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Conditioning in a continuous space

0 (d) = Eppr, areper [(11)|d]

Data
[l

Prior = |Bwes = Posterior

Worst case robustness questions

What if the prior is a numerical approximation?
What if the posterior is approximated and
conditioning is used in a recursive manner?

What if data is approximated and conditioning is
used in a recursive manner?
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A warm-up problem

You have a bag containing 100 coins

99 coins are fair

1 always land on head

FRONT BACK

You pick one coin at random from the bag
You flip it 10 times and 10 times you get head

What is the probability that the coin that you have
picked is the unfair one?



Answer (1)
A

PlA] _

PB] 1+99-(0.5)0

]

~ (.91

D>.

PlA|B| = P|B|A]5

A: The coin is unfair B: You observe 10 heads

Robustness |f

bag contains 101 coins

and
fair coins are slightly unbalanced:

probability of a head is 0.51

Then
(1) still a good approximation of correct answer

What if random outcomes are not head or tail but decimal
numbers, perhaps given to finite precision?



Problem 2
We w

/’[’I . Unknown or partially known
measure of probability on R

We observe  d = (dl, Cee dn) c R"

n i.i.d samples from u!

n
d € Bg’ = Hi:l Bg(ﬂ?@)
Bs(x): open ball of radius ¢ centered on x

L] Ln,
I I | | I I



Bayesian Answer

Bayesian model class A 3
SOAAR
A C M(R) ‘m

Assume that u' is the realization of p ~ 7

Prior m € M (A)

e | P()|d € By

A x R"




Parametric Bayesian Answer
©: Parameter space (C RF)

PO = M(R)
0 — 1(6)

po: Prior distribution on ©

r.juf(é’)

Bayesian model

4 <I>(,u(9)) de Bg| 1(0): Random
] K—j/ element of A
mo = P(po)

(R) — 3a e81an model class

M
. Ao :=P(O) = {u(6) |6 € O)




Example

Bayesian model class
6O}

M(R) Ao = {u(0)
é Bayesian model
1(6): Random

element of Ay

M(Q )I Gaussian measure with mean ¢ and SD o

2
density: - 1% exp( ($2;§) )

0= (c,0) e @ CRXR,




Bayesian model class

Ag =P {/L |9€@}

M(R) ;
po—* %_\) Bayesian model
T 1(0): Random

element of Ay

u' € P(O)
Model is well specified

u' & P(O)
Model 1s misspecified




Asymptotic behavior of posterior estimates
pn: Posterior distribution on © after observing d

0)| 0 €O
M(R) U ﬂ

If ut € P(O) (the model is well specified)|

then (if ® = R*, under regularity conditions

and under Crowmwell’s rule)

Jo ®(14(0))pn(df) — & (ul)

The Bayesian estimator is consistent
Bernstein-Von Mises CLTs (the rescaled limit is Normal)




If 1" € P(©) (the model is mis-specified)

then (if © = R*, under regularity conditions
and under Crowmwell’s rule)

Jo ®(11(8))pn(dl) = @ (u(6%))
6*: Minimizes Dk, (/,LTH,LL(Q)) over 0 € ©

f

M(X) M P(O©) = {u(9) | 6 € O}

pu(0%)7




Example
P(O©): family of Gaussian models p(6) with densities

{ﬁ('vg)‘gz(cag)eRXR—F} ,
Bz, c,0) = — exp( o )

o\ 2T

u': potentially non-Gaussian with
mean ¢ and standard deviation o'.

Joy @ (1(0))pa(d0) "= B (u(ct, o))



Example (I)(M) e MUX — Cl«b‘ Z tO—u}

Under the T NN ( t )
D(u(c', =1l4erf|——],
(Gaussian model, (M( 7 )) V2

(PO ={u0)|0c0)

M(R)

1
1t extreme case (I)(,uT) = min {1 t_2}

For t = 6 (the archetypically rare “60 event”),
the ratio between the two is approximately 1.4 X 107




Questions

What happens to posterior values if our Bayesian
model is a little bit wrong?

How sensitive is Bayesian Inference to
local misspecification?

G.E.P.Box "Eggentially, all models are wronc
but some are useful”

"Remember that all models are
wrong; the practical question

is how wrong do they have to
be to not be useful?”



P : 0 — M(R)
0 — u(0)

p . TV distance on M(R) if © compact and P continuous

otherwise Prokhorov distance

Total variation distance

p(H, V) 1= SUp 4c o (r) |(A) — V(A)
Prokhorov distance

p(p,v) :=Inf {€ > O‘M(A) < v(A%) +e€

for all A € o(R)}
A¢ ={zx e Rld(z,A) < €}



Perturbed Bayesian model

Bayesian model class
Ag = {[L ‘ 0 € @}

1%

Bayesian model

1(6): Random
element of A

Perturbed Bayesian model

/. Random element of M(R)
such that a.s. p(u(9),v) < a

Total variation distance

p(tts V) 1= SUPpeo(r) |[H(E) — v(E))



How Robust is the Bayesian Answer?

M(R) v as. P(/«L(Q)W) <«
* p(0)
infpeo d(u(0)) 120 E|2(0))] supgeo @ (u(6))
\l@ Prior
? E|®(v)\d € By a/IE [(I)(M(Q))‘d c By Data

I Posterior
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If lims o SUP e x SUPgee P(0)|Bs(z)] =0

then, for all o > 0 there exists d.(a) > 0 such that

for all 0 < 0 < d.(«) and all integers n > 1,

esssup® (u(0)) < sup
Po

inf{r | po | (u(

esisupCI) (1(6))
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If lims o SUP e x SUPgee P(0)|Bs(z)] =0

then, for all o > 0 there exists d.(a) > 0 such that

for all 0 < 0 < d.(«) and all integers n > 1,

inf®

< eSS
Po

(1(6))

(V) d € By

A

ﬂ

inf
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Cromwell’s rule
Every neighborhood of ©

has strictly positive mass under pg
oll specified

mplies consistenc

mplies maximal b al perturbations

Supq)(,u(@)) < sup K -(I)(l/) d € By
e veM, - -

Vér}éla ) _(I)(y) de Bj| < ggéq)(ﬂ(g))




Example Y =R
(p) = plX > a

O C R*

Generalization AX’: Polish space

d: M(X)—R
© : Polish space



Lo | D(10)]

T space
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Hadamard well posed problem

1. A solution exists

2. The solution is unique

3. The solution's behavior hardly changes
when there's a slight change in the
C g o J. S. Hadamard
initial condition 1865 —1963

Bayesian inference appears to be ill posed in
the Hadamard sense (3)



Are these results compatible with classical Robust Bayesian Inference?

Framework is the same: Bayesian Sensitivity Analysis

Given a class II SUPrert By {(I) (,u ) ‘d <€ By ]

of priors, compute inf e Eyoon {(D (1) |d c By

. | _ Box (1953)
Classical Robust Bayesian Inference: Wasserman (1991)

Huber (1964)

> Robustness

Finite dimensional
class of priors II |

Our brittleness results:

Finite co-dimensional | > Brittleness

class of priors 11




Example

want to esti

B (ph) = pl[X > d

l’I’T . Unknown or partially known
" measure of probability on [0, 1]

We observe d € BY :=[[._, Bs(z;)

Bayesian Answer

,uT is the realization of a random measure on |0, 1]
7 is the distribution of pf

Ly [P (1) |d € ng_




Construction of 7

Specity the distribution of (EXNM X, Ex,[X?],. )
Robustness?

M([0,1])

v

I

v | R"

(EXNM[X], Ex.,[X2],... ,EXNM[X’“D

Uniform distribution on

¥ (M([0,1]))

II: Class of priors on M([0, 1])
such that if m € II and p ~ 7 then

(

ﬂXNM[X]a

*JXN'UJ[XZ], Ce ey

*JXNM[Xk]) ~ Q




II: Classes of priors on M(]0,1])
such that if 7 € II and p ~ 7 then

(*;XNM[X], *::XNM[X2],..., *::XN'UJ[XIC]) ~ @
Theorem As 0 | O

SUp 11 Ejmon {CID (,u) d € Bgl: — 1

infrer Euon|®(u)|d e B2 — 0

sup and inf over m € Il s.t. E [,u’”’ d € Bg’” >0



Generalization
X: Polish space A C M(X)

V. Measurable map
Q Polish

ML) DA \Ij space
—1
M) STT—2 Q eM(Q)

II: Class of priors on A
such that it r € Il and p ~ 7

then U(u) ~ Q




Theorem

If : —
DP inf "Bl =0
q~Q _ueqf—l(q)u Bs |

and for all v > 0

Po~q sup ®(p) > sup ®(p) —v| >0
pe¥-1(q), u[BF]>0 peA

Then

SUD 17 E i [CD (,u) |d S Bg”} = SUpP,,c 4 CID(,u)



u"|By]

A

Ekpl(s)upn — () > sup S(u) —~
/M{/\-/\/ , g€ U(A)

/ N inf up"lde By =0

ue v (q) pET-1(q)

Example: ¥(1) = (BxwplX], Exon[X],. .., ExopXH))



Bayesian Sensitivity Analysis as it currently
stands leads to Brittleness under finite
information or local misspecification

Why??

Let's look at one mechanism
causing brittleness in a
simple example



A simple example

We want to estimate ®(u') =

41X~;ﬁ [X]

172 Unknown distribution on [0, 1]

We observe d; € B(3,0)

L
0

d
Two Bayesian models !

pn®(6): random measure on

1°(0): random measure on

¢: Uniformly distributed on [0, 1

0,1
0,1




0 - |

u®(0): Has density

1

a L (1—33)% I r1l—6
f(x,0) =(1-0) 111/ 91+1/(1—9)

Tr i

6F 4 B 4

5F g 5- 4

F';‘ 4+ g ?5, 4+ J
T T

3F . 3+ 4

2 . ol |

1F 1k |

L UIQ 0 L L L L L L L ! 0 1 Il Il 1 1 Il 1 1 1
4] 0.1 02 03 0.4 0*5 0.6 0.8 08 1 0 0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.0 1
X




1b(6) has density f°(z, )
It 6 > 0.999
f(x,0) = f(x,0) e ‘
If 0 < 0.999 J
fo(2,0) = f42,0) 7 (Liog(x -5, 24601 T 107" Lae(ar—sea1+50)))

2

| Forall € (0,1)
TV (12(0), 1°(0)) < de

Prior Values
K [EXNWW)[XH — %
Eg [Ex~u o) [X]] = 3



)
0 1] 1
dq
Posterior Values
Lo | Ex i (0) [XHdl < (3(595))} 5
For 0 < 5(: | 1TV (1(0), 1(0)) < 6.
_
Lo | Ex v 0y X]|d1 € (B(35,0))] ~ 1




Bayesian Sensitivity Analysis as it currently
stands leads to Brittleness under finite
information or local misspecification

Why??

Bayesian Sensitivity Analysis as it currently
stands is based on estimates posterior to the
observation of data

Worst priors can achieve extreme values by
making the probability of observing the data
very small



Can we dismiss these priors because they depend on the data?

In the context of Bayesian Sensitivity analysis
worst priors always depend on the data.

74 W

Dismissal of Bayesian Tautology (circular reasoning)
Sensitivity Analysis in its application

Problem

Can we dismiss these priors because they can ""look nasty”
and make the probability of observing the data very small?

Problem These priors are not isolated monsters but only
directions of instability and these instabilities grow
with the number of data points

How do we know that?

Let’'s add a constraint on the probability of observing
the data.



/’LT . Unknown or partially known
" measure of probability on [0, 1]

‘We observe d c B g’ p— H ?: 1 B 5 (sz )

u' is the realization of a random measure on [0, 1]

whose mean value is on average m



Bayesian Model class .4 = M ([0, 1])

1:={7r e M(A) | E,ur |E,[X]] =m}
Thm

SUPrer Bunr [U[X > a| = 2
For ¢ < 0,

SUD 17 o [/,L[X > a”d c B;’ﬂ =1




New Bayesian Model class

A= {pn € M0, 1] [ 2pg[B§] < u"[By] < apg By

!’IJO * arbitrary distribution on [0, 1] with strictly positive density
e.g. uniform distribution on [0, 1]

If o« =1 then the data is equiprobable
under all 1 in the Bayesian model class
and posterior values are equal to prior values.

o [P(1)] = Epor i [®(11)|d € B

If o = 1 then learning is not possible




New Bayesian Model class
A= {p e M[0,1] | Lug[Bf] < p"[B}] < aug By}

1:={7r e M(A) | E,ur |E,[X]] =m}

Thm sup,.cqEpor (p[X >a]] <2

lim5 10

SUp e Epon [/,L[X > al|d € Bﬂ = —










L or | W[ X > a)|d € BY| = 0.99




oo
ng a4 —

New Bayesian Model class

A= {pp € M[0,1] | 2 po[Bs ()] < plBs(x:)] < ype

Thm sup, .8

lim5 10

e (X 2 a]] < 3

PUP 71T

~

e [P >

e 5]




Effects of a uniform constraint on the probability of the
data under finite information in the Bayesian model class

A = {,u c Ag | éuB”[B;?’} < u"|B§| < OéMBL[B?]}

o = 1 a > 1
| :

Learning not possible Learning possible

Method is robust Method is brittle

Learning Aptitude ,
Robustness \



What is the stability condition for
using Bayesian inference
under finite information?

Numerically 3
solving a PDE ¢m===) CFL condition

Using Bayesian
Inference under <{——) ?

finite iInformation



What about using the KL-divergence (relative entropy)

Problem

Closeness in KL divergence cannot be tested with discrete data.

Requires the non-singularity of the data generating distribution
with respect to the Bayesian model.

Local Sensitivity Analysis (Frechet derivative) suggests blow-up
with prob one as the number of data points goes to infinity

P Gustafson & L Wasserman 1995: Local Sensitivity
Diagnostics for Bayesian Inference

Valid for the broader class of ®-divergences (KL, Hellinger)




What about getting out of the strict Bayesian Inference
framework for robustness/accuracy estimates?

Bradley Efron (2013): Bayes’ theorem in the 215t century
Without genuine prior information “Bayesian calculations !z: f‘ﬁ
cannot be uncritically accepted and should be checked : xyj
by other methods, which usually means frequentistically.” *

How do we do that with limited sample data?

We can compute sensitivity and accuracy estimates
before the observation of the data.



Classical Bayesian Sensitivity Analysis

Compute robustness estimates after the observation of the data
Given the data d compute

SUP e [ o | P(10)|d] — B [P (1) |dﬂ
Alternative

Compute robustness estimates before the observation of the data

Take the average with respect to the distribution of the data

Epmr | (1)|d] — Epurr [@(1)|d] ‘

Problem Need a form of calculus allowing us to solve optimization problems
over measures over spaces of measures

SUD; 1/l Bpmorr,dropim




A simple example
What is the least upper bound on o [X 2 a]

If all you know is K[ X ] < m
and PO0< X <1]=1 ?
[ 0 ]

o A a 1

Answer Sup [L [X Z CL}
neA

A= € M([0, 1)) [ E,[X] < mj




You are given one pound of play-doh.
How much mass can you put above a while | "=
keeping the seesaw balanced around m? ==

l—p p
0 A a 1
TN
Answer ) maxp
subject to ap <m

Markov’s inequality | [SUP [ [X > a} —
ueA

A=A{pe M(0,1)) | E,[X] <m}




Generalization

{f: X =R, uePX)}

i

{f:X%R,/JJE?(X)

I

k
= Z Oék(sfﬁk }
1=1

{f:{1,2,....n} >R, p € P({1,2,...,n})}

l

{{1,2,...,q}, p € P({1,2,...,n})}

Optimal Uncertainty Quantification. Houman Owhadi, Clint
Scovel, Tim Sullivan, Michael McKerns and Michael Ortiz.
SIAM Review Vol. 55, No. 2 : pp. 271-345, 2013



New form of reduction calculus
A simple example

10.000 children are given one pound of play-doh.
On average, how much mass can they put above a
While, on average, keeping the seesaw balanced
around m?

\
';-P("‘"::\..’ilg. IR bk e b A O i

Paul is given one pound of play-doh.

What can you say about how much mass he Is
putting above a if all you have is the belief that
he is keeping the seesaw balanced around m?



What is the least upper bound on

If all you know is

D [/u[X > aﬂ
%NWHM[XH — m ?

0 A
Trl
nwe A:=M([0,1])

Answer

mell

sup E o [p[X > al

H::{’]TEM(A): :




SUP &y~ [M[X Z aH
mell

_ {w e M(M([0,1]) : Epur [Eu[X]] = m}

]

0 A A a 1

m  q

sup E o |[1[X > a]| = sup
Tl QeM([0,1]) : Eglg]=m
Theorem _
4qu@ sSup M[X 2 CL]
peM([0,1]) :E, [X]=¢q _




N
0 A A «a 1
mq
sup B, |[1[X > a]] = sup
mell QeM([0,1]) : Eg[g]=m

S . 4
Lg~Q [mm(a, 1)}




sup B, [p[X > a]

mell
1= {7 € M(M(0,1))) : Epr[E,[X]] = m }
A a
0 T
: T
sup Ej o || X > al| = o
mell




New form of reduction calculus

M(X) DA
MA) ST

Theorem

W

Q Polish
space

v 9 < M(Q)

sup

sup

TeVv—1)

:EQN@ [
Qe -

B [®(1),

sup  D(p)]
pnev—1(q) )




Can we do some math with this form of calculus?




New Reproducing Kernel Hilbert Spaces and Selberg Integral formulas

fIm Et_l | H] 1 t?(]. — 1 )2A4 ( )dt — Sm(57172)58m(3,3,2)

[rm STV 82 - AL (H)dt = 2S,,-1(5,3,2)

An(t) :=11cp (b —t;) 1.= 0, 1]

(30)(t) =251, o(t), tel™

_ 11 I'(at+in)T(B+5v) I (1+(j+1)7)
Sn(@, 8,7) = Hj:o I'(at+B+(n+j—1)7)I'(1+7)

]’T Infinﬁe dim.

I

Finite dim.




i1 < <1

0. n-th degree polynomials which vanish on the boundary of [0, 1]

M, C R™ set of ¢ = (q1,-..,9,) € R™ such that there exists a probability
measure p on [0,1] with E,[X"] = ¢; with ¢ € {1,...,n}.

Theorem Bi-orthogonal systems of Selberg Integral formulas

Consider the basis of Hgm_l consisting of the associated Legendre polyno-
mials @;,7 = 2,..,2m — 1 of order 2 translated to the unit interval I. For
k=2,..,2m — 1 define

(J+k+EHT(G+2)T() .
= E<1<92m — 1
U Rt LG —k+1) oIS

2m—1

hi(t) == Y (=17 ajpeam—_1-;(t,1).

j=k

Then for j = kmod 2, j,k = 2,..,2m — 1, we have

m—1

/ ) hi (1)2Q;(1) H t5 - A% 1 (t)dt = Vol(Mam—1)(2m—1)!(m—1)!

j'=1

(k+2!
(8k+ 4)(k —2)! 7%




Forrester and Warnaar 2008
The importance of the Selberg integral

Used to prove outstanding conjectures in
Random matrix theory and cases of the
Macdonald conjectures

Central role in random matrix theory,
Calogero-Sutherland quantum many-body
systems, Knizhnik-Zamolodchikov
equations, and multivariable orthogonal
polynomial theory



The truncated moment problem
M[0,1] W Rk

2! (EXNM[XLEXNM[XQ]?“"EXN“[Xk])

Study of the geometry of My := \If(/\/l([(), 1]))

P. L. Chebyshev A. A. Markov M. G. Krein
1821-1894 1856-1922 1907-1989



M[0,1] V¥ RF
0 (Bx (X, Exm[X7], . B[ X))

Origin of these new Selberg
integral formulas and new RKHS

Compute Vol(M}) using different
(finite-dimensional) representations in M ([0, 1])

]’ Infinite dim.
%f/ H
Finite dim.




M[0,1] V¥ RF
0 (Bx (X, Exm[X7], . B[ X))
My, := ¥ (M([0,1]))

Origin of these new Selberg integral formulas and new RKHS

Compute Vol(M}) using different

(finite-dimensional) representations in M ([0, 1])
0<t1 <ta<--- <ty <1
Al,..., AN > 0, Zj'vzl)\j =1

p= 30 A6, — (q1:-- - )

| |
[ [ [ I
O Ltl_tg tj tn




H = Zj\le AjOt,
Index ¢(u): Number of support points of u

Counting interior points with weight 1 and boundary points with weight %

1 is called e principal if i(p) = &£

e canonical if i(u) = "C‘SQ

e upper if support points include 1
Theorem e Jower if support points do not include 1

Every point ¢ € Int(M}y) has a unique
upper and lower principal representation.

Upper OLtl ' j 1

Lower OLtIl | | 1




Vol(Ms,,,—1) using Upper Rep. = Vol(Ms,,_1) using Lower Rep.

e Sm-1(3,3,2) = 775m (1, 1,2)

Vol(Ms,,,) using Upper Rep. = Vol(Ms,,,) using Lower Rep.
Sm(1,3,2) = 5,,(3,1,2)

Selberg ldentities

_ 111! D(at+iy)T(B+57)T(1+(j+1
Snla, 8,7) = Hj:O (P(ajayﬁ)i((nI;z)l)gy)F((a+W))v)

S, 8,7) = figyp [ljy 85711 = )P HA(E)[*dt

A(t) := Hj<l~c (tk — ¢5)




H = Zj\le AjOt,
Index ¢(u): Number of support points of u

Counting interior points with weight 1 and boundary points with weight %

1L 1S called e principal if () = %

e canonical if i(p) = £22
e upper if support points include 1

Theorem e Jower if support points do not include 1

For t, € (0,1), every point g € Int(M},) has a unique
canonical representation whose support contains t..
When t, = 0 or 1, there exists a unique principal
representation whose support contains t..

ek

O [ I ! |



New Reproducing Kernel Hilbert Spaces and Selberg Integral formulas
related to the Markov-Krein representations of moment spaces.

Mo, 1) ¥ 0, 1]k

2! (EXNM[X:aEXNM[XZL“"]EXN“[Xk])

Jy St TTy (1= 1)2 A0 (£)dt = Sm LD Sn(32)

Jrm St T 85 - AL () dE = BSim—1(5, 3, 2)

j=1"J

Am(t) ‘= Hj<k (tk B tj) I:

(S0)(t) == X, (1)

_ 111 T(a+iv)T(B+i)T(1+(j+1)7)
Sn(a, B,7) szo I'(a+B+(n+5j—1)y)I'(1+7)




i1 < <1

0. n-th degree polynomials which vanish on the boundary of [0, 1]

M, C R™ set of ¢ = (q1,-..,9,) € R™ such that there exists a probability
measure p on [0,1] with E,[X"] = ¢; with ¢ € {1,...,n}.

Theorem Bi-orthogonal systems of Selberg Integral formulas

Consider the basis of Hgm_l consisting of the associated Legendre polyno-
mials @;,7 = 2,..,2m — 1 of order 2 translated to the unit interval I. For
k=2,..,2m — 1 define

(J+k+EHT(G+2)T() .
= E<1<92m — 1
U Rt LG —k+1) oIS

2m—1

hi(t) == Y (=17 ajpeam—_1-;(t,1).

j=k

Then for j = kmod 2, j,k = 2,..,2m — 1, we have

m—1

/ ) hi (1)2Q;(1) H t5 - A% 1 (t)dt = Vol(Mam—1)(2m—1)!(m—1)!

j'=1

(k+2!
(8k+ 4)(k —2)! 7%




Why develop this form of calculus? What else
could we do?




Solving PDEs: Two centuries ago

A. L. Cauchy
(1789-1857)

S. D. Poisson
(1781-1840)

(&) \ A S P LTV




: Now.

ing PDEs
Au = f

Solv




Paradigm shift

>
S
|

J. V. Neumann
(1903-1957)

H. Goldstine
(1913-2004)
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Where are we at In finding statistical estimators?

Percentage Points of the Chi-Square Distribution

Degrees of Probability of a larger value of x z
Freedom 0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05
1 0.000 0.004 0.016 0.102 0.455 1.32 2.71 3.84
2 0.020 0.103 0.211 0.575 1.386 2.77 4.61 5.99
3 0.115 0.352 0.584 1.212 2.366 4.11 6.25 7.81
4 0.297 0.711 1.064 1.923 3.357 5.39 7.78 9.49
5 0.554 1.145 1.610 2.675 4.351 6.63 9.24 11.07
6 0.872 1.635 2.204 3.455 5.348 7.84 10.64 12.59
7 1.239 2.167 2.833 4,255 6.346 5.04 12.02 14.07
a8 1.647 2.733 3.490 5.071 7.344 10.22 13.36 15.51
it} 9 2.088 3.325 4.168 5.899 8.343 11.35 14.68 16.92

(Y
(=]

2.558 3.940 4.865 6.737 9.342 12.55 15.99 18.31
3.053 4.575 5.578 7.584 10.341 13.70 17.28 19.68

M

X°=3 (o)

12 3571 5226 6304 8438  11.340 1485 1855  21.03

13 4107 5892 7042 9209 12340 1598 1981  22.36

e 14 4660 6571 7790 10165 13339 1712 2106  23.68

where 15 5220  7.261 8547 11037 14339 1825 2231 2500
16 5812 7962 9312 11912 15338 1937 2354 2630

7. . 17 6.408 8672 10085 12792 16338 2049 2477  27.59

X<ls Chi-squared, 18 7015 9390 10865 13.675 17.338 2160 2599  28.87

2 stands for summation, 19 7633 10117 11651 14562 18338 2272 2720  30.14

b
o

0 |S the Gbsewed Values £ 8.260 10.851 12.443 15.452 19.337 23.83 28.41 21.41

. th t d | 22 9.542 12.338 14.041 17.240 21.337 26.04 30.81 33.92

e 15 e expec ed values. 24 10.856 13.848 15.659 19.037 23.337 28.24 33.20 36.42
26 12.198 15.379 17.292 20.843 25.336 30.43 35.56 38.89

28 13.565 16.928 18.939 22.657 27.336 32.62 37.92 41.34

30 14.953 18.493 20.599 24.478 29.336 34.80 40.26 43.77

40 22.164 26.509 29.051 33.660 35.335 45.62 51.80 55.76

50 27.707 34.764 37.689 42,942 45.335 56.33 63.17 67.50

=)
o

37.485 43.188 46.459 52.294 59.335 £6.98 74.40 79.08




Find the best climate model given current information

land-surface - ABL - radiation interactions
above-ABL above-ABL

di . cloud cover ili
YIS ., s ail’f'ﬁ'“’
precipitation L d rd
1 i \ \ @/‘V lorigwaye

-r
: entrainment ‘
boundary-layer
TI

incoming g.--=""" '
ffacccpacfonas @

.,{“'b. b3

(e

solar
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\ 3

oy

N

relative *
humidity ™%,
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‘f i W

. kN moﬂi:l:re_‘ iy Ic reflected
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&\s;hﬁst;a ﬂb ;Bilfil

+ positive feegback for C3, C4 plants, negative feedback for CAM piants
J negative feedback above optimal values —— - ORIV fREADIC
———= surface 3yerABL Processes ——= QANO-SUrace ——— = 130iation = = == == NEgalive feecback

Exascale Co-Design Center for

Sea ice concentration (%)

.20 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Sea surface temperature (deg C)

Materials in Extreme Environments

Ab-initio Methods

Molecular Dynamics

Phase-Field Modeling

Continuum Methods

Inter-atomic force model,
equation of state,

Defect and interface mobility,
nucleation

Direct numerical simulation of
multi-phase evolution

Multi-phase material response,
experimental observables

» 16 GPa

|02
k20
a) ‘ l b) ]

Code: Qbox/LATTE
Motif: Particles and

| wavefunctions, plane
wave DFT with nonlocal
norm-conserving,
ScalAPACK, BLACS, and
custom parallel 3D FFTs
Prog. Model: MPI

Code: SPaSM/ddcMD

Motif: Particles, domain
decomposition, explicit time
integration, neighbor and
linked lists, dynamic load
balancing, parity error
recovery, and in situ
visualization

Prog. Model: MPI + Threads

Code: AMPE/GL

Motif: Regular and
adaptive grids, implicit
time integration, real-
space and spectral
methods, complex order
parameter (phase, crystal,
species)

Prog. Model: MPI

Code: VP-FFT/ALE3d

Motif: Regular and irregular
grids, implicit time
integration, 3D FFTs,
polycrystal and simgle
crystal plasticity,

Prog. Model: MPI




Where are we at in finding statistical estimators?

Find the

best estimator
or model

+ (sample) data

'

0(data)



Can we turn their design into a computation”?

Find the

best estimator
or model

+ (sample) data

£ H(da,!a,)




The UQ Problem with sample data
ate. O(u') = pl[X > a

1- Unknown or partially known
o measure of probability on R

d:(dl,...,dn)ERn

n i.i.d samples from u'

Your estimation:
function of the data (9 (d)




Estimation error Q(d) _ (I)(MT)

Statistical
Error

5((9,,LLT) —

“d~(pt)m

[0(d) - @(u)]*

Optimal bound on the statistical error

(0
max & (6, )

Optimal statistical estimators

min max £ (6, u)

0 ucA



Game theory and statistical decision theory

John Von Neumann Abraham Wald



The universe

Estimator Measure of probability

9 . Loss/Statistical Error _ ,LL
(0, p)

Minimize Maximize



Computer The universe

Estimator Measure of probability

9 . Loss/Statistical Error _ ,LL
(0, p)

Minimize Maximize



The space of admissible scenarios along with
the space of relevant information,
assumptions, beliefs and models tend to be
infinite dimensional, whereas calculus on a
computer is necessarily discrete and finite

Al0 |1 v(0|1 =01 @01

olo|o olol1 ERE olo[1
ol SENERE SRR IE SRR RN

Figure 1. Truth tables

X X X X
F = E& @ﬂ‘ jD@
y J y y y

Figure 2. Logic gates

a XAY =d xvy = XYy a x®Dy
v y a Yy a ¥

Figure 3. De Morgan equivalents

@' @ ,@ @
XAY X =y

Arithmetic and Boolean logic



We need a form of calculus allowing us to
manipulate infinite dimensional information
structures




Min/Max Tree

Allows you to design optimal experimental campaigns
and turn the process of scientific discovery into a computation




Machine learning

STEP.ONE: BEAT Hllhlllll AT
l}llH HEGT FllllH

Develop the best
model of reality -
glven available
“information

!

> smmb msum nu (12 Act based on
LTSS That model

!

Gather new
information




Prior on ©

po € M(O)

Prior on Ay C M(X)

(po)

o .

Bayesian model

(1(0)

Random element of Aq distributed according to m

Random element of A, such that a.s. p(u(f),v) < «

Perturbed Bayesian model
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UV




*k

p1, pr2) € M(X) x M(X)|p1 € Ao, p(piz, p1) < af,
fﬁ/ﬁ<:3/k) _Ph¢4* I
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sup
veEM,,

{70 € M(A,)|for some m € M(A"),
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We observe

d € By :=[[;—; Bs(i)

II: Classes of priors on M([0,1])
such that if w € II and u ~ 7 then

(

*j'XN,u,[X]?

“j’XN’u[XZ], Ce ey

ﬂXNu[Xk]) ~ Q

Uniform distribution on

o (M([0,1]))



We observe d - B%

II: Classes of priors on M(]0,1])
such that if m# € II and p ~ 7 then

(EXN,UJ[XL 4lXN,uJ[XQ]a---a ﬂXN,UJ[Xk]) ~ Q

Theorem Tl = 1 X1 arbitrary, k arbitrary

]{(S) HFT < sup E,, .~ [(I)(M)‘d - Bg’} <1
€ mell

1—46(

2ko

€

)2k+1

0 < inf Epn | ®(p)|d € By | < de(==




Stability of the method?
Numerically 4=mmmm) CFL condition

solving a PDE

Using Bayesian

Inference under ﬁ ?

finite information

If we push Classical Bayesian Sensitivity Analysis the
condition will depend on

 How much we already know
« Control on the probability of the data
* Resolution of the measurements



New form of reduction calculus

M) = A —=—=2, Q = [0, 1]
—1
M) ST —2 )

Theorem ={Q e M(Q) | Eg[X] = m}

sup E,,r |[1[X > a]
mell H

sup E¢g sup ulX > a
QEM([0,1]) : Egql=m LEeM([0,1)) : E,, [X)=




