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Bayesian Brittleness



Conditioning in a continuous space

Worst case robustness questions

• What if the prior is a numerical approximation?
• What if the posterior is approximated and 

conditioning is used in a recursive manner?
• What if data is approximated and conditioning  is 

used in a recursive manner?





Bayesian Inference in a Continuous world

Positive Negative

• Classical Bernstein Von Mises
• Wasserman, Lavine, Wolpert (1993)
• Castillo and Rousseau (2013)
• Castillo and Nickl (2013)
• Stuart & Al (2010+). 
• ….

• Freedman (1963, 1965)
• P Gustafson & L Wasserman (1995)
• Diaconis & Freedman 1998
• Johnstone 2010
• Leahu 2011
• Belot 2013
• …
• Owhadi, Scovel, Sullivan (2013)

Other related negative results in Statistics

• Bahadur, Raghu Raj and Savage, 
Leonard J. (1956). The nonexistence 
of certain statistical procedures in  
nonparametric problems.

• Donoho, David L. (1988). One-sided 
inference about functionals  of a 
density. 



A warm-up problem

You have a bag containing 100 coins

99 coins are fair

1 always land on head

You pick one coin at random from the bag
You flip it 10 times and 10 times you get head

What is the probability that the coin that you have 
picked is the unfair one?



Answer

A: The coin is unfair B: You observe 10 heads

Robustness

fair coins are slightly unbalanced: 
probability of a head is 0.51

If
bag contains 101 coins

and

(1) still a good approximation of correct answer
Then

(1)

What if random outcomes are not head or tail but decimal 
numbers, perhaps given to finite precision?



Problem 2
We want to estimate

We observe



Bayesian Answer

Prior

Probability space  



Parametric Bayesian Answer

Define a map

Bayesian model



Bayesian model

Example



Bayesian model



Asymptotic behavior of posterior estimates 

Bernstein-Von Mises CLTs (the rescaled limit is Normal)
The Bayesian estimator is consistent





Example



Example



Questions

What happens to posterior values if our Bayesian 
model is a little bit wrong?

How sensitive is Bayesian Inference to
local misspecification?

G. E. P. Box “Essentially, all models are wrong
but some are useful”

“Remember that all models are 
wrong; the practical question 
is how wrong do they have to 
be to not be useful?”



Total variation distance

Prokhorov distance



Perturbed Bayesian model

Bayesian model

Perturbed Bayesian model

Total variation distance

α



How Robust is the Bayesian Answer?

α

Prior
α

Posterior

Data?



Theorem

α



Theorem

α



Cromwell’s rule

Implies consistency if the model is well specified
Implies maximal brittleness under local perturbations



Generalization

Example













Hadamard well posed problem

J. S. Hadamard
1865 –1963

1.A solution exists 
2.The solution is unique 
3.The solution's behavior hardly changes 

when there's a slight change in the 
initial condition 

Bayesian inference appears to be ill posed in 
the Hadamard sense (3)



Are these results compatible with classical Robust Bayesian Inference?

Framework is the same: Bayesian Sensitivity Analysis

Box (1953)

Huber (1964)
Wasserman (1991)Classical Robust Bayesian Inference:

Our brittleness results:



Example

We want to estimate

Assume

We observe

Bayesian Answer



Robustness?

Π:
such that if π ∈ Π and μ ∼ π then
Class of priors onM([0, 1])

³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´
∼ Q

Ψ ³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´
QΨ−1 Uniform distribution on

Ψ
¡
M([0, 1])

¢



Π:
such that if π ∈ Π and μ ∼ π then
Classes of priors onM([0, 1])

³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´
∼ Q

Theorem



Generalization

QΨ

QΨ−1 ∈M(Q)

Polish
space

M(A) ⊃

M(X ) ⊃

Π: Class of priors on A
such that if π ∈ Π and μ ∼ π
then Ψ(μ) ∼ Q



Theorem



Example: Ψ(μ) =
³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´



Bayesian Sensitivity Analysis as it currently
stands leads to Brittleness under finite 
information or local misspecification

Why?

Let’s look at one mechanism
causing brittleness in a
simple example



A simple example

Two Bayesian models





δc Prior Values



Posterior Values



Bayesian Sensitivity Analysis as it currently
stands leads to Brittleness under finite 
information or local misspecification

Why?

Bayesian Sensitivity Analysis as it currently 
stands is based on estimates posterior to the 
observation of data

Worst priors can achieve extreme values by 
making the probability of observing the data 
very small



Problem

Let’s add a constraint on the probability of observing
the data.

Can we dismiss these priors because they depend on the data?

In the context of Bayesian Sensitivity analysis
worst priors always depend on the data.

Can we dismiss these priors because they can ``look nasty’’
and make the probability of observing the data very small?

Problem These priors are not isolated monsters but only 
directions of instability and these instabilities grow
with the number of data points

How do we know that?

Dismissal of Bayesian
Sensitivity Analysis 

Tautology (circular reasoning)
in its application



Example

We want to estimate

We believe

We observe



Bayesian Model class

Thm



New Bayesian Model class



New Bayesian Model class

Thm



Thm



Thm



Thm



New Bayesian Model class

Thm



Effects of a uniform constraint on the probability of the 
data under finite information in the Bayesian model class 

Learning Aptitude

Robustness

Learning not possible Learning possible

Method is robust Method is brittle



What is the stability condition for 
using Bayesian inference 
under finite information? 

Numerically 
solving a PDE CFL condition

Using Bayesian
Inference under 
finite information

?



What about using the KL-divergence (relative entropy)

Closeness in KL divergence cannot be tested with discrete data.
Requires the non-singularity of the data generating distribution 
with respect to the Bayesian model.

Problem

Local Sensitivity Analysis (Frechet derivative) suggests blow-up
with prob one as the number of data points goes to infinity

P Gustafson & L Wasserman 1995: Local Sensitivity 
Diagnostics for Bayesian Inference



What about getting out of the strict Bayesian Inference
framework for robustness/accuracy estimates?

Bradley Efron (2013): Bayes’ theorem in the 21st century
Without genuine prior information “Bayesian calculations 
cannot be uncritically accepted and should be checked 
by other methods,  which usually means frequentistically.”

How do we do that with limited sample data?

We can compute sensitivity and accuracy estimates
before the observation of the data.



Classical Bayesian Sensitivity Analysis

Alternative

Compute robustness estimates after the observation of  the data

Compute robustness estimates before the observation of the data

Problem Need a form of calculus allowing us to solve optimization problems 
over measures over spaces of measures 



A simple example
What is the least upper bound on

If all you know is

and ?

Answer



Answer

You are given one pound of play-doh. 
How much mass can you put above a while 
keeping  the seesaw balanced  around m?

Markov’s inequality



Generalization

Optimal Uncertainty Quantification. Houman Owhadi, Clint 
Scovel, Tim Sullivan, Michael McKerns and Michael Ortiz. 
SIAM Review Vol. 55, No. 2 : pp. 271-345, 2013 



10.000 children are given one pound of play-doh. 
On average, how much mass can they put above a
While, on average, keeping  the seesaw balanced  
around m?

Paul is given one pound of play-doh. 
What can you say about how much mass he is
putting above a if all you have is the belief that
he is keeping the seesaw balanced around m?

New form of reduction calculus
A simple example



What is the least upper bound on

If all you know is ?

Answer



Theorem







New form of reduction calculus

QΨ

QΨ−1 ⊂M(Q)M(A) ⊃
Theorem

sup
π∈Ψ−1Q

Eμ∼π Φ(μ)

sup
Q∈Q

Eq∼Q sup
μ∈Ψ−1(q)

Φ(μ)

=

M(X ) ⊃ Polish
space



Can we do some math with this form of calculus?



New Reproducing Kernel Hilbert Spaces and Selberg Integral formulasR
Im
Σt−1 ·Qm

j=1 t
2
j (1− tj)2∆4m(t)dt = Sm(5,1,2)−Sm(3,3,2)

2R
Im
Σt−1 ·Qm

j=1 t
2
j ·∆4m(t)dt = m

2 Sm−1(5, 3, 2)

Sn(α,β, γ) =
Qn−1
j=0

Γ(α+jγ)Γ(β+jγ)Γ(1+(j+1)γ)
Γ(α+β+(n+j−1)γ)Γ(1+γ)

∆m(t) :=
Q
j<k (tk − tj)¡

Σφ
¢
(t) :=

Pm
j=1 φ(tj), t ∈ Im

I := [0, 1]

Finite dim.

Infinite dim.



Z
Im−1

h̃k(t)ΣQj(t)

m−1Y
j0=1

t2j0 ·∆4m−1(t)dt = V ol(M2m−1)(2m−1)!(m−1)!
(k + 2)!

(8k + 4)(k − 2)!δjk .

Theorem

ej(t) :=
X

i1<···<ij
ti1 · · · tij

Πn0 : n-th degree polynomials which vanish on the boundary of [0, 1]
Mn ⊂ Rn: set of q = (q1, . . . , qn) ∈ Rn such that there exists a probability
measure μ on [0, 1] with Eμ[Xi] = qi with i ∈ {1, . . . , n}.

Consider the basis of Π2m−10 consisting of the associated Legendre polyno-
mials Qj , j = 2, .., 2m − 1 of order 2 translated to the unit interval I. For
k = 2, .., 2m− 1 define

ajk :=
(j + k + k2)Γ(j + 2)Γ(j)

Γ(j + k + 2)Γ(j − k + 1) , k ≤ j ≤ 2m− 1

h̃k(t) :=
2m−1X
j=k

(−1)j+1ajke2m−1−j(t, t) .

Then for j = k mod 2, j, k = 2, .., 2m− 1, we have

Bi-orthogonal systems of Selberg Integral formulas



Forrester and Warnaar 2008
The importance of the Selberg integral

Used to prove outstanding conjectures in
Random matrix theory and cases of the 
Macdonald conjectures

Central role in random matrix theory, 
Calogero-Sutherland quantum many-body 
systems, Knizhnik-Zamolodchikov
equations, and multivariable orthogonal 
polynomial theory



P. L. Chebyshev
1821-1894

M. G. Krein
1907-1989

A. A. Markov
1856-1922

The truncated moment problem

³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´Ψ

Study of the geometry of Mk := Ψ
¡
M([0, 1])

¢



Finite dim.

Infinite dim.

³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´Ψ

(finite-dimensional) representations inM
¡
[0, 1]

¢

Mk := Ψ
¡
M([0, 1])

¢

Compute Vol(Mk) using different

Origin of these new Selberg 
integral formulas and new RKHS 



³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´Ψ

(finite-dimensional) representations inM
¡
[0, 1]

¢
Mk := Ψ

¡
M([0, 1])

¢
Compute Vol(Mk) using different

t1

Ψ

t2 tj tN

Origin of these new Selberg integral formulas and new RKHS 



Index

Theorem

t1 t2 tj tN

t1 t2 tj tN

Upper

Lower



Sn(α,β, γ) =
Qn−1
j=0

Γ(α+jγ)Γ(β+jγ)Γ(1+(j+1)γ)
Γ(α+β+(n+j−1)γ)Γ(1+γ)

Selberg Identities

Sn(α,β, γ) :=
R
[0,1]n

Qn
j=1 t

α−1
j (1− tj)β−1|∆(t)|2γdt .

∆(t) :=
Q
j<k (tk − tj)



Index

Theorem

t1 t2 tj tNt∗



New Reproducing Kernel Hilbert Spaces and Selberg Integral formulas 
related to the Markov-Krein representations of moment spaces.

Ψ ³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´
R
Im
Σt−1 ·Qm

j=1 t
2
j (1− tj)2∆4m(t)dt = Sm(5,1,2)−Sm(3,3,2)

2R
Im
Σt−1 ·Qm

j=1 t
2
j ·∆4m(t)dt = m

2 Sm−1(5, 3, 2)

Sn(α,β, γ) =
Qn−1
j=0

Γ(α+jγ)Γ(β+jγ)Γ(1+(j+1)γ)
Γ(α+β+(n+j−1)γ)Γ(1+γ)

∆m(t) :=
Q
j<k (tk − tj)¡

Σφ
¢
(t) :=

Pm
j=1 φ(tj), t ∈ Im

I := [0, 1]



Z
Im−1

h̃k(t)ΣQj(t)

m−1Y
j0=1

t2j0 ·∆4m−1(t)dt = V ol(M2m−1)(2m−1)!(m−1)!
(k + 2)!

(8k + 4)(k − 2)!δjk .

Theorem

ej(t) :=
X

i1<···<ij
ti1 · · · tij

Πn0 : n-th degree polynomials which vanish on the boundary of [0, 1]
Mn ⊂ Rn: set of q = (q1, . . . , qn) ∈ Rn such that there exists a probability
measure μ on [0, 1] with Eμ[Xi] = qi with i ∈ {1, . . . , n}.

Consider the basis of Π2m−10 consisting of the associated Legendre polyno-
mials Qj , j = 2, .., 2m − 1 of order 2 translated to the unit interval I. For
k = 2, .., 2m− 1 define

ajk :=
(j + k + k2)Γ(j + 2)Γ(j)

Γ(j + k + 2)Γ(j − k + 1) , k ≤ j ≤ 2m− 1

h̃k(t) :=
2m−1X
j=k

(−1)j+1ajke2m−1−j(t, t) .

Then for j = k mod 2, j, k = 2, .., 2m− 1, we have

Bi-orthogonal systems of Selberg Integral formulas



Why develop this form of calculus? What else 
could we do?



Solving PDEs: Two centuries ago

A. L. Cauchy 
(1789-1857)

S. D. Poisson 
(1781-1840)



Solving PDEs: Now.



Paradigm shift

J. V. Neumann 
(1903-1957)

H. Goldstine 
(1913-2004)



Where are we at in finding statistical estimators?



Find the best climate model given current information

Exascale Co-Design Center for  Materials in Extreme Environments



Where are we at in finding statistical estimators?

Find the
best estimator
or model



Can we turn their design into a computation?

Find the
best estimator
or model



The UQ Problem with sample data
We want to estimate

We observe

You know μ† ∈ A

Your estimation: 
function of the data θ(d)



Statistical 
Error

E(θ,μ†) = Ed∼(μ†)n θ(d)− Φ(μ†) 2

Optimal bound on the statistical error

max
μ∈A

E(θ,μ)
Optimal statistical estimators
min
θ
max
μ∈A

E(θ,μ)

Estimation error θ(d)− Φ(μ†)



Game theory and statistical decision theory

John Von Neumann Abraham Wald



θ μ
E(θ,μ)

You The universe

Estimator Measure of probability

Loss/Statistical Error

Minimize Maximize



θ μ
E(θ,μ)

Computer The universe

Estimator Measure of probability

Loss/Statistical Error

Minimize Maximize



Arithmetic and Boolean logic

The space of admissible scenarios along with 
the space of relevant information, 
assumptions, beliefs and models tend to be 
infinite dimensional, whereas calculus on a 
computer is necessarily discrete and finite



We need a form of calculus allowing us to 
manipulate infinite dimensional information 
structures



Min/Max Tree
Allows you to design optimal experimental campaigns
and turn the process of scientific discovery into a computation



Machine learning Develop the best 
model of reality 
given available 
information

Act based on 
That model

Gather new 
information



α

Bayesian model

Perturbed Bayesian model



α



Example

We want to estimate

We observe

Π:
such that if π ∈ Π and μ ∼ π then
Classes of priors onM([0, 1])

³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´
∼ Q

Q Uniform distribution on
Ψ
¡
M([0, 1])

¢



Theorem n = 1, x1 arbitrary, k arbitrary

We observe

Π:
such that if π ∈ Π and μ ∼ π then
Classes of priors onM([0, 1])

³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´
∼ Q



Stability of the method?
Numerically 
solving a PDE

CFL condition

Using Bayesian
Inference under 
finite information

?

If we push Classical Bayesian Sensitivity Analysis the
condition will depend on

• How much we already know 
• Control on the probability of the data
• Resolution of the measurements



New form of reduction calculus

Q = [0, 1]Ψ(μ) = Eμ[X]

QΨ−1

= {Q ∈M(Q) | EQ[X ] = m}
M(A) ⊃
Theorem

=

M([0, 1]) =


