)
i1

ψ
(2)
i1,j1

ψ
(2)
i1,j2

ψ
(2)
i1,j3

ψ
(2)
i1,j4

ψ
(3)
i1,j2,k1

ψ
(3)
i1,j2,k2

ψ
(3)
i1,j2,k3

ψ
(3)
i1,j2,k4

Gamblets are nested

ψ
(k)
i (x) =

P
j∈Ik+1 R

(k)
i,j ψ

(k+1)
j (x)



R
(k)
i,j = E

£ R
Ω
v(y)φ

(k+1)
j (y) dy

¯̄ R
Ω
v(y)φ

(k)
l (y) dy = δi,l, l ∈ Ik

¤Interpolation/Prolongation operator

1
0 0

0

R
(k)
i,j

Your best bet on the value of
R
τ
(k+1)
j

u

given the information thatR
τ
(k)
i
u = 1 and

R
τl
u = 0 for l 6= i

τ
(k)
i R

(k)
i,j

τ
(k+1)
j



At this stage you can finish with
classical multigrid 

But we want multiresolution decomposition



Elementary gamble

Ω

0
0

0

χ
(k)
i

0

0
0

0
0τ

(k)
i τ

(k)
j

0
0

0
0

Your best bet on the value of u

given the information thatR
τ
(k)
i

u = 1,
R
τ
(k)

i−
u = −1 and

R
τ
(k)
j

u = 0 for j 6= i

1
0
0

-1

τ
(k)
i−



+1−1

χ
(k)
i = ψ

(k)
i − ψ

(k)
i−

+1

−1
+1−1

i = (i1, . . . , ik−1, ik)

i− = (i1, . . . , ik−1, ik − 1)

ψ
(1)
i1

ψ
(2)
i1,j1

ψ
(2)
i1,j2

ψ
(2)
i1,j3

ψ
(2)
i1,j4

+1−1



ψ
(1)
i χ

(2)
i χ

(3)
i

χ
(4)
i χ

(5)
i

χ
(6)
i

χ
(k)
i = ψ

(k)
i − ψ

(k)
i−



Theorem

W(k+1): Orthogonal complement of V(k) in V(k+1)

with respect to < ψ,χ >a:=
R
Ω
(∇ψ)T a∇χ

H1
0 (Ω) = V

(1) ⊕aW(2) ⊕a · · ·⊕aW(k) ⊕a · · ·

Multiresolution decomposition of the solution space 

V(k) := span{ψ(k)i , i ∈ Ik}
W(k) := span{χ(k)i , i}



Theorem

u(k+1) − u(k) = F.E. sol. of PDE in W(k+1)

u
=

u(1) u(2) − u(1) u(3) − u(2)

u(4) − u(3) u(5) − u(4) u(6) − u(5)

8× 10−3

1.5× 10−3 4× 10−4 4× 10−5

0.030.14

+

+

+

+

Multiresolution decomposition of the solution

Subband solutions u(k+1) − u(k)
can be computed independently



Uniformly bounded condition numbers

A
(k)
i,j :=

­
ψ
(k)
i ,ψ

(k)
j

®
a

B
(k)
i,j :=

­
χ
(k)
i ,χ

(k)
j

®
a

4.5
log10(

λmax(A
(k))

λmin(A(k))
)

log10(
λmax(B

(k))
λmin(B(k))

)

Theorem
λmax(B

(k))

λmin(B(k))
≤ C

Just relax!
In v ∈W(k)

to get
u(k) − u(k−1)



c
(1)
i

c
(2)
j

c
(3)
j

c
(4)
j
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c
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j

u =
P

i c
(1)
i

ψ
(1)
i

kψ(1)i ka
+
Pq

k=2

P
j c
(k)
j

χ
(k)
j

kχ(k)j ka

0 1000 2000 3000 4000
-4

-2

0

2

4
x 10

-5

Coefficients of the solution in the gamblet basis

c
(6)
j



Operator Compression

Throw 99% of the coefficients

u

Gamblets behave like wavelets but they are adapted to the 
PDE and can compress its solution space

Gamblet compression

Compression ratio = 105
Energy norm relative error = 0.07



Fast gamblet transform

Nesting A(k) = (R(k,k+1))TA(k+1)R(k,k+1)

Level(k) gamblets and stiffness matrices can be computed
from level(k+1) gamblets and stiffness matrices

Well conditioned linear systems

ψ
(k)
i = ψ

(k+1)
(i,1) +

P
j C

(k+1),χ
i,j χ

(k+1)
j C(k+1),χ = (B(k+1))−1Z(k+1)

Localization
Z
(k+1)
j,i := −(e(k+1)j − e(k+1)j− )TA(k+1)e

(k+1)
(i,1)

Underlying linear systems have uniformly bounded 
condition numbers

The nested computation can be localized without  
compromising accuracy or condition numbers

O(N ln2N) complexity



Theorem

Localizing (ψ
(k)
i )i∈Ik and (χ

(k)
i )i to subdomains of size

≥ CHk ln2 1
Hk

≥ CHk(ln2 1
Hk
+ ln 1

² )

Cond. No (B(k),loc) ≤ C

°°u− u(1),loc −Pq−1
k=1(u

(k+1),loc − u(k),loc)
°°
a
≤ ²

The number of operations to achieve
accuracy ² is ∼ N ln2N + ln 1

²
ln 1

²

Theorem

Complexity O(N ln2N)



u(3) − u(2)8× 10−3

u(2) − u(1)0.03

u(1)0.14

.
.
.

u(1)

ϕi, A
h,Mh χ

(q)
i , B

(q)ψ
(q)
i , A(q) u(q) − u(q−1)

ψ
(q−1)
i , A(q−1) χ

(q−1)
i , B(q−1) u(q−1) − u(q−2).

.
.

.
.
.

χ
(3)
i , B(3)ψ

(3)
i , A(3) u(3) − u(2)

ψ
(2)
i , A(2) χ

(2)
i , B(2) u(2) − u(1)

ψ
(1)
i , A(1)

ψ
(1)
i

χ
(2)
i

χ
(3)
i

ψ
(1)
i

ψ
(2)
i

ψ
(3)
i

Parallel 
operating
diagram 

both in space 
and in

frequency



Identification of the optimal prior/mixed strategy in that setting

Ax = b

Φx = y

bT b ≤ 1

A: Known n× n symmetric
positive definite matrix

b: Unknown element of Rn

Approximate solution x of

Based on the information that

Φ: Known m× n
rank m matrix (m < n)

y: Known element of Rm

Generalization to linear systems of equations



x− x∗
2

Player A Player B
Chooses
b ∈ Rn

Sees
y = Φx

Chooses x∗

Game theoretic formulation

bT b ≤ 1

Ax = b

Zero sum game
Best way to play: Mixed strategy

Max Min



Player B’s mixed strategy

Ax = b AX = ξ
ξ ∼ N (0, Q)

Player’s B bet

x∗ = E X|ΦX = y = Ψy



kxk2K−1 := xTK−1x

Accuracy of the recovery

kx− x∗kK−1 = minz∈Rm kQ−
1
2 b−Q− 1

2A
1
2K

1
2ΦT zk

K = A−1QA−1

Theorem

Player B’s optimal decision

Q = A K = A−1

Theorem

kx− x∗kA = minz∈Rm kA−
1
2 b− A− 1

2ΦT zk



Perspectives

How is this related to model uncertainty?

Motivations for developing this kind of framework



Solving PDEs: Two centuries ago

A. L. Cauchy 
(1789-1857)

S. D. Poisson 
(1781-1840)



Solving PDEs: Now.



Find the best climate model now

Problem
• Incomplete information
on underlying processes

• Limited computation capability
• You don’t know P
• You have limited data

Find a 95% interval of confidence on average 
global temperatures in 50 years



Can a machine compute the best climate model?

?
2 Major problems

• Even if you have access to the most 
powerful computer in the universe, what 
do you compute?

• The space of models is infinite and calculus 
on a computer is discrete and finite. 

Need a framework to turn this problem into 
a well posed one.

Need a calculus to manipulate infinite 
dimensional information structures



E(candidate,model(data))

Player A Player B
Chooses candidate Sees data

Chooses model

Framework: Game/Decision Theory



Game theory and statistical decision theory

John Von Neumann Abraham WaldJohn Nash

The best strategy is to play at random
Obtained by finding the worst prior in
the Bayesian class of estimators 

Leads to optimization problems over measures
over spaces of measures and functions
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