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BRITTLENESS OF BAYESIAN INFERENCE AND NEW SELBERG
FORMULAS∗

HOUMAN OWHADI† AND CLINT SCOVEL‡

Abstract. The incorporation of priors [H. Owhadi, C. Scovel, and T.J. Sullivan, Electronic H.
Stat., 2013] in the Optimal Uncertainty Quantification (OUQ) framework [H. Owhadi, C. Scovel, T.J.
Sullivan, M. McKerns, and M. Ortiz, SIAM Rev., 2013] reveals brittleness in Bayesian inference; a
model may share an arbitrarily large number of finite-dimensional marginals with, or be arbitrarily
close (in Prokhorov or total variation metrics) to, the data-generating distribution and still make the
largest possible prediction error after conditioning on an arbitrarily large number of samples. The initial
purpose of this paper is to unwrap this brittleness mechanism by providing (i) a quantitative version
of the Brittleness Theorem of [H. Owhadi, C. Scovel, and T.J. Sullivan, Electronic H. Stat., 2013] and
(ii) a detailed and comprehensive analysis of its application to the revealing example of estimating the
mean of a random variable on the unit interval [0,1] using priors that exactly capture the distribution
of an arbitrarily large number of Hausdorff moments.

However, in doing so, we discovered that the free parameter associated with Markov and Krĕın’s
canonical representations of truncated Hausdorff moments generates reproducing kernel identities corre-
sponding to reproducing kernel Hilbert spaces of polynomials. Furthermore, these reproducing identities
lead to biorthogonal systems of Selberg integral formulas.

This process of discovery appears to be generic: whereas Karlin and Shapley used Selberg’s integral
formula to first compute the volume of the Hausdorff moment space (the polytope defined by the first
n moments of a probability measure on the interval [0,1]), we observe that the computation of that
volume along with higher order moments of the uniform measure on the moment space, using different
finite-dimensional representations of subsets of the infinite-dimensional set of probability measures on
[0,1] representing the first n moments, leads to families of equalities corresponding to classical and new
Selberg identities.
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1. Introduction

Optimal Uncertainty Quantification (OUQ) [32] provides a framework for the com-
putation of optimal bounds on quantities of interest—given a set of available information
and specified assumptions. Although this framework is neither frequentist nor Bayesian,
in that it is simply expressed in terms of optimization over measures and functions, a
natural question arises; what happens when we introduce priors into OUQ? In Owhadi
et al. [31], this program was initiated through the introduction of a further set of as-
sumptions, namely, the assumptions regarding the prior on the specified assumption set.
A corresponding reduction theory for optimization problems over measures on spaces
of measures is established, facilitating the computation of optimal bounds on prior and
posterior values and the analysis of the consequences of conditioning on observed data.
However, the completion of this program reveals Brittleness Theorems [31, Thm. 4.13,
Thm. 6.4, Thm. 6.9] for Bayesian Inference—mild assumptions are sufficient to demon-
strate that, given a set of priors, conditioning on observations can produce arbitrary
results, regardless of the sample size.
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Although it is known from the results of Diaconis and Freedman that the Bayesian
method may fail to converge or may converge towards the wrong solution (i.e., be incon-
sistent) if the underlying probability mechanism allows an infinite number of possible
outcomes [15] and that in these non-finite-probability-space situations, this lack of con-
vergence (commonly referred to as Bayesian inconsistency) is the rule rather than the
exception [16], it is also known, from the Bernstein–VonMises Theorem [7, 43] (see also
LeCam [29]), that consistency (convergence upon observation of sample data) does in-
deed hold, under some regularity conditions, if the data-generating distribution of the
sample data belongs to the finite dimensional family of distributions parameterized by
the model. Furthermore, although it is also known that this convergence may fail under
model misspecification [44, 21, 33, 2, 3, 28, 30, 23] (i.e., when the data-generating dis-
tribution does not belong to the family of distributions parameterized by the model), it
is natural to wonder whether a “close enough” model has good convergence properties:
see e.g. [18, 37, 19] and in particular G. E. P. Box’s question [6, p. 74] “Remember that
all models are wrong; the practical question is how wrong do they have to be to not be
useful?”

The Brittleness theorems [31, Thm. 4.13, Thm. 6.4, Thm. 6.9] suggest that there
may be no such thing as a “close enough” model if Box’s question is answered in the
classical framework of Bayesian sensitivity analysis (where given the data and a class
of priors one computes optimal bounds on posterior values); indeed, if “closeness” is
defined (i) as sharing an arbitrarily large finite number of finite-dimensional marginals
or (ii) using the Prokhorov or total variation metrics, then the posterior values of such
“close” models may be as distant as possible after conditioning on an arbitrarily large
number of sample data.

The primary motivation for this paper is to unwrap the mechanism causing this brit-
tleness by providing (i) a quantitative version of the Brittleness Theorem [31, Thm. 4.13]
and (ii) a detailed and comprehensive analysis of its application to the informative exam-
ple from [31, Ex. 4.16] of estimating the mean of a random variable on the unit interval
using priors that exactly capture the distribution of an arbitrary large number of Haus-
dorff moments. In this example, the probability distribution μ† of X is an unknown ele-
ment of the set of all possible probability distributions on [0,1], i.e. μ†∈A :=M([0,1]).
The set of prior probability distributions π on μ∈A (i.e., π∈M(A)) is defined as the set
of priors π under which the vector of truncated Hausdorff moments (Eμ[X], . . . ,Eμ[X

n])
is uniformly distributed on the truncated Hausdorff moment set Mn⊂Rn defined as
the set of q=(q1, . . . ,qn)∈Rn such that there exists a probability measure μ on [0,1]
with Eμ[X

i]= qi for i∈{1, . . . ,n} (Mn is the polytope of Rn corresponding to the set of
possible values for the first n moments of a measure of probability on the interval [0,1])).
In this case, the computation of optimal bounds on posterior values leads naturally to
the calculation of the Lebesgue volume of certain subsets of the set Mn of truncated
Hausdorff moments.

Curiously, whereas Karlin and Shapley [26] used Selberg’s integral formula to first
compute the volume of the truncated Hausdorff moment space Mn, inadvertently stim-
ulating the development of the theory of the Selberg integral formulas1, it appears
that computing the volume of the truncated Hausdorff moment space Mn using differ-
ent finite-dimensional representations of Mn in the infinite-dimensional space M(

[0,1]
)

1In discussing the history and importance of the Selberg integral formulas, Forrester and Waardan
[20, Pg. 3] mention their first application: “For over thirty years the Selberg integral went essentially
unnoticed. It was used only once—in the special case α=β=1,γ=2—in a study by S. Karlin and L.S.
Shapley relating to the volume of a certain moment space, published in 1953.”
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reveals a new family of Selberg integral formulas (see Theorems 8.1, 8.2, 8.4, and Corol-
lary 8.3). This process of discovery appears to be generic and we will now describe its
main principles.

Let Ψ be the function mapping each measure μ∈M(
[0,1]

)
into its first n moments

Ψ(μ) :=
(
EX∼μ[X],EX∼μ[X

2], . . . ,EX∼μ[X
n]
)
. (1.1)

Note that

Mn :=Ψ
(
M(

[0,1]
))

. (1.2)

The classical and new Selberg identities are obtained by computing the volume of Mn

using different finite dimensional representations in M(
[0,1]

)
. These finite dimensional

representations are obtained by restricting Ψ to convex sums of Dirac masses, i.e., to
measures μ∈M(

[0,1]
)
of the form

μ=

N∑
j=1

λjδtj (1.3)

where 0≤ t1< · · ·<tN ≤1 and λ1, . . . ,λN >0 with
∑N

j=1λj =1. Note that if μ is of the

form (1.3), then Ψ(μ)=(q1, . . . ,qn) with qi=
∑N

j=1λjt
i
j .

For each measure μ of the form (1.3), we define i(μ), the index of μ, as the number of
support points (Diracs) of μ, counting interior points with weight 1 and boundary points
with weight 1/2. We call μ “principal” if i(μ)=(n+1)/2, “canonical” if i(μ)=(n+2)/2,
“upper” if support points include 1, “lower” if support points do not include 1. Then
Theorem 5.1 asserts that each q∈ Int(Mn) has a unique upper and lower principal
representation. Since the volume of Mn is independent of the representation used to
compute it, computing that volume with a lower and an upper representation leads to
an equality corresponding to classical Selberg identities.

Now let t∗∈ (0,1). Theorem 5.2 asserts that every point in the interior of Mn has a
unique canonical representation whose support contains t∗, and when t∗=0 or 1, then
there exists a unique principal representation whose support contains t∗. Since the vol-
ume of Mn, and the higher order moments of the uniform measure restricted to Mn, are
independent of the representation used to compute them, computing these “moment
moments” for all possible values of t∗ leads to a family of equalities corresponding to
new Selberg integral formulas and reproducing kernel Hilbert spaces. Consequently,
the free parameter t∗ associated with Markov and Krĕın’s canonical representations of
truncated Hausdorff moments (see Section 5) which, along with their principal repre-
sentations, so handily provides us with the means to prove the quantitative Brittleness
Theorem 3.6, is found to generate reproducing kernel identities corresponding to re-
producing kernel Hilbert spaces of polynomials (see Sections 6 and 7). Furthermore,
these reproducing identities lead to biorthogonal systems of Selberg integral formulas
described in Theorems 8.1, 8.2, and 8.4 (see also Corollary 8.3).

Moreover, although not done here, this process can easily be generalized in simple
ways. For example, the argument is valid using any measure on the moment space, not
just the uniform measure, and so the introduction of alternatives for which the integrals
can likewise be computed, can be used. In addition, it also appears possible that this
process can be repeated with multiple free parameters t∗,1, . . . ,t∗,k to obtain even richer
classes of (new) Selberg integral formulas.
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2. OUQ with priors
To understand OUQ one simply starts with C̆ebys̆ev [25, Pg. 4] “Given: length,

weight, position of the centroid and moment of inertia of a material rod with a density
varying from point to point. It is required to find the most accurate limits for the weight
of a certain segment of this rod.” According to Krĕın [25], although C̆ebys̆ev did solve
this problem, it was his student Markov who supplied the proof in his thesis. See Krĕın
[25] for an account of the history of this subject along with substantial contributions by
Krĕın. We take this mindset and apply it to more complex problems, extending the base
space to functions and measures, and, instead of developing sophisticated mathematical
solutions, develop optimization problems and reductions, so that their solution may
be implemented on a computer, as in Bertsimas and Popescu’s [9] convex optimization
approach to C̆ebys̆ev inequalities, and the Decision Analysis framework of Smith [41]. In
addition to the determination of optimal bounds as a function of available information
and assumptions, the OUQ methodology has the substantial benefit of demanding that
different components of an organization work together to come up with information and
assumptions that, together, they believe in.

Let us begin with a general formulation of OUQ with priors, where the base as-
sumptions are sets of (function, measure) pairs and the secondary assumptions are
sets of priors, that is, sets of probability measures defined on the base assumption set.
Later, when we apply to Bayesian inference, we will restrict to a base assumption set
consisting of a set of measures and a secondary assumption consisting of a set proba-
bility measures on the base assumption set. To that end, let X be a topological space,
M(X ) the space of Borel probability measures on X , and let G⊆F(X ) be a subset
of the real-valued measurable functions F(X ) on X . Let A be an arbitrary subset of
G×M(X ), and let Φ: G×M(X )→R be a function producing a quantity of interest.
In the context of uncertainty quantification one is interested in estimating Φ(f†,μ†),
where (f†,μ†)∈G×M(X ) corresponds to an unknown reality. If A represents all that
is known about (f†,μ†) (in the sense that (f†,μ†)∈A and that any (f,μ)∈A could, a
priori, be (f†,μ†) given the available information) then [32] shows that the quantities

U(A) := sup
(f,μ)∈A

Φ(f,μ) (2.1)

L(A) := inf
(f,μ)∈A

Φ(f,μ) (2.2)

determine the inequality

L(A)≤Φ(f†,μ†)≤U(A) (2.3)

to be optimal with respect to the available information (i.e., (f†,μ†)∈A) as follows:
First, it is simple to see that the inequality (2.3) follows from (f†,μ†)∈A. Moreover,
for any ε>0 there exists a (f,μ)∈A such that

U(A)−ε<Φ(f,μ)≤U(A).

Consequently since all that we know about (f†,μ†) is that (f†,μ†)∈A, it follows that
the upper bound Φ(f†,μ†)≤U(A) is the best obtainable given that information. The
lower bound is clearly optimal in the same sense.

A classical example of a quantity of interest is the validation and certification quan-
tity Φ(f,μ) :=μ[f ≥a] where a is a safety margin. In the certification context one is
interested in showing that μ†[f†≥a]≤ ε where ε is a safety certification threshold (i.e.,
the maximum acceptable μ†-probability of the system f† exceeding the safety margin
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a). If U(A)≤ ε, then the system associated with (f†,μ†) is safe (given the informa-
tion represented by A). If L(A)>ε, then the system associated with (f†,μ†) is unsafe.
If L(A)≤ ε<U(A), then the safety of the system cannot be decided without making
further assumptions or gathering further information.

Although the OUQ optimization problems (2.1) and (2.2) are extremely large, we
have shown in [32] that an important subclass enjoys significant and practical finite-
dimensional reduction properties. In particular, for assumption sets corresponding to
linear inequality constraints on generalized moments, the search can be reduced to
one over probability measures that are products of finite convex combinations of Dirac
masses with explicit upper bounds on the number of Dirac masses.

To incorporate priors, we define a prior π to be a probability measure π∈M(A),
and define the value Φ̄(π) of π through the extended quantity of interest Φ̄ :M(A)→R

defined by

Φ̄(π) :=Eπ[Φ], π∈M(A).

We will defer the nontrivial and not uninteresting topics of measurability to when we
analyze the full OUQ with priors framework, but note that Ressel [34] has established
important and relevant results for us already, in particular the measurability of the
validation and certification quantity of interest discussed above under mild conditions.

We call the value Eπ[Φ] the prior value, and for a family of priors Π⊂M(A) we
note that the values

U(Π) := sup
π∈Π

Eπ

[
Φ
]

(2.4)

L(Π) := inf
π∈Π

Eπ

[
Φ
]

(2.5)

form a natural generalization of the notations U(A) and L(A). Moreover, in the same
way that U(A) and L(A) are optimal upper and lower bounds on Φ(f†,μ†) given the
information that (f†,μ†)∈A, U(Π) and L(Π) are optimal upper and lower bounds on
Eπ

[
Φ
]
given the information that π∈Π.

For conditioning on sample data in an observation space D, we begin by defining a
data map

D :A→M(D)

which specifies that D(f,μ)∈M(D) generates the data when the truth is (f,μ)∈A.
Then, given a prior π∈M(A), we define a probability measure

π�D∈M(A×D)
through

π�D
[
A×B

]
=E(f.μ)∼π

[
�A(f,μ)D(f,μ)[B]

]
, A∈B(A), B∈B(D),

where �A is the indicator function of the set A:

�A(f,μ) :=

{
1, (f,μ)∈A,

0, (f,μ) /∈A.

We denote the resulting D-marginal by π ·D∈M(D) which satisfies

π ·D[B] :=E(f,μ)∼π

[
D(f,μ)[B]

]
.
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Given an observation d∈D, to simultaneously avoid the ill-definedness of regular
conditional probabilities and incorporate uncertainty in the observation process, we
consider conditioning on an open subset B containing d such that π ·D[B]>0. The
naturalness of this positivity condition is fully discussed in [31], in particular it is easy
to show that if B is an open ball of center δ around the data d (noted Bδ) and if
the data is randomized and distributed according to π ·D, then the probability of the
event π ·D[Bδ]>0 is one. It is also shown in [31] that if the probability of the data
is uniformly bounded, in the Bayesian model class A, from above and below by that
of a reference measure (e.g., for all (f,μ)∈A, 1

αD(f0,μ0)≤D(f,μ)[Bδ]≤αD(f0,μ0) for
some reference measure D(f0,μ0)) then learning and robustness appear as antagonistic
properties: when α=1, the data is equiprobable under all measures in the model class,
the posterior values are equal to the prior values, the method is robust but learning is
not possible, and as α deviates from, learning becomes possible (posterior values depend
on the data) but the method becomes increasing brittle (the range of posterior values
converges towards that of the quantity of interest Φ).

To simplify notation, we henceforth drop the notational dependence of the set B on
the point d. The conditional expectation, given a prior π and data map D, conditioned
on a subset B∈B(D) such that π ·D[B]>0, is

Eπ�D

[
Φ
∣∣B]

=
E(f,μ)∼π

[
Φ(f,μ)D(f,μ)[B]

]
E(f,μ)∼π

[
D(f,μ)[B]

] .

To represent uncertainty regarding the data generating process, instead of a single
data map D :A→M(D), we instead specify a set

D=
{
D :A→M(D)

}
of data maps and represent our assumptions regarding the data with the statement
D∈D. Therefore, having specified a set Π of priors, and a set D of data maps, for an
open subset B⊆D, we define the set of all possible resulting product measures to be

Π�BD :=
{
π�D :π∈Π,D∈D, (π ·D)[B]>0

}
.

The notations U(Π) and L(Π) of (2.4) and (2.5) extend naturally to these conditional
expectations as

U(Π�BD) := sup
π�D∈Π�BD

Eπ�D

[
Φ
∣∣B]

L(Π�BD) := inf
π�D∈Π�BD

Eπ�D

[
Φ
∣∣B]

,

where we note that, just as for U(A), L(A), U(Π), and L(Π), U(Π�BD) and L(Π�B

D) are optimal upper and lower bounds on the posterior value Eπ�D

[
Φ
∣∣B]

, given the
assumptions that π∈Π, D∈D, and π ·D(B)>0.

We are now prepared to discuss the brittleness theorems of the next section. Indeed,
it is easy to see that

L(A)≤L(Π)≤U(Π)≤U(A) (2.6)

and

L(A)≤L(Π�BD)≤U(Π�BD)≤U(A).
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What Brittleness Theorem 3.2 will show is that, under mild conditions, regardless of
where the values L(Π) and U(Π) lie in (2.6) we have

L(Π�BD)≈L(A) and U(Π�BD)≈U(A),

that is, conditioning on the observed data, one can obtain any value between L(A) and
U(A) for the posterior value Eπ�D

[
Φ
∣∣B]

for some admissible prior π∈Π and data map
D∈D.

3. Quantification of Bayesian Brittleness
The following theorem is the Main Brittleness result of [31, Thm. 4.13]:

Theorem 3.1. Let A be a Suslin space, let Q be a separable and metrizable space, and
let Ψ: A→Q be measurable. Moreover, let Q⊆M(Q) be such that supp(Q)⊆Ψ(A) for
all Q∈Q. Suppose that, for all δ>0, there exists some Q∈Q such that

Eq∼Q

[
inf

μ∈Ψ−1(q)
D(μ)[B]

]
=0 (3.1)

and

Pq∼Q

[
sup

μ∈Ψ−1(q),D(μ)[B]>0

Φ(μ)> sup
μ∈A

Φ(μ)−δ

]
>0. (3.2)

Then

U(
Ψ−1Q

∣∣B)
=U(A). (3.3)

The following generalization of the Theorem 3.1 ([31, Thm. 4.13]) allows a weakening
of its assumptions while approximately obtaining its conclusion. We require, as in [31],
the data space D to be metrizable. We select a consistent metric, and for a data point
d∈D, let Bδ(d) denote the open ball of metric radius δ about d. To keep the notation
simple we omit reference to the base point d and denote this family of open balls about
d by {Bδ,δ≥0}, where B0=∅.
Theorem 3.2. For a metrizable topological space X , consider a topologized subset G⊂
F(X ) and the space of probability measures M(X ) equipped with the weak star topology.
Let A⊂G×M(X ) be Suslin, Q separable metrizable, and Ψ:A→Q Borel measurable.
Moreover, let Q⊂M(Q) be such that suppQ⊂Ψ(A),Q∈Q, and let τ ≥0. Suppose
there exists some Q∈Q,D∈D, and a continuous monotonically increasing function
h :R+→R with h(0)=0 such that

Q

({
q : inf

(f,μ)∈Ψ−1(q)
D(f,μ)[Bδ]≤ τ

})≥1−h(δ), δ >0. (3.4)

Fix δ>0. If ε≥0, ε′>0, and δ′>0 are three real numbers such that

Q

({
q : sup

(f,μ)∈Ψ−1(q),D(f,μ)[Bδ]>ε

Φ(f,μ)> sup
(f,μ)∈A

Φ(f,μ)−δ′
})

≥ε′ (3.5)

and

h(δ)+τ ≤ εδ′ε′

U(A)−L(A)
, (3.6)
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then we have

U(A)−2δ′≤U(
Ψ−1(Q)�Bδ

D
)≤U(A). (3.7)

If, for τ =0, there exists a δ∗>0 such that for all δ′>0 there exists some Q∈Q,D∈
D which satisfies (3.4) with a function h such that h(δ)=0, δ≤ δ∗, and which satisfies
(3.5) with ε=0, then we recover the conditions and the assertion of the Brittleness
Theorem [31, Thm. 4.13] for Bδ, δ≤ δ∗.

Remark 3.3. The proof of Theorem 3.2 also leads to the following result. For a
metrizable topological space X , consider a topologized subset G⊂F(X ) and the space of
probability measures M(X ) equipped with the weak star topology. Let A⊂G×M(X )
be Suslin, Q separable metrizable, and Ψ:A→Q Borel measurable. Moreover, let
Q⊂M(Q) be such that suppQ⊂Ψ(A),Q∈Q. It holds true that for δ>0

U(A)−v(δ)≤U(
Ψ−1(Q)�Bδ

D
)≤U(A). (3.8)

where the function v is defined by

v(δ) :=2inf

{
δ′>0

∣∣∣∣∣ δ′≥ (U(A)−L(A)
)

inf
Q∈Q,D∈D,ε>0,τ≥0

1−Q

({
q : inf(f,μ)∈Ψ−1(q)D(f,μ)[Bδ]≤ τ

})
+τ

εQ
({

q : sup(f,μ)∈Ψ−1(q),D(f,μ)[Bδ]>εΦ(f,μ)> sup(f,μ)∈AΦ(f,μ)−δ′
})

} (3.9)

for δ>0.

Remark 3.4. This brittleness is not a consequence of a lack of compactness of the
admissible set. Indeed, in the following section, the primary space of measures M(I)
is compact in the weak topology, as is any closed moment subset, and Theorem 3.6
describes a brittleness result.

Remark 3.5. It is true that this brittleness does not appear to be primarily due to
the Bayesian methodology, but is valid more generally. See Bahadur and Savage [10]
and Donoho [17] for similar results for statistical estimators, where it appears that the
mechanism generating the instability is analogous to that investigated here.

3.1. Application to a revealing example. To demonstrate that the assump-
tions of Theorem 3.2 are mild, we now use it to extend the Brittleness result of [31,
Ex. 4.16] to a simple but informative example. Here one is interested in estimating the
mean of a random variable X with unknown distribution on the unit interval I := [0,1].
Since our quantity of interest is Eμ† [X], where μ† is an unknown distribution on I,
in the notations of Section 2, we have X := I (since X is a random variable on I), G
consists only of the identity function (this example does not involve unknown functions
of X), A :=M(I) (the set of possible/admissible candidates for μ† is the set of all prob-
ability distributions μ on I), Φ(μ) :=Et∼μ[t] (our quantity of interest is the mean of the
random variable X), Q :=Rn and the map Ψ:M(I)→Rn is the map to the truncated
Hausdorff moments Ψ(μ) :=

(
Et∼μ[t

i]
)
i=1,...,n

(our set of prior distributions is defined

by constraining the distribution of the first n Hausdorff moments in Rn, for some fixed
n). Furthermore Q is the uniform Borel measure on Rn restricted to the Hausdorff
moment space Mn :=Ψ(M(I)) and then normalized to be a probability measure, that
is Π⊂M(M(I)

)
is the set of prior distributions on A=M(I) such that Ψμ∈M(Mn)

is uniformly distributed on the space Mn of first n Hausdorff moments.
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The Brittleness Theorem 3.2 implies (see [31, Ex. 4.16]) that if we observe (con-
dition on) k independent samples from X, i.e., D := Ik and Dkμ :=μ⊗···⊗μ (k-fold
tensorization) and B is the k-fold product of small enough balls centered on the data
then L(Π�BD)≈L(A) and U(Π�BD)≈U(A). In other words, although the set of
prior values of Eμ[X] is the single point { 1

2}, the optimal bounds on the posterior values
of Eμ[X] are zero and one irrespective of the number n of constraints on marginals and
the number k of observed samples if the data is observed with sufficient precision.

The following theorem provides a rigorous and quantitative statement and proof of
this implication for k=1. Although, for the sake of conciseness and clarity our analysis
is provided in the k=1 case, it generalizes to the situation where k is arbitrary. Indeed,
although counterintuitive, one can show that brittleness for the single sample case is
more difficult to obtain than for multiple samples. Since our main objective here is
to unwrap and scrutinize the mechanism causing brittleness in Bayesian inference, we
therefore chose to keep the presentation and our example as clear, concise, and simple
as possible to illustrate the generic and pervasive nature of this brittleness.

Therefore, we will now (i) consider the case of a single data point, i.e., k=1, D := I,
and D1μ :=μ (ii) use Theorem 3.2 to provide quantitative bounds on U(Π�BD) as a
function n of the number of marginal constraints defining the set of priors (iii) scrutinize
the brittleness causing mechanism through the proof of the following theorem.

Theorem 3.6. Let A :=M(I), Φ(μ)=Et∼μ[t], D= I, and Ψ:M(I)→Rn denote the
map to the truncated Hausdorff moments Ψ(μ)=

(
Et∼μ[t

i]
)
i=1,...,n

. Furthermore, let

Q denote the uniform Borel measure on Rn restricted to the Hausdorff moment space
Mn :=Ψ(M(I)) and then normalized to be a probability measure. Suppose that Q∈Q
and D1∈D. Then for δ>0 we have

1−4e
(2nδ

e

) 1
2n+1 ≤U(

Ψ−1(Q)�Bδ
D
)≤1. (3.10)

Remark 3.7. Alternatively, Theorem 3.6 asserts that for positive δ,δ′ satisfying

δ≤ 1

4n

(
δ′
)2n+1(

2e
)−2n

we have

1−2δ′≤U(
Ψ−1(Q)�Bδ

D
)≤1. (3.11)

4. Volume inequalities on the Hausdorff moment space
Karlin and Shapley [26, Thm. 15.2] (see also [27, Thm. 6.2]) computed the volume

of the space of truncated Hausdorff moments Mn of probability measures on the unit
interval to be

V ol
(
Mn

)
=

n∏
k=1

Γ(k)Γ(k)

Γ(2k)
, (4.1)

where Γ is the gamma function. To accomplish this, they used a Markov representation
of truncated moment points, as described in Krĕın [25] (see also [27, Ch. II]), combined
with the change of variables formula, followed by the evaluation of a Selberg integral.

Here we will refine their analysis to obtain volume inequalities on the Hausdorff
moment space which are used in the application of the Brittleness Theorem 3.2 to the
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proof of the Brittleness Theorem 3.6. Of the two main results, it is interesting to note
that the Mass Supremum Equality uses the canonical representation of moment points
combined with Markov’s Maximal Mass Theorem [25, Thm. 2.1] (see also [27, Thm. 4.1])
to change the “Inequality” to “Equality”, whereas the Mass Infimum Inequality instead
uses the principal representation, as in Karlin and Shapley’s proof of the volume formula
(4.1). All this terminology will be defined in the following Section 5 and comes from
Karlin and Studden [27]. This section will simply state the volume inequalities that we
need for Theorem 3.6.

To proceed, let us now fix terminology. Let I := [0,1], and let P(I) be the set of
Borel measures on I and M(I)⊂P(I) be the set of probability measures. Throughout
we will assume the weak star topology for these measures. For the system of functions

ui(t) := ti,t∈ I,i=0, . . . ,n

the Hausdorff moments of a measure μ∈P(I) is defined as the vector q∈Rn+1 with
coordinates qi=Eμ[ui]=Et∼μ[t

i]. It is well known (see e.g. [1, Cor. 15.7]) that the map

Ψ:P(I)→Rn+1

defined by Ψ(μ) :=
(
Et∼μ[t

i],i=0, . . . ,n
)
is affine and continuous. Furthermore, let the

Hausdorff moment space Mn+1⊂Rn+1 be the image Mn+1 :=ΨP(I) of the measures,
and let Mn defined by Mn+1=(1,Mn) be moments of a probability measures omitting
the zero-th moment. Equivalently, let P1 :R×Rn→Rn denote the projection mapping
(x0,x1, . . . ,xn) onto (x1, . . . ,xn) and let Ψ1=:P1Ψ. Then Mn=Ψ1M(I). We will abuse
notation by letting Ψ also denote the mapping Ψ1 restricted to the first-to-n-th order
moments of the probability measures

Ψ :M(I)→Mn⊂Rn,

and, for q∈Rn, let

Ψ−1q :=
{
μ∈M(I) :Ψμ= q

}
denote its set-valued inverse.

It follows from continuity that the moment set Mn+1 is a closed convex cone and
Mn is a compact convex set. Moreover, one can show that

Int(Mn+1)∩(1,Rn)=(1,Int(Mn)
)
, (4.2)

see e.g. [35, Cor. 6.5.1], so that a point q is interior to Mn if and only if (1,q) is interior
to Mn+1. Let V ol be the usual n-dimensional volume measure. Then, since Mn is
convex, by [8, Lem. 1.8.1]

V ol
(
Int(Mn)

)
=V ol

(
Mn

)
. (4.3)

Our first result is the Mass Supremum Equality.

Lemma 4.1. Let t∗∈ I, 0≤ε≤1, and consider the set Mn
ε ⊂Mn defined by

Mn
ε :=

{
q∈Mn :∃μ∈Ψ−1q :μ({t∗})≥ε

}
.

Then we have

V ol
(
Mn

ε

)
=(1−ε)nV ol

(
Mn

)
.
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Remark 4.2. Lemma 4.1 is valid for any system ui : I→R,i=1, . . . ,n of moment
functions which form a T-system per [27].

The second is the Mass Infimum Inequality.

Lemma 4.3. Let t∗∈ I, δ>0, and consider the set Mn
δ ⊂Mn defined by

Mn
δ :=

{
q∈Mn :∃μ∈Ψ−1q :μ

(
Bδ(t∗)

)
=0

}
.

Then we have

V ol
(
Mn

δ

)≥(
1−δ(2e)2n

)
V ol

(
Mn

)
.

The third is the Mass of First Moment Inequality.

Lemma 4.4. Let 0≤ δ≤ 1
2 . Then we have

δn
(
2e

)n≥ V ol
(
q∈Mn : q1∈ [1−δ,1]

)
V ol(Mn)

≥ δn.

5. Integral geometry of the Markov–Krĕın representations
Here we will describe the Markov–Krĕın representations of truncated moments and

begin the development of their integral geometry. The history of this subject begins
with C̆ebys̆ev and his student Markov’s thesis, followed by work by Krĕın and others,
where in [25] one can find, not only an historical sketch, but substantial contributions
by Krĕın. Indeed, it is clear from Karlin and Studden [27] that this subject owes a lot
to Krĕın. Consequently, we refer to the (principal and canonical) representations that
we use as Markov–Krĕın representations. It can be argued that the appropriate name
should be C̆ebys̆ev-Markov–Krĕın representations but this name is too long and so we
implicitly give credit to C̆ebys̆ev.

Now, following Karlin and Studden [27, Chapters II & IV], we describe the Markov–
Krĕın representations and determine their Jacobian determinants. We finish this section
by setting up the change of variables approach, in preparation for both the proofs of the
volume inequalities of Section 4 and all that follows. To wit, we define the index i(t)
of a strictly increasing set t of points 0≤ t1<t2< · · ·<tN ≤1 by counting the interior
points with weight 1 and boundary points with weight 1

2 . For a point q∈Mn we say
that a measure μ∈M(I) is a representing measure for q if Ψ(μ)= q and it is a weighted
sum of Dirac masses

μ=
N∑
j=1

λjδtj , λj >0,j=1, . . . ,N

for a strictly increasing set of points 0≤ t1<t2< · · ·<tN ≤1. In that case, we have the
formula

qi=
(
Ψ(μ)

)
i
=

N∑
j=1

λjt
i
j .

The index i(μ) of such a representing measure is defined to be the index i(t) of its set
of support points.
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A representing measure μ is called principal if i(μ)= n+1
2 and canonical if i(μ)≤

n+2
2 . For q∈ Int(Mn), [27, Thm. 2.1] asserts that i(μ)≥ n+1

2 for any representing
measure μ for q. A principal or canonical representation is called “lower” if its set
of support points does not include the right-hand endpoint 1 and “upper” if it does.
The following two results will be our main tools. The first is the principal representation,
see [27, Cor. 3.1].

Theorem 5.1. Every point q∈ Int(Mn) has a unique upper and lower principal repre-
sentation.

The second is the canonical representation which allows the specification of a pre-
determined point t∗∈ I in the support of the representing measure, see [27, Thm. 3.1],
combined with [27, Cor. 3.2] and [27, Cor. 3.1].

Theorem 5.2. For t∗∈ (0,1), every point q∈ Int(Mn) has a unique canonical repre-
sentation whose support contains t∗. When t∗=0 or 1, there exists a unique principal
representation whose support contains t∗.

What Theorem 5.2 doesn’t make clear is if the canonical representations converge
to these principal representation as t∗ tends to 0 or 1. They indeed do as we will see.
Let us define some notation that we will use henceforward. We consider two coordinate
representations of the interior of the regular unit simplex. In particular, let

TN ={(t1, . . . ,tN ) : 0<t1<t2< · · ·<tN <1}

denote the set of strictly increasing sequences of length N in the interior to I and

ΛN ={(λ1, . . . ,λN ) :λj >0, j=1, . . . ,N,

N∑
j=1

λj <1}.

denote the interior to the positive orthant restricted to λ ·�<1. Sometimes it will be
convenient to abuse this notation and shift indices so that

ΛN ={(λ0, . . . ,λN−1) :λj >0, j=0, . . . ,N−1,

N−1∑
j=0

λj <1}.

We will often use the fact that IN can be described by N ! copies of TN corresponding
to permuting the sequence.

We use the notation t for a vector with coordinates tj and similarly λ for a vector
with coordinates λj . We use the superscripts p for “principal” and c for “canonical”,
the subscripts o for “odd”, e for “even”, l for “lower”, and u for “upper”. Finally, we
purposefully ignore multiples of ±1 in all our determinant calculations. With proper
caution, this causes no harm since at the end of the day we take the absolute value.

5.1. Principal representations. Theorem 5.1 asserts that each q∈ Int(Mn)
has a unique upper and lower principal representation. We now define these represen-
tations as maps and compute their Jacobian determinants. We state these propositions
without proof, since these proofs are very similar to those for the canonical representa-
tions of propositions, 5.5 and 5.6.

First consider the odd case when n=2m−1. Then since n+1
2 =m is an integer,

it follows that the support of any lower principal representation contains neither end-
point and the support of any upper principal representation contains both endpoints.
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Consequently, Theorem 5.1 implies that each point in Int(M2m−1) has a unique lower
principal representation of the form

μ=

m∑
j=1

λjδtj , λj >0, j=1, . . . ,m,

m∑
j=1

λj =1 (5.1)

where 0<t1<t2< · · ·<tm<1. Therefore, consider the bijection

φp
ol :Λ

m−1×Tm→ Int(M2m−1)

defined by

φp
ol(λ,t)=Ψ

(m−1∑
j=1

λjδtj +(1−
m−1∑
j=1

λj)δtm

)

=
(m−1∑

j=1

λjt
i
j+(1−

m−1∑
j=1

λj)t
i
m

)2m−1

i=1
. (5.2)

It also follows that each point in Int(M2m−1) has a unique upper principal representa-
tion of the form

μ=λ0δ0+

m−1∑
j=1

λjδtj +λmδ1, λj >0, j=0, . . . ,m,

m∑
j=0

λj =1 (5.3)

where 0<t1<t2< · · ·<tm−1<1. Therefore, consider the bijection

φp
ou :Λ

m×Tm−1→ Int(M2m−1)

defined by

φp
ou(λ,t)=Ψ

(
λ0δ0+

m−1∑
j=1

λjδtj +(1−
m−1∑
j=0

λj)δ1

)

=
(m−1∑

j=1

λjt
i
j+(1−

m−1∑
j=0

λj)
)2m−1

i=1
. (5.4)

For an increasing sequence tj <tj+1 let

Δ(t) :=
∏
j<k

(tk− tj) (5.5)

denote the Vandermonde determinant (see e.g. [24, Pg. 400]) of the matrix with entries
[tij ], j=1, . . . ,N, i=0, . . . ,N−1. which we write as ΔN to emphasize the dimension of
t. We will also use the same formula for non-increasing sequences when we eventually
take the absolute value.

Proposition 5.3. When n=2m−1, the Jacobian determinants are

|det(dφp
ol)|(λ,t)=J p

ol(t)
(
1−

m−1∑
j=1

λj

)m−1∏
j=1

λj
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|det(dφp
ou)|(λ,t)=J p

ou(t)

m−1∏
j=1

λj

where

J p
ol(t) :=Δ4

m(t)

J p
ou(t) :=

m−1∏
j=1

t2j (1− tj)
2 ·Δ4

m−1(t).

Note that although each term appears to have the same multiplier
∏m−1

j=1 λj , in the

lower case this multiplier is the full product in on Λm−1 and in the upper case it is only
a partial product on Λm, that is, it is missing the λ0 term. Finally, let us observe the
symmetries under the reflection t �→1− t:

J p
ol(1− t)=J p

ol(t)

J p
ou(1− t)=J p

ou(t). (5.6)

Now consider the even case when n=2m. Since n+1
2 =m+ 1

2 is an integer plus 1
2 it

follows that the support of any lower principal representation contains the left endpoint
but not the right and any upper principal representation contains the right endpoint
but not the left. Let us first consider the lower representation. Theorem 5.1 implies
that every point in the interior Int(M2m) has a unique lower principal representation
of the form

μ=
m∑
j=1

λjδtj +(1−
m∑
j=1

λj)δ0, λj >0, j=1, . . . ,m,

m∑
j=1

λj <1

where 0<t1< · · ·<tm<1. Therefore, we consider the bijection

φp
el :Λ

m×Tm→ Int(M2m)

defined by

φp
el(λ,t)=Ψ

( m∑
j=1

λjδtj +(1−
m∑
j=1

λj)δ0

)
(5.7)

=
( m∑
j=1

λjt
i
j

)2m

i=1
. (5.8)

On the other hand, every point in the interior Int(M2m) has a unique upper principal
representation of the form

μ=

m∑
j=1

λjδtj +(1−
m∑
j=1

λj)δ1, λj >0, j=1, . . . ,m,

m∑
j=1

λj <1

where 0<t1< · · ·<tm<1. Therefore, we consider the bijection

φp
eu :Λ

m×Tm→ Int(M2m)
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defined by

φp
eu(λ,t)=Ψ

( m∑
j=1

λjδtj +(1−
m∑
j=1

λj)δ1

)
(5.9)

=
( m∑
j=1

λjt
i
j+(1−

m∑
j=1

λj)
)2m

i=1
. (5.10)

Proposition 5.4. When n=2m the Jacobian determinants are

|det(dφp
el)|(λ,t)=J p

el(t)

m∏
j=1

λj

|det(dφp
eu)|(λ,t)=J p

eu(t)
m∏
j=1

λj

where

J p
el(t) :=

m∏
j=1

t2j ·Δ4
m(t)

J p
eu(t) :=

m∏
j=1

(1− tj)
2 ·Δ4

m(t)

Here, instead of the reflection t �→1− t leaving the lower and upper invariant as in the
odd case (5.6), reflection swaps lower and upper:

J p
el(1− t)=J p

eu(t). (5.11)

5.2. Canonical representations. Theorem 5.2 asserts that, when t∗∈ (0,1),
every point in Int(Mn) has a unique canonical representation whose support contains
t∗, and when t∗∈{0,1}, it has a unique principal representation whose support contains
t∗. Therefore, every point in Int(Mn) has a unique representing measure μ such that

μ=
N∑
j=1

λjδtj , λj >0, j=1, . . . ,N,
N∑
j=1

λj =1 (5.12)

such that the sequence 0≤ t1<t2< · · ·<tN ≤1 contains t∗, where for t∗∈ (0,1), the
sequence has index n+1

2 or n+2
2 , and when t∗=0 or 1, the index is n+1

2 . Now let us

remove t∗ from the list and use the identity
∑N

j=1λj =1 to solve for the weight λt∗
corresponding to t∗. Changing notation from N �→N+1 and relabeling the indices, we
obtain that

μ=

N∑
j=1

λjδtj +
(
1−

N∑
j=1

λj

)
δt∗ , λ∈ΛN , (5.13)

where the resulting sequence

0≤ t1<t2< · · ·<tN ≤1
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does not contain t∗, and when t∗∈ (0,1), the removal of this interior point implies that
the resulting sequence has index n−1

2 or n
2 and when t∗=0 or 1, the removal of this

boundary point implies that the resulting sequence has index n
2 .

Consequently, for t∗∈ (0,1), to represent Int(Mn) we can split into four domains,
two corresponding to the two ways of producing index n−1

2 and two corresponding the
two ways of producing index n

2 . When n is even one of the two index n−1
2 configurations

corresponds to including t=0 in the sequence and not t=1 and the other corresponds to
including t=1 in the sequence and not t=0, while one of the two index n

2 configurations
corresponds to not allowing t=0 or t=1 and the other corresponds to including both
t=0 and t=1. When n is odd this relationships is reversed. Similarly, when t∗∈{0,1},
we can can split into two domains corresponding to the two ways of producing index n

2 .
However, we can show that the representations of index n−1

2 produce zero volume
and so can be excluded from the integral analysis. To that end, we only need to
consider the t∗∈ (0,1) case. Then let us decompose the set of sequences of index N̄ by
their endpoint configurations. That is, split such sequences into those which contain 0
but not 1, 1 but not 0, 0 and 1, and neither 0 or 1. Some of these components will be
empty. On any of these endpoint specific subdomains let

I ⊂{1, . . . ,N}
denote the indices of the interior points, so that in this notation we have

μ=
∑
j∈I

λjδtj +
∑
j∈Ic

λjδtj +
(
1−

N∑
j=1

λj

)
δt∗ , λ∈ΛN .

Moreover, for a sequence t, let t̊ denote the sequence of interior points, and define
T̊∗ := {̊t : t∈TN ,tj �= t∗, j=1, . . . ,N} to be the set of interior points which do not cover
t∗ and consider the map

φ :ΛN × T̊∗→ Int(Mn)

defined by

φ(λ,t̊)=Ψ
(∑
j∈I

λjδtj +
∑
j∈Ic

λjδtj +
(
1−

N∑
j=1

λj

)
δt∗

)

=
(∑
j∈I

λjt
i
j+

∑
j∈Ic

λjt
i
j+(1−

N∑
j=1

λj)t
i
∗
)n

i=1

where we note that the first sum
∑

j∈I λjt
i
j is over the interior points and the second∑

j∈Ic λjt
i
j over the endpoints which are fixed.

The dimension of the domain ΛN × T̊∗ is clearly N+ |I|. However, one can easily
show that

N+ |I|=2N̄ ,

so that in the case N̄ = n−1
2 , it follow that the dimension of this subdomain is N+ |I|=

2N̄ =n−1<n. Consequently, the image of this subdomain under the map φ has zero
volume in Mn. Since the domain corresponding to index n−1

2 is a disjoint union of two
such subdomains, the assertion is proved. Moreover, the subset consisting of sequences
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which cover t∗ also clearly has zero volume, so the constraint that the sequences not
cover t∗ can also be removed.

In conclusion, we can represent the volume V ol(Mn) using the representation

N∑
j=1

λjt
i
j+

(
1−

N∑
j=1

λj

)
ti∗, i=1, . . . ,n, (5.14)

defined on two subdomains corresponding to the two ways that the sequence

0≤ t1<t2< · · ·<tN ≤1

can have index n
2 . That is, when n is even, one subdomain corresponds to not allowing 0

or 1 and the other to including both 0 and 1. When n is odd, one subdomain corresponds
to including 0 and not 1 and the other to including 1 and not 0.

We now compute the Jacobian determinants. First consider the odd case, n=
2m−1, then sequences of index n

2 =m− 1
2 split into the lower and upper sequences{

0= t1<t2< · · ·<tm<1,

0<t1<t2< · · ·<tm=1.

Define the lower representation

φc
ol :Λ

m×Tm−1→ Int(M2m−1)

by

φc
ol(λ,t;t∗)=Ψ

(
λ0δ0+

m−1∑
j=1

λjδtj +(1−
m−1∑
j=0

λj)δt∗

)

=
(m−1∑

j=1

λjt
i
j+(1−

m−1∑
j=0

λj)t
i
∗
)2m−1

i=1
(5.15)

and the upper representation

φc
ou :Λ

m×Tm−1→ Int(M2m−1)

by

φc
ou(λ,t;t∗)=Ψ

(
λ0δ1+

m−1∑
j=1

λjδtj +(1−
m−1∑
j=0

λj)δt∗

)

=
(
λ0+

m−1∑
j=1

λjt
i
j+(1−

m−1∑
j=0

λj)t
i
∗
)2m−1

i=1
. (5.16)

Proposition 5.5. When n=2m−1, for t∗∈ (0,1), the Jacobian determinants are

|det(dφc
ol)|(λ,t;t∗)=J c

ol(t∗,t)
m−1∏
j=1

λj

|det(dφc
ou)|(λ,t;t∗)=J c

ou(t∗,t)
m−1∏
j=1

λj



100 BRITTLENESS OF BAYESIAN INFERENCE AND NEW SELBERG FORMULAS

where

J c
ol(t∗,t) := t∗

m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

t2j ·Δ4
m−1(t)

J c
ou(t∗,t) :=

(
1− t∗

)m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

(1− tj)
2 ·Δ4

m−1(t)

Moreover,

J c
ou(t∗,t)=J c

ol(1− t∗,1− t). (5.17)

Now consider the even case, n=2m. Then sequences of index n
2 =m split into the

lower and upper sequences {
0<t1<t2< · · ·<tm<1

0= t1<t2< · · ·<tm+1=1,

Therefore, we define the lower representation

φc
el :Λ

m×Tm→ Int(M2m)
by

φc
el(λ,t;t∗)=Ψ

( m∑
j=1

λjδtj +(1−
m∑
j=1

λj)δt∗

)

=
( m∑
j=1

λjt
i
j+(1−

m∑
j=1

λj)t
i
∗
)2m

i=1
. (5.18)

and the upper representation

φc
eu :Λ

m+1×Tm−1→ Int(M2m)
by

φc
eu(λ,t;t∗)=Ψ

(
λ0δ0+

m−1∑
j=1

λjδtj +λmδ1+(1−
m∑
j=0

λj)δt∗

)

=
(m−1∑

j=1

λjt
i
j+λm+(1−

m∑
j=0

λj)t
i
∗
)2m

i=1
. (5.19)

Proposition 5.6. When n=2m, for t∗∈ (0,1), the Jacobian determinants are

|det(dφc
el)|(λ,t;t∗)=J c

el(t∗,t)
m∏
j=1

λj

|det(dφc
eu)|(λ,t;t∗)=J c

eu(t∗,t)
m−1∏
j=1

λj ,

where

J c
el(t∗,t) :=

m∏
j=1

(tj− t∗)2 ·Δ4
m(t).
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J c
eu(t∗,t) := t∗

(
1− t∗

)m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

t2j (1− tj)
2 ·Δ4

m−1(t),

Finally, observe that if we extend the canonical representations to be defined for
t∗=0,1 by continuity, we obtain the following relations between the canonical represen-
tations evaluated at the endpoints and the principal representations:

J c
ol(0,t)≡0

J c
ou(0,t)=J p

ou(t)

J c
el(0,t)=J p

el(t)

J c
eu(0,t)≡0, (5.20)

|dφc
ol(0,t)|≡0

|dφc
ou(0,t)|= |dφp

ou(t)|
|dφc

el(0,t)|= |dφp
el(t)|

|dφc
eu(0,t)|≡0, (5.21)

J c
ol(1,t)=J p

ou(t)

J c
ou(1,t)≡0

J c
el(1,t)=J p

eu(t)

J c
eu(1,t)≡0, (5.22)

|dφc
ol(1,t)|= |dφp

ou(t)|
|dφc

ou(1,t)|≡0

|dφc
el(1,t)|= |dφp

eu(t)|
|dφc

eu(1,t)|≡0. (5.23)

5.3. Change of variables integral representations. In Karlin and Shapley’s
[26, Thm. 15.2] proof of the Hausdorff moment volume formula (4.1), they used the
lower principal representation φp

ol of (5.2) when n is odd and φp
el of (5.7) when n is even

combined with the change of variables formula. To develop this method so that it can
be used for the canonical representations, which are not bijections, it is convenient to
proceed in some generality. To begin, consider a representation

φ :W → Int(Mn),

where W ⊂Rn is open and φ is a continuously differentiable bijection. Then, since
φ is injective, by the change of variables formula for injective differentiable mappings
whose Jacobian determinant may vanish (see e.g. [42, Thm. 3.13] combined with Sard’s
Theorem [42, Thm. 3.14]), we conclude that

V ol
(
φ(W )

)
=

∫
W

|dφ|.

Moreover, since φ is surjective we have

φ(W )= Int(Mn)
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and from (4.3) we have

V ol
(
Mn

)
=V ol

(
Int(Mn)

)
so that we conclude

V ol
(
Mn

)
=

∫
W

|dφ|. (5.24)

To compute V ol
(
Mn

)
, Karlin and Shapley then evaluated the right-hand side by de-

termining the Jacobian determinant and then evaluating the resulting integral using a
Selberg integral formula.

However, more can be done along these lines. Indeed, applying the full change of
variables formula we obtain ∫

φ(W )

f =

∫
W

(
f ◦φ)|dφ|

for any function f :φ(W )→R that is integrable over φ(W ). In particular, since Mn is
compact, it follows using the same reasoning that was applied above to the case f ≡1,
that for any bounded measurable function f :Mn→R we have∫

Mn

f =

∫
W

(
f ◦φ)|dφ|. (5.25)

We now apply this to the component functions q �→ qi,i=1, . . . ,n on Mn where we abuse
notation and indicate them by the symbol qi. It may be profitable to also consider
nonlinear functions such as q �→ q2i but we will not do that here. Then, in this notation,
qi ◦φ=φi and (5.25) becomes ∫

Mn

qi=

∫
W

φi|dφ| (5.26)

That is, we have an integral representation of the mean Hausdorff moments.
However, to prove Lemma 4.1, instead of a principal representation, we use a family

of canonical representations from Section 5.2. In this case, utilizing the conclusion at
(5.14), the major difference with the previous discussion is that, instead of a single
bijection, there are two continuously differentiable injections

φk :Wk→ Int(Mn), k=1,2

that are volume filling in the sense that

V ol
(
Int(Mn)

)
=V ol

(
φ1(W1)∪φ2(W2)

)
and

φ1(W1)∩φ2(W2)=∅
and, instead of Wk,k=1,2 being open, there exists open sets Vk⊂Wk,k=1,2 such that

V ol(Wk)=V ol(Vk).

Then the analysis above can easily be repeated to conclude that∫
Mn

f =

∫
W1

f ◦φ1|dφ1|+
∫
W2

f ◦φ2|dφ2| (5.27)
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for any bounded measurable function f :Mn→R. In particular, we conclude∫
Mn

qi=

∫
W1

φi
1|dφ1|+

∫
W2

φi
2|dφ2|, (5.28)

is our primary integration identity for the mean Hausdorff moments to be used in the
next section.

6. Mean Hausdorff moments using the Markov–Krĕın representations
We are now prepared to derive integral representations of the mean truncated Haus-

dorff moments with respect to the uniform measure on Mn and show that the canonical
representations generate reproducing kernel identities corresponding to reproducing ker-
nel Hilbert spaces of n-th degree polynomials. These identities are used in Section 8
to derive biorthogonal systems of Selberg integral formulas. The mean moments with
respect to many other Selberg-type densities can also be computed but to keep this
presentation simple we will not do that here.

We will use Selberg’s result (see e.g. [20])

Sn(α,β,γ)=

n−1∏
j=0

Γ(α+jγ)Γ(β+jγ)Γ(1+(j+1)γ)

Γ(α+β+(n+j−1)γ)Γ(1+γ)
(6.1)

for the integrals

Sn(α,β,γ) :=

∫
In

n∏
j=1

tα−1
j (1− tj)

β−1|Δ(t)|2γdt, (6.2)

where Re(α)>0,Re(β)>0,Re(γ)>−min
(
1
n ,Re(α)/(n−1),Re(β)/(n−1)

)
.

We begin with the volume calculation and then proceed to higher moments using the
result of the volume calculation. The main idea of our approach is the following. Recall
from Section 5.1 that the lower and upper principal representations are each bijections
with Int(Mn) so that the volume V ol(Mn) can be computed using the change of vari-
ables result (5.24). For example, when n=2m−1, the lower principal representation φp

ol

defined in (5.2) and the upper principal representation φp
ol defined in (5.4), along with

the values of their Jacobian determinants from Proposition 5.3 produce two different
integral representations for V ol(Mn). Specifically, in the notation for Selberg’s formulas

(6.1) forthe integrals (6.2), using the identity
∫
Λm−1

(
1−∑m−1

j=1 λj

)∏m−1
j=1 λjdλ=

1
(2m−1)! ,

the lower representation yields

V ol(M2m−1)=

∫
Λm−1×Tm

|det(dφp
ol)|

=
(∫

Λm−1

(
1−

m−1∑
j=1

λj

)m−1∏
j=1

λjdλ
)∫

Tm

J p
ol

=
1

(2m−1)!

∫
Tm

J p
ol

=
1

(2m−1)!m!

∫
Im

J p
ol

=
1

(2m−1)!m!

∫
Im

Δ4
m(t)dt
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=
1

(2m−1)!m!
Sm(1,1,2). (6.3)

On the other hand, using the identity
∫
Λm

∏m−1
j=1 λjdλ=

1
(2m−1)! , the upper representa-

tion φp
ou yields

V ol(M2m−1)=

∫
Λm×Tm−1

|det(dφp
ou)|

=
(∫

Λm

m−1∏
j=1

λjdλ
)∫

Tm−1

J p
ou

=
1

(2m−1)!

∫
Tm−1

J p
ou

=
1

(2m−1)!(m−1)!

∫
Im−1

J p
ou

=
1

(2m−1)!(m−1)!

∫
Im−1

m−1∏
j=1

t2j (1− tj)
2 ·Δ4

m(t)dt

=
1

(m−1)!(2m−1)!
Sm−1(3,3,2). (6.4)

Combining the two results (6.3) and (6.4) we conclude the identity

1

(m−1)!
Sm−1(3,3,2)=

1

m!
Sm(1,1,2)

which is confirmed through direct calculation.
In the even case, where n=2m, we use the representation φp

el defined in (5.7) and
its Jacobian determinant from Proposition 5.4, along with the identity

∫
Λm

∏m
j=1λjdλ=

1
(2m)! , to conclude that

V ol(M2m)=
1

(2m)!m!

∫
Im

J p
el=

1

(2m)!m!
Sm(3,1,2). (6.5)

Using same identity, the upper representation φp
eu defined in (5.9) yields

V ol(M2m)=
1

(2m)!m!

∫
Im

J p
eu=

1

(2m)!m!
Sm(1,3,2). (6.6)

Equating the two we conclude that

Sm(1,3,2)=Sm(3,1,2)

which is well known from the symmetry of the Selberg formula in its first two arguments,
and corresponds to the change of variables t �→1− t. Consequently, we see how two
different integral representations of the volume V ol(Mn) generate identities.

However, the canonical representations form a one parameter family of representa-
tions of Int(Mn) and the value V ol(Mn) expressed in terms of the resulting one pa-
rameter family of integrals produces more interesting results. To see this, consider the
odd case n=2m−1, and the volume filling pair of representations φc

ol and φc
ou defined

in (5.15) and (5.16) with Jacobian determinants evaluated in Proposition 5.5. Apply
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the modified change of variables formula (5.28) in terms of these two representations,

and the identity
∫
Λm

∏m−1
j=1 λjdλ=

1
(2m−1)! , to obtain

V ol(M2m−1)=

∫
Λm×Tm−1

|dφc
ol|+

∫
Λm×Tm−1

|dφc
ou|

=

∫
Λm

m−1∏
j=1

λjdλ

∫
Tm−1

J c
ol+

∫
Λm

m−1∏
j=1

λjdλ

∫
Tm−1

J c
ou

=
1

(2m−1)!

∫
Tm−1

(J c
ol+J c

ou

)
=

1

(2m−1)!(m−1)!

∫
Im−1

(J c
ol+J c

ou

)
.

Therefore, showing the parameters, we conclude that for t∗∈ (0,1) we have

V ol(M2m−1)=
1

(2m−1)!(m−1)!

∫
Im−1

(J c
ol(t∗,t)+J c

ou(t∗,t)
)
dt. (6.7)

Since the identity (6.7) holds for all t∗∈ (0,1) it generates integral identities. For the
first, since the integrand is continuous in t∗ we can set t∗=0 to obtain

V ol(M2m−1)=
1

(2m−1)!(m−1)!

∫
Im−1

(J c
ol(0,t)+J c

ou(0,t)
)
dt,

but from Proposition 5.5 we have

J c
ol(0,t)≡0

and from (5.20)

J c
ou(0,t)=J p

ou(t)

so that we obtain

V ol(M2m−1)=
1

(2m−1)!(m−1)!

∫
Im−1

J p
ou(t)dt,

which we already knew from the volume calculation using the principal representation
(6.4). However, if we compute the first order differential invariant by differentiating
(6.7) with respect to t∗ at t∗=0 we obtain the first integral formula of Theorem 8.1.

Now consider the even case n=2m, and the volume filling pair of representations
φc
el and φc

eu defined in (5.18) and (5.19) with Jacobian determinants evaluated in Propo-
sition 5.6. Apply the modified change of variables formula (5.28) in terms of these two

representations, and the identities
∫
Λm

∏m
j=1λjdλ=

1
(2m)! and

∫
Λm+1

∏m−1
j=1 λidλ=

1
(2m)!

to obtain

V ol(M2m)=

∫
Λm×Tm

|dφc
el|+

∫
Λm+1×Tm−1

|dφc
eu|

=
(∫

Λm

m∏
j=1

λjdλ
)∫

Tm

J c
el+

(∫
Λm+1

m−1∏
j=1

λjdλ
)∫

Tm−1

J c
eu

=
1

(2m)!

∫
Tm

J c
el+

1

(2m)!

∫
Tm−1

J c
eu
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=
1

(2m)!m!

∫
Im

J c
el+

1

(2m)!(m−1)!

∫
Im−1

J c
eu.

Showing the parameters, we conclude that for t∗∈ (0,1) we have

V ol(M2m)=
1

(2m)!m!

∫
Im

J c
el(t∗,t)dt+

1

(2m)!(m−1)!

∫
Im−1

J c
eu(t∗,t)dt. (6.8)

Setting t∗=0 and using

J c
eu(0,t)≡0

from Proposition 5.6 and

J c
el(0,t)=J p

el(t)

from (5.20), we obtain

V ol(M2m)=
1

(2m)!m!

∫
Im

J c
el(0,t)dt+

1

(2m)!(m−1)!

∫
Im−1

J c
eu(0,t)dt

=
1

(2m)!m!

∫
Im

J p
el(t)dt

=
1

(2m)!m!

∫
Im

m∏
j=1

t2j ·Δ4
m(t)dt

=
1

(2m)!m!
Sm(3,1,2)

which we alread knew from the volume calculation using the principal representation
(6.5). However, if we compute the first order differential invariant by differentiating
(6.8) with respect to t∗ at t∗=0 we obtain the second integral formula of Theorem 8.1.

We can now proceed to compute the mean of the moments with respect to the
uniform measure on Mn using the volume identities (6.3), (6.4), (6.5), (6.6) from the
principal representations and (6.7) and (6.8) from the canonical representations. From
the identities (5.20), (5.21), and (5.22), (5.23) connecting the canonical representations
at the endpoints and the principal representations, it is clear that we can generate the
integral formula for the mean moments corresponding to all the principal representa-
tions except φp

ol by doing so using the canonical representations and then evaluating the
result at the endpoints. Therefore, we move directly to the canonical representations.
Let δ0 denote the indicator function defined by δ0(i)=1,i=0, and δ0(i)=0 otherwise.
Using the convention that 00 :=1, the following proposition utilizes the volume equalities
(6.7) and (6.8) to simultaneously expresses themselves and the moment equalities gen-
erated by the canonical representations. For a function φ : I→R we define the diagonal
extension Σφ : IN →R by

(
Σφ

)
(t) :=

N∑
j=1

φ(tj), t∈ IN .

For simple powers, we introduce the notation

Σti :=

N∑
j=1

tij
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for the power sum and note the important example

Σt−1 :=

N∑
j=1

t−1
j

that will be used in the Selberg integral formulas of Theorem 8.1.

Proposition 6.1. Let n=2m−1. Then for all t∗∈ I and i=0,1, . . . ,2m−1 we have∫
M2m−1

qi− ti∗
2m

V ol(M2m−1)

=
δ0(i)

(2m)!(m−1)!

∫
Im−1

J c
ol(t∗,t)dt+

1

(2m)!(m−1)!

∫
Im−1

J c
ou(t∗,t)dt

+
2

(2m)!(m−1)!

∫
Im−1

Σti
(
J c
ol(t∗,t)+J c

ou(t∗,t)
)
dt.

Let n=2m. Then for all t∗∈ I and i=0,1, . . . ,2m we have∫
M2m

qi− ti∗
2m+1

V ol(M2m)

=
δ0(i)+1

(2m+1)!(m−1)!

∫
Im−1

J c
eu(t∗,t)dr

+
2

(2m+1)!m!

∫
Im

ΣtiJ c
el(t∗,t)dt+

2

(2m+1)!(m−1)!

∫
Im−1

ΣtiJ c
eu(t∗,t)dt.

The above technique of comparing two representations of the same volume to gen-
erate identities we now apply to the higher order moments with respect to the uniform
measure on the moment space (the moment moments) by simply subtracting the in-
tegral representations of Proposition 6.1 evaluated at t∗=0 from that with arbitrary
t∗∈ I. We now show that this procedure produces a reproducing kernel identity on the
space of polynomials.

7. The canonical representations and reproducing kernel Hilbert spaces
of polynomials

The integral representations of Proposition 6.1 show clear signs of the existence of
reproducing kernel identities of the form

f(x)=

∫
K(x,y)f(y)dy, f ∈H,x∈X

since, in the odd case, the integrand on the right-hand side Σti is integrated against a
kernel J c

ol(t∗,t)+J c
ou(t∗,t) and produces a multiple of ti∗ plus some terms. Reproducing

kernel Hilbert spaces are Hilbert spaces of functions such that pointwise evaluation is
continuous on the Hilbert space. They have remarkable properties, in particular, the
reproducing kernel identities which can be thought of like an abstract Cauchy integral
formula from complex analysis.

Let us present Proposition 6.1 in reproducing kernel form. To that end, define

H(t∗,t) :=J c
ou(0,t)−J c

ol(t∗,t)−J c
ou(t∗,t), (7.1)

and note that from (5.20) we have J c
ou(0,t)=J p

ou(t), so that

H(t∗,t)=J p
ou(t)−J c

ol(t∗,t)−J c
ou(t∗,t).
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Moreover, observe that the symmetries

J p
ol(1− t)=J p

ol(t)

J p
ou(1− t)=J p

ou(t)

J c
ou(t∗,t)=J c

ol(1− t∗,1− t)

of (5.6) and (5.17) combined with J c
ol(0,t)≡0 imply that

H(0,t)≡0

H(1,t)≡0. (7.2)

and

H(1− t∗,1− t)=H(t∗,t). (7.3)

Let Πn denote the space of n-th degree polynomials in one variable with real coef-
ficients.

Theorem 7.1. For all φ∈Π2m−1 we have

φ(t∗)V ol(M2m−1)=
2

(2m−1)!(m−1)!

∫
Im−1

(Σφ)(t)H(t∗,t)dt

+
φ(0)

(2m−1)!(m−1)!

∫
Im−1

J c
ou(t∗,t)dt

+
φ(1)

(2m−1)!(m−1)!

∫
Im−1

J c
ol(t∗,t)dt (7.4)

and for φ∈Π2m we have

φ(t∗)V ol(M2m)=− 2

(2m)!m!

∫
Im

(Σφ)(t)
(J c

el(t∗,t)−J c
el(0,t)

)
dt

− 2

(2m)!(m−1)!

∫
Im−1

(Σφ)(t)J c
eu(t∗,t)dt

+
φ(0)

(2m)!m!

∫
Im

J c
el(t∗,t)dt−

φ(1)

(2m)!(m−1)!

∫
Im−1

J c
eu(t∗,t)dt.

To integrate out the diagonal extension Σ, for any function (t∗,t) �→J (t∗,t) we let

J̄ (t∗,s) :=
∫

J (
t∗,(s,t2, . . . ,tN )

)
dt2 · · ·dtN

denote the marginalization to the first component of t. Now for any such function J ,
which is invariant under the symmetric group acting on its second variable, we have∫

IN

(Σφ)(t)J (t∗,t)dt=N

∫
I

φ(s)J̄ (t∗,s)ds

so that we obtain the following corollary to Theorem 7.1. Let us define

Ḡ(t∗,s) := J̄ c
el(0,s)−J̄ c

el(t∗,s)−(m−1)J̄ c
eu(t∗,s)

and note that

Ḡ(0,s)≡0
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but

Ḡ(1,s) �≡0.

Let Πn
0 ⊂Πn denote the n-th degree polynomials φ∈Πn which vanish on the boundary

of I, that is, φ(0)=φ(1)=0.

Corollary 7.2. For all φ∈Π2m−1 we have

φ(t∗)V ol(M2m−1)=
2

(2m−1)!(m−2)!

∫
I

φ(s)H̄(t∗,s)ds

+
φ(0)

(2m−1)!(m−2)!

∫
I

J̄ c
ou(t∗,s)ds

+
φ(1)

(2m−1)!(m−2)!

∫
I

J̄ c
ol(t∗,s)ds (7.5)

and for φ∈Π2m we have

φ(t∗)V ol(M2m)=
2

(2m)!(m−1)!

∫
I

φ(s)Ḡ(t∗,s)ds

+
φ(0)

(2m)!(m−1)!

∫
I

J̄ c
el(t∗,s)ds−

φ(1)

(2m)!(m−2)!

∫
I

J̄ c
eu(t∗,s)ds.

In particular, for the normalizations

ˆ̄H :=
1

V ol(M2m−1)

2

(2m−1)!(m−2)!
H̄

ˆ̄G :=
1

V ol(M2m)

2

(2m)!(m−1)!
Ḡ

we have

φ(t∗)=
∫
I

φ(s) ˆ̄H(t∗,s)ds, φ∈Π2m−1
0

φ(t∗)=
∫
I

φ(s) ˆ̄G(t∗,s)ds, φ∈Π2m
0 .

Let us now restrict our attention to the odd case and let L2(I) denote the usual
Lebesgue space corresponding to the uniform Borel measure on I. Then, it is well
known, see e.g. Saitoh [36, Thm. 1, Pg. 21], that the integral operator

φ �→
∫
I

φ(s) ˆ̄H(t∗,s)ds, φ∈L2(I)

determines a reproducing kernel Hilbert space structure on its range with reproducing
kernel

K(r1,r2) :=

∫
I

ˆ̄H(r1,s)
ˆ̄H(r2,s)ds.

From the Definition (7.1)

H(t∗,t) :=J c
ou(0,t)−J c

ol(t∗,t)−J c
ou(t∗,t)
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and the definitions of J c
ol and J c

ou from Proposition 5.5, it follows that H(·,t)∈
Π2m−1, t∈ Im−1, and therefore it follows from (7.2) that H(·,t)∈Π2m−1

0 , t∈ Im−1. Con-
sequently, by marginalization to H̄ and scalar normalization, we have

ˆ̄H(·,s)∈Π2m−1
0 , s∈ I. (7.6)

Therefore the range of this integral operator is contained in Π2m−1
0 . However, it follows

from Corollary 7.2 that the range is identically Π2m−1
0 . Therefore we conclude that

Π2m−1
0 is a reproducing kernel Hilbert space with kernel K.

Because of Corollary 7.2, one might be tempted to think that this reproducing
kernel Hilbert space structure corresponds to that which Π2m−1

0 inherits as the subspace
Π2m−1

0 ⊂L2(I), but this is not the case. Indeed, let P2m−1 denote the L2(I) orthogonal
projection P2m−1 :L

2(I)→Π2m−1
0 and consider the kernel

K2m−1(r1,r2) :=

∫
I

P2m−1
ˆ̄H(r1,s) ·P2m−1

ˆ̄H(r2,s)ds (7.7)

where the projections are acting on the kernels in the second component. Then, since
this projection makes no difference in the reproducing identities in Corollary 7.2, one
can show that K2m−1 is the reproducing kernel associated with Π2m−1

0 ⊂L2(I) and since
the latter can be computed in terms of the Legendre polynomials of order 2 (see e.g. [5,
Sec. 12.5]) using the Christoffel–Darboux formula [11] (see e.g. Simon [39] for a more
current reference), we conclude an identification of K2m−1 with the Christoffel–Darboux
formula for the kernel of the Legendre polynomials of order 2. That, is

K2m−1(r1,r2)=
(r1−r21)(r2−r22)

2(2m−1)(2m)(2m+1)

P ′′
2m(r1)P

′′
2m−1(r2)−P ′′

2m−1(r1)P
′′
2m(r2)

r1−r2
(7.8)

for (r1,r2)∈ I2, where Pk are the Legendre polynomials shifted to the interval

Pk(r)=
1

k!

dk(r2−r)k

drk
, r∈ I (7.9)

and

Qk(r) :=(r−r2)P ′′
k (r), r∈ I (7.10)

are the associated Legendre polynomials of order 2 (see e.g. [5, Sec. 12.5]).
Moreover, since

H̄(t∗,s) := J̄ c
ou(0,s)−J̄ c

ol(t∗,s)−J̄ c
ou(t∗,s),

and from Proposition 5.5 we have

J̄ c
ou(0,0)≡0

J̄ c
ol(t∗,0)≡0

J̄ c
ou(t∗,0)>0, t∗∈ (0,1),

we find that

H̄(t∗,0)=−J̄ c
ou(t∗,0)<0, t∗∈ (0,1).

Consequently, for t∗∈ (0,1), it follows that ˆ̄H(t∗, ·) /∈Π2m−1
0 and therefore

K �=K2m−1.
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Moreover, from the orthogonal decomposition

K(r1,r2)=

∫
I

ˆ̄H(r1,s)
ˆ̄H(r2,s)ds

=

∫
I

P2m−1
ˆ̄H(r1,s) ·P2m−1

ˆ̄H(r2,s)ds+

∫
I

P⊥
2m−1

ˆ̄H(r1,s) ·P⊥
2m−1

ˆ̄H(r2,s)ds

=K2m−1(r1,r2)+

∫
I

P⊥
2m−1

ˆ̄H·P⊥
2m−1

ˆ̄H(r2,s)ds

we conclude

Theorem 7.3. Let K2m−1 denote the reproducing kernel for the polynomials Π2m−1
0

as a subset of L2(I). Then K2m−1 can be expressed by both (7.7) and (7.8). Moreover,
Π2m−1

0 is also a reproducing kernel Hilbert space with kernel K, and

K−K2m−1

is a reproducing kernel.

Remark 7.4. Besides the fact that the kernel K defining the Hilbert space structure
for the polynomials Π2m−1

0 is not that of the Legendre polynomials, we do not know if
this kernel is known, nor do we have an explicit formula for it. However, what this section
shows is that this kernel and its associated Hilbert space Π2m−1

0 are intimately connected
with the canonical representations of truncated Hausdorff moments, and therefore might
be called the Markov–Krĕın kernel. Moreover, if instead of the uniform measure on
the moments, a Selberg type density is used, more such reproducing kernels may be
revealed.

8. New Selberg integral formulas
The integral representations of the mean Hausdorff moments of Proposition 6.1

provide new integral identities of Selberg type. In the following theorem, we provide
the first in a sequence corresponding to when n is odd and even. We then show how to
use the reproducing kernel identities of Theorem 7.1 to generate biorthogonal systems
of Selberg integral formulas.

Theorem 8.1. It holds true that∫
Im

Σt−1 ·
m∏
j=1

t2j (1− tj)
2Δ4

m(t)dt=
Sm(5,1,2)−Sm(3,3,2)

2
. (8.1)

and ∫
Im

Σt−1 ·
m∏
j=1

t2j ·Δ4
m(t)dt=

m

2
Sm−1(5,3,2). (8.2)

The identities of Theorem 8.1 follow only from the volume equalities, that is, the
i=0 case of Theorem 7.1. The following theorem demonstrates how to use all the
moment equalities of Theorem 7.1 to generate biorthogonal systems of Selberg integral
formulas. Let us recall definition (7.1)

H(t∗,t)=J p
ou(t)−J c

ol(t∗,t)−J c
ou(t∗,t).
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Theorem 8.2. Let n=2m−1 and consider the scaled kernel

Ĥ :=
1

V ol(M2m−1)

2

(2m−1)!(m−1)!
H.

Then,

Ĥ(·,t)∈Π2m−1
0 , t∈ Im−1.

Moreover, consider a basis {pj ,j=1, . . . ,2m−2} for Π2m−1
0 and the resulting expansion

of Ĥ(·,t) in this basis for each t∈ Im−1;

Ĥ(t∗,t)=
2m−2∑
j=1

hj(t)pj(t∗), (t∗,t)∈ I×Im−1.

Then, {Σpj ,j=1, . . . ,2m−2}, {hj ,j=1, . . . ,2m−2} form an L2(Im−1) biorthogonal sys-
tem. That is, ∫

Im−1

hjΣpk= δjk, j,k=1, . . . ,2m−2.

As an immediate corollary, we have

Corollary 8.3. Let n=2m−1 and consider the scaled marginal kernel

ˆ̄H :=
1

V ol(M2m−1)

2

(2m−1)!(m−2)!
H̄

(note the different scaling than Theorem 8.2). Then,

ˆ̄H(·,s)∈Π2m−1
0 , s∈ I.

Moreover, consider a basis {pj ,j=1, . . . ,2m−2} for Π2m−1
0 and the resulting expansion

of ˆ̄H(·,s) in this basis for each s∈ I;

ˆ̄H(t∗,s)=
2m−2∑
j=1

h̄j(s)pj(t∗), (t∗,s)∈ I×I.

Then, {pj ,j=1, . . . ,2m−2}, {h̄j ,j=1, . . . ,2m−2} form an L2(I) biorthogonal system.
That is, ∫

I

h̄jpk= δjk, j,k=1, . . . ,2m−2 .

The choice of basis for Π2m−1
0 determines the corresponding component functions

hj ,j=1, . . . ,2m−2 and the integrands hjΣpk in Theorem 8.2. Therefore, the task re-
maining is to select a basis for which the component functions hj can be determined and
such that the resulting integrals are of interest. When the chosen basis is orthonormal
with respect to some inner product 〈·, ·〉, then the coefficients hj in the representation

Ĥ(t∗,t)=
2m−2∑
j=1

hj(t)pj(t∗), (t∗,t)∈ I×Im−1.
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of Theorem 8.1 are

hj(t)= 〈Ĥ(·,t),pj〉.
As an example, we now compute these component functions, and therefore deter-

mine explicit forms for these Selberg integrals, when the basis consists of the associated
Legendre polynomials of order 2. To that end, recall the definitions (7.9) and (7.10) of
the Legendre polynomials and the associated Legendre polynomials of order 2 translated
to the unit interval I. In addition, recall the j-th symmetric function ej defined as

ej(t) :=
∑

i1<···<ij

ti1 · · ·tij

with e0 :=1 and the symmetric functions ej(t,z) restricted to the diagonal t= z

ej(t,t) :=
∑

j1+j2=j

ej1(t)ej2(t), j=0, . . . ,2m−2. (8.3)

Theorem 8.4. Consider the basis of Π2m−1
0 consisting of the associated Legen-

dre polynomials Qj ,j=2, . . . ,2m−1 of order 2 translated to the unit interval I. For
k=2, . . . ,2m−1 define

ajk :=
(j+k+k2)Γ(j+2)Γ(j)

Γ(j+k+2)Γ(j−k+1)
, k≤ j≤2m−1

h̃k(t) :=

2m−1∑
j=k

(−1)j+1ajke2m−1−j(t,t).

Then for j=k mod 2, j,k=2, . . . ,2m−1, we have

∫
Im−1

h̃k(t)ΣQj(t)

m−1∏
j′=1

t2j′ ·Δ4
m−1(t)dt

=V ol(M2m−1)(2m−1)!(m−1)!
(k+2)!

(8k+4)(k−2)!
δjk.

9. Proofs

9.1. Proof of Theorem 3.2. We seek to apply the nested reduction Theo-
rem [31, Thm. 4.11]. The assertion is trivially true when L(A)=U(A) so we can assume
L(A)<U(A). Let us first establish that the assumptions of the theorem are well defined.
To that end, note that [31, Lem. 3.10] (which follows from Castaing and Valadier [14,
Lemma III.39 p. 86], which in turn follows from Sainte-Beuve’s [38] extension of Au-
mann’s Selection Theorem to Suslin spaces) implies that q→ inf(f,μ)∈Ψ−1(q)D(f,μ)[B]
is universally measurable and hence the conditions of the theorem are well defined if we
extend the definitions in the usual way when operating on universally measurable sets
and functions. Similarly, since for any λ the function (f,μ) �→ (Φ(f,μ)−λ)D(f,μ)[B] is
measurable, the function θ :Q→R defined by

θ(q) := sup
(f,μ)∈Ψ−1(q)

(Φ(f,μ)−λ)D(f,μ)[Bδ]
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is universally measurable.
For the proof of the theorem, let Q∈Q,D∈D satisfy the assumptions, and define

λ :=U(A)−2δ′. Consider the events

Qδ :=
{
q : inf

(f,μ)∈Ψ−1(q)
D(f,μ)[Bδ]≤ τ

}
Uε,δ =

{
q : sup

(f,μ)∈Ψ−1(q),D(f,μ)[Bδ]>ε

Φ(f,μ)> sup
(f,μ)∈A

Φ(f,μ)−δ′
}

where the assumptions (3.4) and (3.5) become

Q
(Qδ

)≥1−h(δ), δ >0

Q
(
Uε,δ

)≥ε′, δ >0.

Let us denote τ ′ := τ
(U(A)−L(A)

)
. It is easy to see that{
θ≥−τ ′

}⊃Qδ

and

{θ>εδ′}⊃Uε,δ

and therefore

Q
({θ≥−τ ′})≥Q

(Qδ

)
≥1−h(δ)

and

Q
({θ>εδ′})≥Q

(
Uε,δ

)
≥ε′.

Since Φ(f,μ)≥L(A),(f,μ)∈A, it follows that |θ|≤U(A)−L(A), and so we obtain∫
θdQ=

∫
{θ>εδ′}

θdQ+

∫
{θ≤εδ′}

θdQ

>εδ′Q
({θ>εδ′})+∫

{θ≤eδ′}
θdQ

≥εδ′Q
({θ>εδ′})+∫

{θ≤0}
θdQ

≥εδ′Q
({θ>εδ′})+∫

{θ<−τ ′}
θdQ+

∫
{−τ ′≤θ≤0}

θdQ

≥εδ′Q
({θ>εδ′})−(U(A)−L(A)

)
Q
({θ<−τ ′})−τ ′Q

({−τ ′≤θ≤0})
≥εδ′ε′−(U(A)−L(A)

)
h(δ)−τ ′.

Therefore, for any strictly positive solution δ>0 to

h(δ)+τ ≤ εδ′ε′

U(A)−L(A)
we have

EQ[θ]=

∫
θdQ>0,

where we recall that the function θ depends on δ, and therefore trivially

sup
Q∈Q,D∈D

Eq∼Q

[
sup

(f,μ)∈Ψ−1(q)

(
Φ(f,μ)−λ

)
D(f,μ)[Bδ]

]
>0.

The assertion then follows from [31, Thm. 4.11].
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9.2. Proof of Theorem 3.6. We will apply the Mass Supremum Equality 4.1,
the Mass Infimum Inequality 4.3, and the Mass of First Moment Inequality 4.4. To that
end, define the events

Sε,δ =
{
q∈Mn :∃μ∈Ψ−1q :μ(Bδ)>ε

}

Iδ =
{
q∈Mn :∃μ∈Ψ−1q :μ(Bδ)=0

}

FMδ′ =
{
q∈Mn : q1∈ (1−δ′,1]

}
First observe that some endpoint conditions have zero mass. For example,

Q(Sε,δ) :=Q
({q :∃μ∈Ψ−1q :μ(Bδ)>ε})=Q

({q :∃μ∈Ψ−1q :μ(Bδ)≥ε})
and

Q(FMδ′) :=Q
({q∈Mn : q1∈ (1−δ′,1]})=Q

({q∈Mn : q1∈ [1−δ′,1]}).
Consequently, the Mass Supremum Equality 4.1 asserts that

Q(Sε,δ)=Q
({q :∃μ∈Ψ−1q :μ(Bδ)≥ε})≥ (1−ε)n

where the right-hand side is independent of δ, the Mass Infimum Inequality 4.3 asserts
that

Q(Iδ)≥1−δ(2e)2n,

and the Mass of First Moment Inequality 4.4 asserts that

Q(FMδ′)=Q
({q∈Mn : q1∈ [1−δ′,1]})≥ (δ′)n.

Define the events

Qδ :=
{
q : inf

μ∈Ψ−1(q)
μ[Bδ]=0

}

Uε,δ :=
{
q : sup

μ∈Ψ−1(q),μ[Bδ]>ε

Eμ[X]>1−δ′
}

Then since

Qδ ⊃ Iδ

we have

Q
(Qδ

)≥Q
(
Iδ
)≥1−δ(2e)2n

and since

Uε,δ =
{
q : sup

μ∈Ψ−1(q),μ[Bδ]>ε

Eμ[X]>1−δ′
}

=
{
q : q1∈ (1−δ′,1],∃μ∈Ψ−1q :μ[Bδ]>ε

}
=Sε,δ∩FMδ′
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we have

Q
(
Uε,δ

)
=Q

(
Sε,δ∩FMδ′

)
=1−Q

(
(Sε,δ∩FMδ′)

c
)

=1−Q
(
Sc
ε,δ∪FM c

δ′
)

=1−Q
(
Sc
ε,δ

)−Q
(
FM c

δ′
)

=Q
(
Sε,δ

)
+Q

(
FMδ′

)−1

=
(
1−ε

)n−1+(δ′)n

=(δ′)n−nε.

Consequently, if we choose ε := (δ′)n

2n , then

Q
(
Uε,δ

)≥ (δ′)n

2
,

so that the assumptions (3.4) and (3.5), expressed as

Q
(Qδ

)≥1−h(δ), δ >0

Q
(
Uε,δ

)≥ε′, δ >0,

are satisfied with ε′ := (δ′)n

2 , ε := (δ′)n

2n , and h(δ) := δ(2e)2n. We can solve

h(δ)≤ εδ′ε′

U(A)−L(A)

=εδ′ε′

=
(δ′)n

2n
δ′
(δ′)n

2

=
(δ′)2n+1

4n

by choosing δ≤ 1
4n

(
δ′
)2n+1(

2e
)−2n

.

9.3. Proof of Lemma 4.1. For Mn
ε :=

{
q∈Mn :∃μ∈Ψ−1q :μ({t∗})≥ε

}
, it

follows that Ψμ∈Mn
ε if and only if μ= εδt∗+(1−ε)μ∗ with μ∗∈M(I). For such a μ it

follows that Ψμ= εΨδt∗+(1−ε)Ψμ∗ and therefore

Mn
ε = εΨδt∗+(1−ε)Mn

from which we conclude that

V ol(Mn
ε )=(1−ε)nV ol(Mn),

establishing the assertion.

9.4. Proof of Lemma 4.3. First consider the odd case, n=2m−1. We utilize
the bijective principal representation φp

ol :Λ
m−1×Tm→ Int(M2m−1) defined in (5.2)

and

|det(dφp
ol)|(λ,t)=J p

ol(t)
(
1−

m−1∑
j=1

λj

)m−1∏
j=1

λj
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where

J p
ol(t) :=Δ4

m(t)

from Proposition 5.3 along with the change of variables formula (5.25).
Fix t∗∈ (0,1) and let

Tm
δ :=

{
(t1, . . . ,tm)∈Tm : tj /∈Bδ(t∗),j=1, . . . ,m

}
denote those sequences which have no point a distance less than δ from t∗. It follows
that

M2m−1
δ ⊃φ

(
Λm−1×Tm

δ

)
and therefore

V ol
(
M2m−1

δ

)
≥V ol

(
φp
ol

(
Λm−1×Tm

δ

))
. (9.1)

We bound the right-hand side from below using the change of variables formula (5.25)
as

V ol
(
φp
ol

(
Λm−1×Tm

δ

))
=

∫
Λm−1×Tm

δ

|det(dφp
ol)|

=

∫
Λm−1

(
1−

m−1∑
j=1

λj

)(m−1∏
j=1

λj

)
dλ

∫
Tm
δ

J p
ol,

and then bounding ∫
Tm
δ

J p
oldt=

∫
Tm
δ

Δ4
m(t)dt

=
1

m!

∫
Im
δ

Δ4
m(t)dt

where

Imδ :=
{
(t1, . . . ,tm)∈ Im : tj /∈Bδ(t∗),j=1, . . . ,m

}
.

To bound this from below we bound the integral over
(
Imδ

)c
from above. To that end,

let

Imδ,j :=
{
(t1, . . . ,tm)∈ Im : tj ∈Bδ(t∗)

}
, j=1, . . . ,m,

so that (
Imδ

)c
=∪jI

m
δ,j .

Therefore, using a union bound and the symmetry of Δ we have∫(
Im
δ

)c
Δ4

m(t)dt=

∫
∪m

j′=1
Im
δ,j′

Δ4
m(t)dt

≤
m∑

j′=1

∫
Im
δ,j′

Δ4
m(t)dt
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=m

∫
Im
δ,1

Δ4
m(t)dt

=m

∫
Im
δ,1

∏
1≤j<k≤m

(tk− tj)
4dt1 · · ·dtm

≤m

∫
Im
δ,1

∏
2≤j<k≤m

(tk− tj)
4dt1 · · ·dtm

=mV ol(Bδ)

∫
Im−1

∏
2≤j<k≤m

(tk− tj)
4dt2 · · ·dtm

=mV ol(Bδ)

∫
Im−1

Δ4
m−1(t)dt

≤2mδSm−1(1,1,2)

and so obtain

V ol
(
φ(Λm−1×Tm

δ )
)

V ol
(
φ(Λm−1×Tm)

) =

∫
Iδ
m
Δ4

m(t)dt∫
ImΔ4

m(t)dt

≥1−2mδ
Sm−1(1,1,2)

Sm(1,1,2)
.

Using Selberg’s formulas (6.1) we compute

Sm−1(1,1,2)

Sm(1,1,2)
=

∏m−2
j=0

Γ(1+2j)2Γ(3+2j)
2Γ(2(m+j)−2)∏m−1

j=0
Γ(1+2j)2Γ(3+2j)

2Γ(2(m+j))

=
2Γ(4m−4)

Γ(2m−1)2Γ(2m+1)

∏m−1
j=0

Γ(1+2j)2Γ(3+2j)
2Γ(2(m+j)−2)∏m−1

j=0
Γ(1+2j)2Γ(3+2j)

2Γ(2(m+j))

=
2Γ(4m−4)

Γ(2m−1)2Γ(2m+1)

m−1∏
j=0

Γ(2(m+j))

Γ(2(m+j)−2)

=
2Γ(4m−4)

Γ(2m−1)2Γ(2m+1)

Γ(4m−2)

Γ(2m−2)
.

To bound 2Γ(4m−4)Γ(4m−2)
Γ(2m−1)2Γ(2m)Γ(2m−2) from above we use the binomial relation (see e.g. [4,

Eq. 6.1.21]) for the gamma function(
z

w

)
=

Γ(z+1)

Γ(w+1)Γ(z−w+1)
(9.2)

and the inequality (see e.g. [13, Eq. C.5])

( z
w

)w≤
(
z

w

)
≤ (ez

w

)w
(9.3)

to obtain

Γ(4m−4)Γ(4m−2)

Γ(2m−1)2Γ(2m)Γ(2m−2)
=

Γ(4m−4)

Γ(2m−1)Γ(2m−2)
· Γ(4m−2)

Γ(2m−1)Γ(2m)
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=

(
4m−5

2m−2

)(
4m−3

2m−2

)

=

(
4m−5

2m−2

)(
4m−3

2m−1

)

≤ (
e
4m−5

2m−2

)2m−2(
e
4m−3

2m−1

)2m−1

≤ (
2e)2m−2

(
2e

)2m−1

=
(
2e)4m−3

≤ 1

2

(
2e

)4m−2
.

Recalling (9.1) establishes the assertion for n=2m−1.
Now consider the even case n−2m. We utilize the bijective principal representation

φp
el :Λ

m×Tm→ Int(M2m) defined in (5.7) and, proceeding as in the odd case, we obtain

V ol
(
M2m

δ

)
V ol

(
M2m

) ≥1−2mδ
Sm−1(3,1,2)

Sm(3,1,2)

Using Selberg’s formulas (6.1) we compute

Sm−1(3,1,2)

Sm(3,1,2)
=

∏m−2
j=0

Γ(1+2j)Γ(3+2j)2

2Γ(2(m+j))∏m−1
j=0

Γ(1+2j)Γ(3+2j)2

2Γ(2(m+j)+2)

=
2Γ(4m−2)

Γ(2m−1)2Γ(2m+1)

∏m−1
j=0

Γ(1+2j)Γ(3+2j)2

2Γ(2(m+j))∏m−1
j=0

Γ(1+2j)Γ(3+2j)2

2Γ(2(m+j)+2)

=
2Γ(4m−2)

Γ(2m−1)2Γ(2m+1)

m−1∏
j=0

Γ(2(m+j)+2)

Γ(2(m+j))

=
2Γ(4m−2)

Γ(2m−1)2Γ(2m+1)

Γ(4m)

Γ(2m)
.

We will now use the beta function

B(a,b) :=

∫ 1

0

ta−1(1− t)b−1dt, a>0,b>0 , (9.4)

and the identity

B(a,b)=
Γ(a)Γ(b)

Γ(a+b)
, (9.5)

see e.g. [4, Pg. 258], where Γ is the gamma function.

To bound 2Γ(4m−2)Γ(4m)
Γ(2m−1)2Γ(2m)2 from above we use the inequality

B(a,a)=
Γ(a)2

Γ(2a)
≥ 4

a
2−2a

from Proposition A.2 to obtain

Γ(4m−2)Γ(4m)

Γ(2m−1)2Γ(2m)2
=

1

B(2m−1,2m−1)

1

B(2m,2m)
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≤ 2m−1

4
24m−2 2m

4
24m

≤ 2m

4
24m−2 2m

4
24m

≤ 1

16
m228m.

Finally, we apply the inequality

m2≤8(
e

2
)4m

from Proposition A.1 to conclude that

2Γ(4m−2)Γ(4m)

Γ(2m−1)2Γ(2m)2
≤ 1

8
m228m

≤ (
e

2
)4m28m

=
(
2e

)4m
thus establishing the assertion for n=2m.

9.5. Proof of Lemma 4.4. According to Chang, Kemperman, and Studden
[12, Thm. 1.3] one can show, using Skibinsky’s canonical coordinates for the moment
problem [40], that the uniform distribution on Mn marginalizes to a beta distribution
corresponding to B(n,n) (see (9.4) and (9.5)) on the first moment. Consequently,

V ol
(
q∈Mn : q1∈ [1−δ,1]

)
V ol(Mn)

=
1

B(n,n)

∫ 1

1−δ

tn−1(1− t)n−1dt

= Iδ(n,n)

where Iδ(n,n) is the incomplete beta function (see e.g. [4, Pg. 258]). Using the binomial
relations (9.2) and and (9.3), for the upper bound we obtain

Iδ(n,n) :=
1

B(n,n)

∫ δ

0

tn−1(1− t)n−1dt

≤ 1

B(n,n)

∫ δ

0

tn−1dt

=
δn

nB(n,n)

= δn
Γ(2n)

nΓ(n)2

= δn
(
2n−1

n

)

≤ δn
(
e
2n−1

n

)n

≤ δn
(
2e

)n
and for the lower bound
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Iδ(n,n) :=
1

B(n,n)

∫ δ

0

tn−1(1− t)n−1dt

≥ 1

B(n,n)

(
1−δ)n−1

∫ δ

0

tn−1dt

=
1

nB(n,n)

(
1−δ)n−1δn

=

(
2n−1

n−1

)(
1−δ)n−1δn

≥
(2n−1

n−1

)n−1(
1−δ)n−1δn

≥ 2n−1
(
1−δ)n−1δn

≥ δn

where the assumption δ≤ 1
2 was used in the last step.

9.6. Proof of Proposition 5.5. The following identity of Karlin and Shapley
[27, Proof of Thm. 6.2] will be useful in all the Jacobian determinant calculations of
this paper: For t1<s1< · · ·<tm<sm, we have

∂m

∂s1 · · ·∂smΔ(t1,s1, . . . ,tm,sm)|(s1,...,sm)=(t1,...,tm)=Δ4
m(t). (9.6)

We can develop the upper and lower configurations simultaneously, by introducing
a point t0∈{0,1} and representations φt0 where when t0=0 we have φ0=φc

ol defined in
(5.15) and when t0=1 we have φ1=φc

ou defined in (5.16). So, let us use this notation
and a change of indices, and consider the two maps

φt0 :Λ
m×Tm−1→ Int(M2m−1), t0=0,1

defined by

φt0(λ,t)=Ψ
(m−1∑

j=0

λjδtj +(1−
m−1∑
j=0

λj)δt∗

)

=
(m−1∑

j=0

λjt
i
j+(1−

m−1∑
j=0

λj)t
i
∗
)2m−1

i=1
. (9.7)

In this notation, Proposition 5.5 becomes

Proposition 9.1. For t0=0,1 we have

|det(dφt0)|(λ,t)=Jt0(t)

m−1∏
j=1

λj

where

Jt0(t)=
∣∣t0− t∗

∣∣m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

(tj− t0)
2 ·Δ4

m−1(t)

The differential of φt0 is determined by

∂φi
t0

∂λj
= tij− ti∗, j=0, . . . ,m−1
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and

∂φi
t0

∂tj
= iλjt

i−1
j j=1, . . . ,m−1

for i=1, . . . ,2m−1, from which we conclude that

|det(dφt0)|= |Jt0 |
m−1∏
j=1

λj

where

Jt0 =

∣∣∣∣∣∣∣∣∣

t0− t∗ t1− t∗ 1 · · · tm−1− t∗ 1
t20− t2∗ t21− t2∗ 2t1 · · · t2m−1− t2∗ 2tm−1

...
...

... · · · ...
...

t2m−1
0 − t2m−1

∗ t2m−1
1 − t2m−1

∗ (2m−1)t2m−2
1 · · · t2m−1

m−1 − t2m−1
∗ (2m−1)t2m−2

m−1

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 · · · 1 0
t∗ t0 t1 1 · · · tm−1 1
t2∗ t20 t21 2t1 · · · t2m−1 2tm−1

...
...

...
... · · · ...

...

t2m−1
∗ t2m−1

0 t2m−1
1 (2m−1)t2m−2

1 · · · t2m−1
m−1 (2m−1)t2m−2

m−1

∣∣∣∣∣∣∣∣∣∣∣
To evaluate Jt0 for t0=0,1, let s1, . . . ,sm−1 satisfy tj <sj <tj+1,j=1, . . . ,m−1 and

define the Vandermonde determinant

J (s1, . . . ,sm−1) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 s01 · · · 1 s0m−1

t∗ t0 t1 s1 · · · tm−1 sm−1

t2∗ t20 t21 s21 · · · t2m−1 s2m−1

...
...

...
... · · · ...

...

t2m−1
∗ t2m−1

0 t2m−1
1 s2m−1

1 · · · t2m−1
m−1 s2m−1

m−1

∣∣∣∣∣∣∣∣∣∣∣
and observe that the multilinearity of the determinant shows that

Jt0 =
∂m−1

∂s1 · · ·∂sm−1
J (s1, . . . ,sm−1)|(s1,...,sm−1)=(t1,...,tm−1).

To evaluate this derivative, observe that

J (s1, . . . ,sm−1)=Δ(t∗,t0,t1,s1, . . . ,tm−1,sm−1)

=
(
t0− t∗

)(m−1∏
j=1

(tj− t∗)(sj− t∗)
)(m−1∏

j=1

(tj− t0)(sj− t0)
)

Δ(t1,s1, . . . ,tm−1,sm−1),

from which we conclude that

Jt0 =
∂m−1

∂s1 · · ·∂sm−1
J (s1, . . . ,sm−1)|(s1,...,sm−1)=(t1,...,tm−1)

=
(
t0− t∗

) ·m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

(tj− t0)
2 · ∂m−1

∂s1 · · ·∂sm−1
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Δ(t1,s1, . . . ,tm−1,sm−1)|(s1,...,sm−1)=(t1,...,tm−1).

Using the identity (9.6) we conclude that

Jt0 =
(
t0− t∗

)m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

(tj− t0)
2Δ4

m−1(t)

thereby proving Proposition 9.1 and therefore Proposition 5.5.

9.7. Proof of Proposition 5.6. To simplify notation, let φl :=φc
el defined in

(5.18) and φu :=φc
eu defined in (5.19). We begin with the lower representation φl. The

differential of φl is determined by

∂φi
l

∂λj
= tij− ti∗, j=1, . . . ,m,

and

∂φi
l

∂tj
= iλjt

i−1
j j=1, . . . ,m

for i=1, . . . ,2m, from which we conclude that

|det(dφl)|= |Jl|
m∏
j=1

λj

where

Jl=

∣∣∣∣∣∣∣∣∣

t1− t∗ 1 · · · tm− t∗ 1
t21− t2∗ 2t1 · · · t2m− t2∗ 2tm

...
...

... · · · ...

t2m1 − t2m∗ 2mt2m−1
1 · · · t2mm − t2m∗ 2mt2m−1

m

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 1 0
t∗ t1 1 · · · tm 1
t2∗ t21 2t1 · · · t2m 2tm
...

...
... · · · ...

...

t2m∗ t2m1 2mt2m−1
1 · · · t2mm 2mt2m−1

m

∣∣∣∣∣∣∣∣∣∣∣
.

To evaluate Jl, let s1, . . . ,sm satisfy tj <sj <tj+1,j=1, . . . ,m and define

J (s1, . . . ,sm) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1
t∗ t1 s1 · · · tm sm
t2∗ t21 s21 · · · t2m s2m
...

...
... · · · ...

t2m∗ t2m1 s2m1 · · · t2mm s2mm

∣∣∣∣∣∣∣∣∣∣∣
and observe that the multilinearity of the determinant shows that

Jl=
∂m

∂s1 · · ·∂smJ (s1, . . . ,sm)|(s1,...,sm)=(t1,...,tm).
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To evaluate this differentiation, observe that

J (s1, . . . ,sm)=Δ(t∗,t1,s1, . . . ,tm,sm)

and, using the recursion relation of the Vandermonde determinant, we obtain

J (s1, . . . ,sm)=Δ(t∗,t1,s1, . . . ,tm,sm)

=

m∏
j=1

(tj− t∗)(sj− t∗) ·Δ(t1,s1, . . . ,tm,sm)

from which we conclude that

∂m

∂s1 · · ·∂smJ (s1, . . . ,sm)|(s1,...,sm)=(t1,...,tm)

=

m∏
j=1

(tj− t∗)2 · ∂m

∂s1 · · ·∂smΔ(t1,s1, . . . ,tm,sm)|(s1,...,sm)=(t1,...,tm)

=

m∏
j=1

(tj− t∗)2 ·Δ4
m(t)

and therefore

Jl=

m∏
j=1

(tj− t∗)2 ·Δ4
m(t)

thus establishing the lower identity.
Now, for the upper representation φu :=φc

eu, the differential of φu is determined by

∂φi
u

∂λ0
=−ti∗,

∂φi
u

∂λj
= tij− ti∗, j=1, . . . ,m−1,

∂φi
u

∂λm
=1− ti∗,

and

∂φi
u

∂tj
= iλjt

i−1
j j=1, . . . ,m−1

for i=1, . . . ,2m, from which we conclude that

|det(dφu)|= |Ju|
m−1∏
j=1

λj

where

Ju=

∣∣∣∣∣∣∣∣∣

−t∗ t1− t∗ 1 · · · tm−1− t∗ 1 1− t∗
−t2∗ t21− t2∗ 2t1 · · · t2m−1− t2∗ 2tm−1 1− t2∗
...

...
... · · · ...

...

−t2m∗ t2m1 − t2m∗ 2mt2m−1
1 · · · t2mm−1− t2m∗ 2mt2m−1

m−1 1− t2m∗

∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣

t∗ t1 1 · · · tm−1 1 1
t2∗ t21 2t1 · · · t2m−1 2tm−1 1
...

...
... · · · ...

...

t2m∗ t2m1 2mt2m−1
1 · · · t2mm−1 2mt2m−1

m−1 1

∣∣∣∣∣∣∣∣∣
.

To evaluate Ju, let s1, . . . ,sm−1 satisfy tj <sj <tj+1,j=1, . . . ,m−1 and define

J (s1, . . . ,sm−1) :=

∣∣∣∣∣∣∣∣∣

t∗ t1 s1 · · · tm−1 sm−1 1
t2∗ t21 s21 · · · t2m−1 s2m−1 1
...

...
... · · · ...

...
t2m∗ t2m1 s2m1 · · · t2mm−1 s2mm−1 1

∣∣∣∣∣∣∣∣∣
and observe that the multilinearity of the determinant shows that

Ju=
∂m−1

∂s1 · · ·∂sm−1
J (s1, . . . ,sm−1)|(s1,...,sm−1)=(t1,...,tm−1).

To evaluate this differentiation, observe that

J (s1, . . . ,sm−1)= t∗
m−1∏
j=1

tj

m−1∏
j=1

sj

∣∣∣∣∣∣∣∣∣

1 1 1 1 1 · · · 1 1 1
t∗ t1 s1 t2 s2 · · · tm−1 sm−1 1
...

...
...

... · · · ...
...

...

t2m−1
∗ t2m−1

1 s2m−1
1 t2m−1

2 s2m−1
2 · · · t2m−1

m−1 s2m−1
m−1 1

∣∣∣∣∣∣∣∣∣
.

That is, we have

J (s1, . . . ,sm−1)= t∗
m−1∏
j=1

tj

m−1∏
j=1

sj ·Δ(t∗,t1,s1, . . . ,tm−1,sm−1,1).

We use the recursion relations

Δ(t∗,t1,s1, . . . ,tm−1,sm−1,1)=(1− t∗)
m−1∏
j=1

(1− tj)(1−sj) ·Δ(t∗,t1,s1, . . . ,tm−1,sm−1)

and

Δ(t∗,t1,s1, . . . ,tm−1,sm−1)=
m−1∏
j=1

(tj− t∗)(sj− t∗) ·Δ(t1,s1, . . . ,tm−1,sm−1)

to obtain

J (s1, . . . ,sm−1)

= t∗(1− t∗)
m−1∏
j=1

tj(1− tj)sj(1−sj) ·
m−1∏
j=1

(tj− t∗)(sj− t∗) ·Δ(t1,s1, . . . ,tm−1,sm−1).

Consequently, the identity (9.6) implies

Ju=
∂m−1

∂s1 · · ·∂sm−1
J (s1, . . . ,sm−1)|(s1,...,sm−1)=(t1,...,tm−1)
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= t∗(1− t∗)
m−1∏
j=1

t2j (1− tj)
2
m−1∏
j=1

(tj− t∗)2 · ∂m−1

∂s1 · · ·∂sm−1

Δ(t∗,t1,s1, . . . ,tm−1,sm−1)|(s1,...,sm−1)=(t1,...,tm−1)

= t∗
(
1− t∗

)m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

t2j (1− tj)
2 ·Δ4

m−1(t)

establishing the upper identity and thus completing the proof.

9.8. Proof of Proposition 6.1. For the first assertion, let n=2m−1. As
in the proof of Proposition 5.5 we find it convenient to analyze the upper and lower
configurations simultaneously, by introducing a point t0∈{0,1} and the volume filling
representations φt0 ,t0∈{0,1} where when t0=0 we have φ0=φc

ol defined in (5.15) and
when t0=1 we have φ1=φc

ou defined in (5.16). In this notation, from (9.7) we have

φi
t0(λ0, . . . ,λm−1;t1, . . . ,tm−1)=

m−1∑
j=0

λjt
i
j+(1−

m−1∑
j=0

λj)t
i
∗

=

m−1∑
j=0

λj

(
tij− ti∗

)
+ ti∗

=λ0

(
ti0− ti∗

)
+

m−1∑
j=1

λj

(
tij− ti∗

)
+ ti∗ (9.8)

for t0=0,1 and Proposition 9.1 expresses the Jacobian determinants as

|det(dφt0)|(λ,t)=Jt0(t)

m−1∏
j=1

λj

where

Jt0(t)=
∣∣t0− t∗

∣∣m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

(tj− t0)
2 ·Δ4

m−1(t). (9.9)

In this notation, the modified change of variables formula (5.28) becomes∫
M2m−1

qi=
∑

t0=1,2

∫
Λm×Tm−1

φi
t0 |dφt0 | (9.10)

for i≥0. Therefore, we conclude that∫
M2m−1

qi=
∑

t0=1,2

∫
Λm×Tm−1

φi
t0 |dφt0 |

=
∑

t0=1,2

∫
Λm×Tm−1

φi
t0

(m−1∏
j=1

λj

)Jt0

=
∑

t0=1,2

∫
Tm−1

(∫
Λm

φi
t0

m−1∏
j=1

λjdλ
)
Jt0 (9.11)
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Performing the Λm integration, using the identities
∫
Λm λ2

m−1

∏m−2
i=1 λidλ=

2
(2m)! ,∫

Λm

∏m
i=1λidλ=

1
(2m)! , and

∫
Λm

∏m−1
i=1 λidλ=

1
(2m−1)! , we obtain

∫
Λm

φi
t0

m−1∏
j=1

λj =

∫
Λm

(
λ0

(
ti0− ti∗

)
+

m−1∑
j=1

λj

(
tij− ti∗

)
+ ti∗

)m−1∏
j=1

λjdλ

=
1

(2m)!

(
ti0− ti∗

)
+

2

(2m)!

m−1∑
j=1

(
tij− ti∗

)
+

1

(2m−1)!
ti∗

=
1

(2m)!
ti0+

2

(2m)!

m−1∑
j=1

tij+
1

(2m)!
ti∗.

Consequently, for i≥1, we have

∫
M2m−1

qi=
∑

t0=1,2

∫
Tm−1

(∫
Λm

φi
t0

m−1∏
j=1

λjdλ
)
Jt0

=
∑

t0=1,2

∫
Tm−1

( 1

(2m)!
ti0+

2

(2m)!

m−1∑
j=1

tij+
1

(2m)!
ti∗
)
Jt0

=
1

(2m)!

∫
Tm−1

J1+
1

(2m)!
ti∗

∫
Tm−1

(
J0+J1

)
+

2

(2m)!

∫
Tm−1

(m−1∑
j=1

tij

)(
J0+J1

)

and, for i=0 ∫
M2m−1

q0=
1

(2m−1)!

∫
Tm−1

(
J0+J1

)
(9.12)

which we already knew from (6.7). Combining the two, we obtain for i≥0∫
M2m−1

qi=
δ0(i)

(2m)!

∫
Tm−1

J0+
1

(2m)!

∫
Tm−1

J1+
1

(2m)!
ti∗

∫
Tm−1

(
J0+J1

)

+
2

(2m)!

∫
Tm−1

(m−1∑
j=1

tij

)(
J0+J1

)
(9.13)

and the substitution of the volume equality (9.12) (that is, (6.7)) yields the assertion in
the odd case.

For the even case, let n=2m, and let us simplify notation by denoting the volume
filling representations by φ1 :=φc

el and φ2 :=φc
eu defined in (5.18) and (5.19) so that, in

this notation,

φ1 :Λ
m×Tm→ Int(M2m)

is defined by

φ1(λ1, . . . ,λm;t1, . . . ,tm)=
( m∑
j=1

λjt
i
j+(1−

m∑
j=1

λj)t
i
∗
)2m

i=1

and

φ2 :Λ
m+1×Tm−1→ Int(M2m)
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by

φ2(λ0, . . . ,λm;t1, . . . ,tm−1)=
(m−1∑

j=1

λjt
i
j+λm+(1−

m∑
j=0

λj)t
i
∗
)2m

i=1
.

From Proposition 5.6 we have

|det(dφ1)(λ,t)|=J1(t)

m∏
j=1

λj

|det(dφ2)(λ,t)|=J2(t)

m−1∏
j=1

λj

where

J1(t)=

m∏
j=1

(tj− t∗)2 ·Δ4
m(t)

J2(t)= t∗
(
1− t∗

)m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

t2j (1− tj)
2 ·Δ4

m−1(t).

In this notation, the modified change of variable formula (5.28) becomes∫
M2m

qi=

∫
Λm×Tm

φi
1|dφ1|+

∫
Λm+1×Tm−1

φi
2|dφ2|. (9.14)

We evaluate the two integrals in (9.14) by

∫
Λm×Tm

φi
1|dφ1|=

∫
Λm×Tm

φi
1

( m∏
j=1

λj

)J1

=

∫
Tm

(∫
Λm

φi
1

m∏
j=1

λjdλ
)
J1

and

∫
Λm+1×Tm−1

φi
2|dφ1|=

∫
Λm+1×Tm−1

φi
2

(m−1∏
j=1

λj

)J2

=

∫
Tm−1

(∫
Λm+1

φi
1

m−1∏
j=1

λjdλ
)
J2.

Performing the Λm+1 and Λm integrations, using the identities∫
Λm λ1

∏m
j=1λjdλ=

2
(2m+1)! ,

∫
Λm λ2

m−2

∏m−3
i=1 λidλ=

2
(2m−1)! ,

∫
Λm

∏m−2
j=1 λidλ=

1
(2m−2)! ,∫

Λm λ2
m−1

∏m−2
i=1 λidλ=

2
(2m)! ,

∫
Λm

∏m
i=1λidλ=

1
(2m)! , and

∫
Λm

∏m−1
i=1 λidλ=

1
(2m−1)! , we

obtain for i≥1

∫
Λm

φi
1

m∏
j=1

λjdλ=

∫
Λm

( m∑
j=1

λjt
i
j+(1−

m∑
j=1

λj)t
i
∗
) m∏
j=1

λjdλ
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=

∫
Λm

( m∑
j=1

λj(t
i
j− ti∗)+ ti∗

) m∏
j=1

λjdλ

=
2

(2m+1)!

m∑
j=1

(tij− ti∗)+
1

(2m)!
ti∗

=
2

(2m+1)!

m∑
j=1

tij+
1

(2m+1)!
ti∗.

and∫
Λm+1

φi
2

m−1∏
j=1

λjdλ=

∫
Λm+1

(m−1∑
j=1

λjt
i
j+λm+(1−

m∑
j=0

λj)t
i
∗
)m−1∏

j=1

λjdλ

=

∫
Λm+1

(m−1∑
j=1

λj(t
i
j− ti∗)+λm(1− ti∗)+(1−λ0)t

i
∗
)m−1∏

j=1

λjdλ

=
2

(2m+1)!

m−1∑
j=1

(tij− ti∗)+
1

(2m+1)!
(1− ti∗)+(

1

(2m)!
− 1

(2m+1)!
)ti∗

=
2

(2m+1)!

m−1∑
j=1

tij+
1

(2m+1)!
+

1

(2m+1)!
ti∗.

For i=0, (9.14) implies

V ol(M2m)=
1

(2m)!

∫
Tm

J1+
1

(2m)!

∫
Tm−1

J2

so that for i≥1 we have∫
M2m

qi=

∫
Λm×Tm

φi
1|dφ1|+

∫
Λm+1×Tm−1

φi
2|dφ2|

=

∫
Tm

( 2

(2m+1)!

m∑
j=1

tij+
1

(2m+1)!
ti∗
)
J1

+

∫
Tm−1

( 2

(2m+1)!

m−1∑
j=1

tij+
1

(2m+1)!
+

1

(2m+1)!
ti∗
)
J2

=

∫
Tm

( 2

(2m+1)!

m∑
j=1

tij

)
J1

+

∫
Tm−1

( 2

(2m+1)!

m−1∑
j=1

tij+
1

(2m+1)!

)
J2+

ti∗
2m+1

V ol(M2m)

so that for i≥1 we conclude∫
M2m

qi− ti∗
2m+1

V ol(M2m)

=
1

(2m+1)!

∫
Tm

(
2

m∑
j=1

tij

)
J1+

1

(2m+1)!

∫
Tm−1

(
2

m−1∑
j=1

tij+1
)
J2.
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Combining with the result (9.15) for i=0 we conclude∫
M2m

qi− ti∗
2m+1

V ol(M2m)

=
2

(2m+1)!

∫
Tm

m∑
j=1

tijJ1+
2

(2m+1)!

∫
Tm−1

m−1∑
j=1

tijJ2+
1+δ0(i)

(2m+1)!

∫
Tm−1

J2

establishing the assertion in the even case.

9.9. Proof of Theorem 7.1. Recall the identity J c
ol(0,t)≡0. Then subtracting

the volume identity (6.7)

V ol(M2m−1)=
1

(2m−1)!(m−1)!

∫
Im−1

(J c
ol(t∗,t)+J c

ou(t∗,t)
)
dt (9.15)

from itself evaluated at t∗=0, we conclude that∫
Im−1

(J c
ol(t∗,t)+J c

ou(t∗,t)−J c
ou(0,t)

)
dt≡0, (9.16)

that is, ∫
Im−1

H(t∗,t)dt≡0.

We now do the same subtraction for all the moments. To that end, recall the convention
00=1, and observe that, for i≥0, the identity∫

M2m−1

qi− ti∗
2m

V ol(M2m−1)

=
δ0(i)

(2m)!(m−1)!

∫
Im−1

J c
ol(t∗,t)dt+

1

(2m)!(m−1)!

∫
Im−1

J c
ou(t∗,t)dt

+
2

(2m)!(m−1)!

∫
Im−1

Σti
(
J c
ol(t∗,t)+J c

ou(t∗,t)
)
dt (9.17)

from Proposition 6.1, evaluated at t∗=0 becomes∫
M2m−1

qi− δ0(i)

2m
V ol(M2m−1)

=
δ0(i)

(2m)!(m−1)!

∫
Im−1

J c
ol(0,t)dt+

1

(2m)!(m−1)!

∫
Im−1

J c
ou(0,t)dt

+
2

(2m)!(m−1)!

∫
Im−1

Σti
(
J c
ol(0,t)+J c

ou(0,t)
)
dt.

Subtracting from (9.17), using the identity J c
ol(0,t)≡0, we obtain

− ti∗
2m

V ol(M2m−1)+
δ0(i)

2m
V ol(M2m−1)

=
δ0(i)

(2m)!(m−1)!

∫
Im−1

J c
ol(t∗,t)dt+

1

(2m)!(m−1)!

∫
Im−1

(J c
ou(t∗,t)−J c

ou(0,t)
)
dt

− 2

(2m)!(m−1)!

∫
Im−1

ΣtiH(t∗,t)dt
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and applying the volume identity (9.15) we obtain

− ti∗
2m

V ol(M2m−1)

=− δ0(i)

(2m)!(m−1)!

∫
Im−1

J c
ou(t∗,t)dt+

1

(2m)!(m−1)!

∫
Im−1

(J c
ou(t∗,t)−J c

ou(0,t)
)
dt

− 2

(2m)!(m−1)!

∫
Im−1

ΣtiH(t∗,t)dt

and the subtracted volume identity (9.16) we obtain with a change of sign

ti∗
2m

V ol(M2m−1)=
δ0(i)

(2m)!(m−1)!

∫
Im−1

J c
ou(t∗,t)dt+

1

(2m)!(m−1)!

∫
Im−1

J c
ol(t∗,t)dt

+
2

(2m)!(m−1)!

∫
Im−1

ΣtiH(t∗,t)dt. (9.18)

Then, if we let φ(s) :=
∑2m−1

i=0 φis
i be a polynomial of degree n=2m−1, summing

over each identity in (9.18), we conclude that

φ(t∗)
2m

V ol(M2m−1)

=φ0
1

(2m)!(m−1)!

∫
Im−1

(J c
ol(t∗,t)+J c

ou(t∗,t)
)
dt+

2m−1∑
i=1

φi
1

(2m)!(m−1)!

∫
Im−1

J c
ol(t∗,t)dt

+
2

(2m)!(m−1)!

∫
Im−1

(Σφ)(t)H(t∗,t))dt

=φ0
1

(2m)!(m−1)!

∫
Im−1

J c
ou(t∗,t)dt+

2m−1∑
i=0

φi
1

(2m)!(m−1)!

∫
Im−1

J c
ol(t∗,t)dt

+
2

(2m)!(m−1)!

∫
Im−1

(Σφ)(t)H(t∗,t)dt.

Since φ(0)=φ0 and φ(1)=
∑2m−1

i=0 φi the assertion follows by multiplication by 2m. The
even case proceeds in the same way, but since it is a little different we have included it
in Section A.2 in Appendix A.

9.10. Proof of Theorem 8.1. For the first assertion, let n=2m−1 and
consider the integral formula (9.15)

V ol(M2m−1)=
1

(2m−1)!(m−1)!

∫
Im−1

(J c
ol(t∗,t)+J c

ou(t∗,t)
)
dt

for the volume in terms of the canonical representations. From the definitions

J c
ol(t∗,t)= t∗

m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

t2j ·Δ4
m−1(t)

J c
ou(t∗,t)=

(
1− t∗

)m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

(1− tj)
2 ·Δ4

m−1(t)
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of Proposition 5.5, we obtain

∂

∂t∗
J c
ol(t∗,t)|t∗=0=

m−1∏
j=1

t4j ·Δ4
m−1(t)

∂

∂t∗
J c
ou(t∗,t)|t∗=0=−(

1+2Σt−1
)m−1∏

j=1

t2j (1− tj)
2Δ4

m−1(t).

Differentiating the volume formula with respect to t∗ at t∗=0, we obtain

0=
1

(2m−1)!(m−1)!

∫
Im−1

( ∂

∂t∗
J c
ol(t∗,t)|t∗=0+

∂

∂t∗
J c
ou(t∗,t)|t∗=0

)
dt

and therefore∫
Im−1

m−1∏
j=1

t4j ·Δ4
m−1(t)dt=

∫
Im−1

(
1+2Σt−1

)m−1∏
j=1

t2j (1− tj)
2Δ4

m−1(t)dt

=

∫
Im−1

m−1∏
j=1

t2j (1− tj)
2Δ4

m−1(t)dt

+2

∫
Im−1

Σt−1 ·
m−1∏
j=1

t2j (1− tj)
2Δ4

m−1(t)dt

from which we conclude that

2

∫
Im−1

Σt−1 ·
m−1∏
j=1

t2j (1− tj)
2Δ4

m−1(t)dt=Sm−1(5,1,2)−Sm−1(3,3,2).

Changing m �→m+1 finishes the proof of the first assertion.
For the second assertion, let n=2m and consider the integral formula (6.8)

V ol(M2m)=
1

(2m)!m!

∫
Im

J c
el(t∗,t)dt+

1

(2m)!(m−1)!

∫
Im−1

J c
eu(t∗,t)dt.

From the definitions

J c
el(t∗,t)=

m∏
j=1

(tj− t∗)2 ·Δ4
m(t)

J c
eu(t∗,t)= t∗

(
1− t∗

)m−1∏
j=1

(tj− t∗)2
m−1∏
j=1

t2j (1− tj)
2 ·Δ4

m−1(t)

of Proposition 5.6, we obtain

∂

∂t∗
J c
el(t∗,t)|t∗=0=−2Σt−1

m∏
j=1

t2j ·Δ4
m(t)

∂

∂t∗
J c
eu(t∗,t)|t∗=0=

m−1∏
j=1

t4j (1− tj)
2 ·Δ4

m−1(t).
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Differentiating the volume formula with respect to t∗ at t∗=0, we obtain

0=
1

(2m)!m!

∫
Im

∂

∂t∗
J c
el(t∗,t)|t∗=0dt+

1

(2m)!(m−1)!

∫
Im−1

∂

∂t∗
J c
eu(t∗,t)|t∗=0dt

and therefore we conclude

2

∫
Im

Σt−1 ·
m∏
j=1

t2j ·Δ4
m(t)dt=m

∫
Im−1

m−1∏
j=1

t4j (1− tj)
2 ·Δ4

m−1(t)dt

=mSm−1(5,3,2),

finishing the proof of the second assertion.

9.11. Proof of Theorem 8.2. First note that the definition (7.1)

H(t∗,t) :=J c
ou(0,t)−J c

ol(t∗,t)−J c
ou(t∗,t)

and the definitions of J c
ol and J c

ou from Proposition 5.5 imply that Ĥ(·,t)∈Π2m−1, t∈
Im−1. Therefore, it follows from (7.2) that Ĥ(·,t)∈Π2m−1

0 , t∈ Im−1. Now, it follows
from Theorem 7.1 that

φ(t∗)=
∫
Im−1

(Σφ)(t)Ĥ(t∗,t)dt, φ∈Π2m−1
0

which expanded becomes

φ(t∗)=
2m−2∑
j=1

pj(t∗)
∫
Im−1

(Σφ)(t)hj(t)dt, φ∈Π2m−1
0 ,

in particular, by choosing φ :=pk,k=1, . . . ,2m−2,

pk(t∗)=
2m−2∑
j=1

pj(t∗)
∫
Im−1

(Σpk)(t)hj(t)dt, k=1, . . . ,2m−2,

from which we conclude∫
Im−1

Σpj ·hk= δjk, j,k=1, . . . ,2m−2

establishing the assertion. Furthermore, from this and the symmetry of hk, ,k=
1, . . . ,2m−2 with respect to the action of the symmetric group, we also conclude

(m−1)

∫
I

pj · h̄k= δjk, j,k=1, . . . ,2m−2

establishing Corollary 8.3.

9.12. Proof of Theorem 8.4. From the orthogonality relation (see e.g. [5,
Eq. 12.110]) ∫

I

QjQk=
1

2k+1

(k+2)!

(k−2)!
δjk
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and the definition

Ĥ :=
1

V ol(M2m−1)

2

(2m−1)!(m−1)!
H

of the scaling of the kernel (7.1)

H(t∗,t)=J p
ou(t)−J c

ol(t∗,t)−J c
ou(t∗,t), (9.19)

we can compute the coefficients hk in the expansion

Ĥ(t∗,t)=
2m−1∑
j=2

hj(t)Qj(t∗), (t∗,t)∈ I×Im−1

as

hk(t)=
1

V ol(M2m−1)

2

(2m−1)!(m−1)!

(2k+1)(k−2)!

(k+2)!

∫
I

H(·,t)Qk(·), k=2, . . . ,2m−1

(9.20)
and then apply Theorem 8.2 to obtain the assertion. To that end, for k=2, . . . ,2m−1,
to compute ∫

I

H(·,t)Qk(·)

we use the decomposition of (9.19) of H and compute the values∫
I
J p
ou(t)Qk(·),

∫
I
J c
ol(·,t)Qk(·), and

∫
I
J c
ou(·,t)Qk(·) separately. For the first term,

observe that
∫
I
Qk=1+(−1)k, k=2, . . . ,2m−1 from Proposition 9.2, so that∫
I

J p
ou(t)Qk(r)dr=J p

ou(t)

∫
I

Qk(r)dr=(1+(−1)k)J p
ou(t). (9.21)

For the second,
∫
I
J c
ol(·,t)Qk(·), we expand J c

ol(·,t), defined in (5.5), as a polynomial
for fixed t and then utilize the values of the integrals

∫
I
rjQk(r)dr for the monomials

rj ,j=1, . . . ,2m−1. To that end, define

J̃ c
ol(·,t) := t∗

m−1∏
j=1

(tj− t∗)2 (9.22)

so that

J c
ol(·,t)= J̃ c

ol(·,t)
m−1∏
j=1

t2j ·Δ4
m−1(t).

Then from the definition of J p
el of (5.4) we have J p

el(t)=
∏m−1

j=1 t2j ·Δ4
m−1(t) so that

J c
ol(·,t)= J̃ c

ol(·,t)J p
el(t). (9.23)

The generating function identity for the elementary symmetric functions ej is

m−1∏
i=1

(1+sti)=

m−1∑
j=0

ej(t)s
j
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and squaring it we obtain

m−1∏
i=1

(1+sti)
2=

(m−1∑
j=0

ej(t)s
j
)2

=

2m−2∑
j=0

ej(t,t)s
j . (9.24)

Therefore, by changing s �→−t−1
∗ we conclude that

m−1∏
j=1

(tj− t∗)2=
2m−2∑
j=0

e2m−2−j(t,t)(−1)jtj∗ (9.25)

and therefore

t∗
m−1∏
j=1

(tj− t∗)2=
2m−2∑
j=0

e2m−2−j(t,t)(−1)jtj+1
∗

and, relabeling, we conclude

J̃ c
ol(t∗,t)=−

2m−1∑
j=0

dj(t)(−1)jtj∗ (9.26)

where

dj(t) :=e2m−1−j(t,t)=
∑

j1+j2=2m−1−j

ej1(t)ej2(t), j=1, . . . ,2m−1 (9.27)

and d0(t) :=0. Note that dj is a symmetric polynomial of degree 2m−1−j.
In particular, from the definition (9.22) and its resulting polynomial expansion

(9.26) we have

J̃ c
ol(1,t)=−

2m−1∑
j=0

dj(t)(−1)j =

m−1∏
j=1

(1− tj)
2. (9.28)

The following proposition computes the values of the integrals of the Legendre poly-
nomials against the monomials, and we observe that

∫
I
rjQk(r)dr=1 for 1≤ j <k and∫

I
rjQk(r)dr=1 plus a term when j≥k.

Proposition 9.2. For k=2, . . . ,2m−1 we have∫
I

Qk(r)dr=1+(−1)k∫
I

rjQk(r)dr=1, 1≤ j <k∫
I

rjQk(r)dr=1− (j+k+k2)Γ(j+2)Γ(j)

Γ(j+k+2)Γ(j−k+1)
, j≥k.

Therefore, since d0=0, we obtain from the polynomial expansion (9.26), Proposi-
tion 9.2, and (9.28) that

∫
I

J̃ c
ol(r,t)Qk(r)dr=

2m−1∑
j=k

(−1)jajkdj(t)−
2m−1∑
j=0

(−1)jdj(t)



136 BRITTLENESS OF BAYESIAN INFERENCE AND NEW SELBERG FORMULAS

=

2m−1∑
j=k

(−1)jajkdj(t)+ J̃ c
ol(1,t) (9.29)

where we recall the definition

ajk :=
(j+k+k2)Γ(j+2)Γ(j)

Γ(j+k+2)Γ(j−k+1)
,

and note that the lower limit in the summation is k and consequently, the first term
is a symmetric polynomial of degree 2m−1−k. Therefore, multiplying by J p

el(t)=∏m−1
j=1 t2j ·Δ4

m−1(t), using the definition (9.23), identity

J̃ c
ol(1,t)J p

el(t)=

m−1∏
j=1

(1− tj)
2
m−1∏
j=1

t2j ·Δ4
m−1(t)

=J p
ou(t) (9.30)

from the definition J p
ou(t)=

∏m−1
j=1 t2j (1− tj)

2 ·Δ4
m−1(t) from Proposition (5.3), we con-

clude that

∫
I

J c
ol(r,t)Qk(r)dr=J p

el(t)

2m−1∑
j=k

(−1)jajkdj(t)+J p
ou(t).

Let us designate the negative of the first term

h́k(t) :=J p
el(t)

2m−1∑
j=k

(−1)j+1ajkdj(t) (9.31)

so that ∫
I

J c
ol(r,t)Qk(r)dr=−h́k(t)+J p

ou(t). (9.32)

For the third term,
∫
I
J c
ou(·,t)Qj(·), we utilize the reflection symmetry

J c
ou(t∗,t)=J c

ol(1− t∗,1− t)

of (5.17) and the reflection symmetry (see e.g. [5, Eq. 12.97])

Qk(1−r)=(−1)kQk(r)

of the associated Legendre polynomials to compute the integral
∫
I
J c
ou(·,t)Qj(·) in terms

of
∫
I
J c
ol(·,t)Qj(·). That is,∫

I

J c
ou(r,t)Qk(r)dr=

∫
I

J c
ou(1−r,t)Qk(1−r)dr

=

∫
I

J c
ol(r,1− t)Qk(1−r)dr

=(−1)k
∫
I

J c
ol(r,1− t)Qk(r)dr,
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and therefore ∫
I

J c
ou(r,t)Qk(r)dr=(−1)k

∫
I

J c
ol(r,1− t)Qk(r)dr

=−(−1)kh́k(1− t)+(−1)kJ p
ou(1− t),

so that we conclude∫
I

J c
ou(r,t)Qk(r)dr=−(−1)kh́k(1− t)+(−1)kJ p

ou(1− t). (9.33)

Putting all three terms together using (9.19) and the identities (9.21), (9.32), and (9.33),
along with the symmetry

J p
ou(1− t)=J p

ou(t),

we conclude that∫
I

H(r,t)Qk(r)dr=

∫
I

J p
ou(t)Qk(r)dr−

∫
I

J c
ol(r,t)Qk(r)dr−

∫
I

J c
ou(r,t)Qk(r)dr

=(1+(−1)k)J p
ou(t)+ h́k(t)−J p

ou(t)+(−1)kh́k(1− t)−(−1)kJ p
ou(1− t)

= h́k(t)+(−1)kh́k(1− t).

To finish, consider the functions h̆k(t) := h́k(t)+(−1)kh́k(1− t). It follows from
(9.20) that the basis coefficients hk satisfy

hk=
1

V ol(M2m−1)

2

(2m−1)!(m−1)!

(2k+1)(k−2)!

(k+2)!
h̆k, k=2, . . . ,2m−1.

Moreover, Theorem 8.2 implies that {ΣQj ,j=2, . . . ,2m−1} and {hk,k=2, . . . ,2m−1}
are an L2(Im−1) biorthogonal system. It therefore follows that∫

Im−1

h̆kΣQj =V ol(M2m−1)(2m−1)!(m−1)!
(k+2)!

(4k+2)(k−2)!
δjk, j,k=2, . . . ,2m−1.

Moreover, from the symmetry Qk(1−r)=(−1)kQk(r) and a change of variables we
obtain∫

Im−1

h̆k(t)ΣQj(t)dt=

∫
Im−1

h́k(t)ΣQj(t)dt+(−1)k
∫
Im−1

h́k(1− t)ΣQj(t)dt

=

∫
Im−1

h́k(t)ΣQj(t)dt+(−1)k
∫
Im−1

h́k(t)ΣQj(1− t)dt

=

∫
Im−1

h́k(t)ΣQj(t)dt+(−1)j+k

∫
Im−1

h́k(t)ΣQj(t)dt

=(1+(−1)j+k)

∫
Im−1

h́k(t)ΣQj(t)dt.

Since (j+k) mod 2=(j−k) mod 2, the assertion then follows from the definition (9.31)

of h́k, the identity J p
el(t)=

∏m−1
j=1 t2j ·Δ4

m−1(t), and the definition (9.27) of dk. Moreover,
we see that for (j−k) mod 2=1 the vanishing of this integral does not depend on the

function h́k but is instead a consequence only of the relative parity between Qj and h́k

with respect to the operation of reflection.
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9.13. Proof of Proposition 9.2. We abuse notation by letting Pk and Qk

denote the Legendre polynomials on the standard set [−1,1]. At the end we will change
back to the interval I. We use [22, Eq. 7.127, pg. 771]∫ 1

−1

(1+x)jPk(x)dx=
2j+1Γ2(j+1)

Γ(j+k+2)Γ(j−k+1)
, j≥0

and the definition Qk(x) :=(1−x2)P ′′
k (x) and integration by parts. Because of the poles

of the gamma function at 0 and the negative integers, we conclude that∫ 1

−1

(1+x)jPk(x)dx=0, j <k.

Consider the function φ(x) :=(1+x)j(1−x2)=2(1+x)j+1−(1+x)j+2, which
has the derivatives φ′(x)=2(j+1)(1+x)j−(j+2)(1+x)j+1 and φ′′(x)=2(j+1)j(1+
x)j−1−(j+2)(j+1)(1+x)j . Since, for j≥1, we have φ′(−1)=0, φ′(1)=−2j+1, and
Pk(1)=1, we obtain∫ 1

−1

(1+x)jQk(x)dx=

∫ 1

−1

(1+x)j(1−x2)P ′′
k (x)dx

=

∫ 1

−1

φ(x)P ′′
k (x)dx

=φP ′
k

∣∣∣1
−1

−
∫ 1

−1

φ′(x)P ′
k(x)dx

=−
∫ 1

−1

φ′(x)P ′
k(x)dx

=−φ′Pk

∣∣∣1
−1

+

∫ 1

−1

φ′′(x)Pk(x)dx

=2j+1+

∫ 1

−1

φ′′(x)Pk(x)dx

=2j+1+2(j+1)j

∫ 1

−1

(1+x)j−1Pk(x)dx

−(j+2)(j+1)

∫ 1

−1

(1+x)jPk(x)dx

from which we conclude that∫ 1

−1

(1+x)jQk(x)dx=2j+1, 1≤ j <k.

For the case j=0, defining φ(x) :=1−x2, we instead have φ′(−1)=2, φ′(1)=−2,

Pk(1)=1, and Pk(−1)=(−1)k. Using
∫ 1

−1
Pk=0,k≥1, we obtain

∫ 1

−1

Qk(x)dx=

∫ 1

−1

(1−x2)P ′′
k (x)dx

=

∫ 1

−1

φ(x)P ′′
k (x)dx
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=−
∫ 1

−1

φ′(x)P ′
k(x)dx

=−φ′Pk

∣∣∣1
−1

+

∫ 1

−1

φ′′(x)Pk(x)dx

=−φ′Pk

∣∣∣1
−1

=−
(
−2Pk(1)−2Pk(−1)

)
=2(1+(−1)k).

On the other hand, for j≥k we have

∫ 1

−1

(1+x)jQk(x)dx−2j+1

=2(j+1)j

∫ 1

−1

(1+x)j−1Pk(x)dx−(j+2)(j+1)

∫ 1

−1

(1+x)jPk(x)dx

=2j+1(j+1)j
Γ2(j)

Γ(j+k+1)Γ(j−k)
−2j+1(j+2)(j+1)

Γ2(j+1)

Γ(j+k+2)Γ(j−k+1)

)

=2j+1j(j+1)Γ2(j)
( 1

Γ(j+k+1)Γ(j−k)
−j(j+2)

1

Γ(j+k+2)Γ(j−k+1)

)

=2j+1 j(j+1)Γ2(j)

Γ(j+k+2)Γ(j−k+1)

(
(j+k+1)(j−k)−j(j+2)

)

=−2j+1 j(j+1)(j+k+k2)Γ2(j)

Γ(j+k+2)Γ(j−k+1)

=−2j+1 (j+k+k2)Γ(j+2)Γ(j)

Γ(j+k+2)Γ(j−k+1)

and therefore ∫ 1

−1

(1+x)jQk(x)dx=2j+1
(
1− (j+k+k2)Γ(j+2)Γ(j)

Γ(j+k+2)Γ(j−k+1)

)
.

Translating to the unit interval with the map I �→ [−1,1] defined by x=2r−1 we obtain
the assertion.

Appendix A.

A.1. Proof of even case of Lemma 4.3. We utilize the bijective principal
representation φp

el :Λ
m×Tm→ Int(M2m) defined in (5.7) and

|det(dφp
eu)|(λ,t)=J p

eu(t)

m∏
j=1

λj

where

J p
el(t) :=

m∏
j=1

t2j ·Δ4
m(t)

from Proposition 5.4.
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Fix t∗∈ (0,1) and let

Tm
δ :=

{
(t1, . . . ,tm)∈Tm : tj /∈Bδ(t∗),j=1, . . . ,m

}
.

It follows that

M2m
δ ⊃φp

el

(
Λm×Tm

δ

)
and therefore

V ol
(
M2m

δ

)
≥V ol

(
φp
el

(
Λm×Tm

δ

))
. (A.1)

Using the identity
∫
Λm

∏m
i=1λidλ=

1
(2m)! , we compute the right-hand side using the

change of variables formula as

V ol
(
φp
el

(
Λm×Tm

δ

))
=

∫
Λm×Tm

δ

|det(dφp
el)|

=

∫
Λm

( m∏
j=1

λj

)
dλ

∫
Tm
δ

J p
el

=
1

(2m)!

∫
Tm
δ

J p
el

=
1

(2m)!m!

∫
Im
δ

J p
el

where

Imδ :=
{
(t1, . . . ,tm)∈ Im : tj /∈Bδ,j=1, . . . ,m

}
.

To bound this from below we bound the integral over
(
Imδ

)c
from above. To that end,

let

Imδ,j :=
{
(t1, . . . ,tm)∈ Im : tj ∈Bδ

}
, j=1, . . . ,m,

so that (
Imδ

)c
=∪jI

m
δ,j .

Therefore, using a union bound, we have

∫(
Im
δ

)c
J p
el=

∫(
Im
δ

)c

m∏
j=1

t2j ·Δ4
m(t)dt

=

∫
∪m

j′=1
Im
δ,j′

m∏
j=1

t2j ·Δ4
m(t)dt

≤
m∑

j′=1

∫
Im
δ,j′

m∏
j=1

t2j ·Δ4
m(t)dt

=m

∫
Im
δ,1

m∏
j=1

t2j ·Δ4
m(t)dt
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=m

∫
Im
δ,1

m∏
j=1

t2j
∏

1≤j<k≤m

(tk− tj)
4dt1 · · ·dtm

≤m

∫
Im
δ,1

m∏
j=2

t2j
∏

2≤j<k≤m

(tk− tj)
4dt1 · · ·dtm

=mV ol(Bδ)

∫
Im−1

m∏
j=2

t2j ·Δ4
m−1(t)dt

=mV ol(Bδ)Sm−1(3,1,2)

≤2mδSm−1(3,1,2)

and so obtain

V ol
(
φp
el(Λ

m×Tm
δ )

)
V ol

(
φp
el(Λ

m×Tm)
) =

∫
Im
δ

∏m
j=1 t

2
j ·Δ4

m(t)dt∫
Im

∏m
j=1 t

2
j ·Δ4

m(t)dt

≥1−2mδ
Sm−1(3,1,2)

Sm(3,1,2)
.

Using Selberg’s formulas (6.1) we compute

Sm−1(3,1,2)

Sm(3,1,2)
=

∏m−2
j=0

Γ(1+2j)Γ(3+2j)2

2Γ(2(m+j))∏m−1
j=0

Γ(1+2j)Γ(3+2j)2

2Γ(2(m+j)+2)

=
2Γ(4m−2)

Γ(2m−1)2Γ(2m+1)

∏m−1
j=0

Γ(1+2j)Γ(3+2j)2

2Γ(2(m+j))∏m−1
j=0

Γ(1+2j)Γ(3+2j)2

2Γ(2(m+j)+2)

=
2Γ(4m−2)

Γ(2m−1)2Γ(2m+1)

m−1∏
j=0

Γ(2(m+j)+2)

Γ(2(m+j))

=
2Γ(4m−2)

Γ(2m−1)2Γ(2m+1)

Γ(4m)

Γ(2m)
.

A.2. Even case of Proof of Theorem 7.1. For the even case, n=2m, recall
the identity J c

eu(0,t)≡0, and the volume identity (6.8)

V ol(M2m)=
1

(2m)!m!

∫
Im

J c
el(t∗,t)dt+

1

(2m)!(m−1)!

∫
Im−1

J c
eu(t∗,t)dt. (A.2)

Now observe that, for i≥0, the identity∫
M2m

qi− ti∗
2m+1

V ol(M2m)

=
δ0(i)+1

(2m+1)!(m−1)!

∫
Im−1

J c
eu(t∗,t)dt

+
2

(2m+1)!m!

∫
Im

ΣtiJ c
el(t∗,t)dt+

2

(2m+1)!(m−1)!

∫
Im−1

ΣtiJ c
eu(t∗,t)dt

from Proposition 6.1, evaluated at t∗=0, becomes∫
M2m

qi− δ0(i)

2m+1
V ol(M2m)
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=
δ0(i)+1

(2m+1)!(m−1)!

∫
Im−1

J c
eu(0,t)dt

+
2

(2m+1)!m!

∫
Im

ΣtiJ c
el(0,t)dt+

2

(2m+1)!(m−1)!

∫
Im−1

ΣtiJ c
eu(0,t)dt

where we note that Σti=
∑m

j=1 t
i
j in the integral over Im and Σti=

∑m−1
j=1 tij in the

integral over Im−1.
Subtracting the two, using the identity J c

eu(0,t)≡0, we obtain

− ti∗
2m+1

V ol(M2m)+
δ0(i)

2m+1
V ol(M2m)

=
δ0(i)+1

(2m+1)!(m−1)!

∫
Im−1

J c
eu(t∗,t)dt

+
2

(2m+1)!m!

∫
Im

Σti
(J c

el(t∗,t)−J c
el(0,t)

)
dt+

2

(2m+1)!(m−1)!

∫
Im−1

ΣtiJ c
eu(t∗,t)dt

and applying the volume identity (A.2) we obtain

− ti∗
2m+1

V ol(M2m)

=− δ0(i)

(2m+1)!m!

∫
Im

J c
el(t∗,t)dt+

1

(2m+1)!(m−1)!

∫
Im−1

J c
eu(t∗,t)dt

+
2

(2m+1)!m!

∫
Im

Σti
(J c

el(t∗,t)−J c
el(0,t)

)
dt+

2

(2m+1)!(m−1)!

∫
Im−1

ΣtiJ c
eu(t∗,t)dt.

Then, if we let φ(s) :=
∑2m

i=0φis
i be a polynomial of degree n=2m, summing over

each identity in (A.3), we conclude that

− φ(t∗)
2m+1

V ol(M2m)

=φ0

( 1

(2m+1)!(m−1)!

∫
Im−1

J c
eu(t∗,t)dt−

1

(2m+1)!m!

∫
Im

J c
el(t∗,t)dt

)

+

2m∑
j=1

φj
1

(2m+1)!(m−1)!

∫
Im−1

J c
eu(t∗,t)dt

+
2

(2m+1)!m!

∫
Im

(Σφ)(t)
(J c

el(t∗,t)−J c
el(0,t)

)
dt

+
2

(2m+1)!(m−1)!

∫
Im−1

(Σφ)(t)J c
eu(t∗,t)dt

=−φ0
1

(2m+1)!m!

∫
Im

J c
el(t∗,t)dt+

2m∑
j=0

φj
1

(2m+1)!(m−1)!

∫
Im−1

J c
eu(t∗,t)dt

+
2

(2m+1)!m!

∫
Im

(Σφ)(t)
(J c

el(t∗,t)−J c
el(0,t)

)
dt

+
2

(2m+1)!(m−1)!

∫
Im−1

(Σφ)(t)J c
eu(t∗,t)dt

Since φ(0)=φ0 and φ(1)=
∑2m

i=0φi the assertion follows by multiplication by 2m+1.
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A.3. Assorted technical results.
Proposition A.1. We have

m2≤8(
e

2
)4m, m≥1.

Proof. We proceed by induction. The inequality is clearly true for m=1,2.
Therefore, suppose that it is true for some m≥2. Then, since

m+1

m
≤ 3

2
≤ (e

2

)2
, m≥2

follows from 6≤ e2, we conclude that

(m+1)2=
(m+1)2

m2
m2

≤ (m+1)2

m2
8(

e

2
)4m

≤ (e
2

)4
8(

e

2
)4m

≤8(
e

2
)4m+4

thus establishing the inequality for m+1 and finishing the proof.

Proposition A.2. We have

B(a,a)≥ 4

a
2−2a, a>1.

Proof. We have from the integral formula

B(a,b)=

∫ 1

0

ta−1(1− t)a−1dt

=2

∫ 1
2

0

ta−1(1− t)a−1dt

≥2
(1
2

)a−1
∫ 1

2

0

ta−1dt

=2
(1
2

)a−1 1

a

(1
2

)a
=

4

a
2−2a.
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[11] E.B. Christoffel, Über die Gaußische Quadratur und eine Verallgemeinerung derselben, J. Reine
Angew. Math., 55, 61–82, 1858.

[12] F-C. Chang, J.H.B. Kemperman, and W. J. Studden, A normal limit theorem for moment se-
quences, Annals of Probability, 21(3), 1295–1309, 1993.

[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press,
Cambrige, Mass., 1990.

[14] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in
Mathematics, Springer-Verlag, Berlin, 580, 1977.

[15] P. Diaconis and D. Freedman, On the consistency of Bayes estimates, Ann. Statist., 14(1), 1–67,
1986.

[16] P.W. Diaconis and D. Freedman, Consistency of Bayes estimates for nonparametric regression:
normal theory, Bernoulli, 4(4), 411–444, 1998.

[17] D.L. Donoho, One-sided inference about functionals of a density, Ann. Statist., 16(4), 1390–1420,
1988.

[18] D. Draper, Assessment and propagation of model uncertainty, J. Roy. Statist. Soc. Ser. B, 57(1),
45–97, 1995.

[19] D. Draper, Bayesian Model Specification: Heuristics and Examples, P. Damien, P. Dellaportas,
N. G. Polson, and D. A. Stephens, (eds.), Bayesian Theory and Applications, Oxford University
Press, 2013.

[20] P.J. Forrester and S.O. Warnaar, The importance of the Selberg integral, Bull Amer. Math. Soc.,
45(4), 489–534, 2008.

[21] P. Grünwald and J. Langford, Suboptimal behavior of Bayes and MDL in classification under
misspecification, in Learning theory, Lecture Notes in Comput. Sci., Springer, Berlin, 3120,
331–347, 2004.

[22] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San
Diego, Seventh Edition, 2007.

[23] P. Gustafson, On measuring sensitivity to parametric model misspecification, J.R. Stat. Soc. Ser.
B Stat. Meth., 63(1), 81–94, 2001.

[24] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge,
1991.
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